

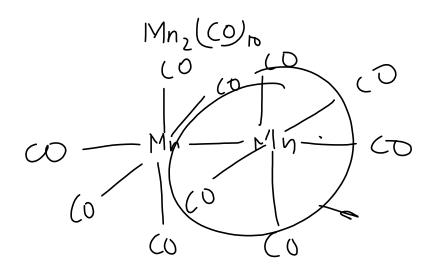
JEE Main (2024)

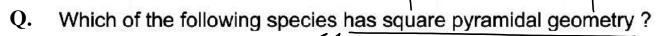
MEMORY BASED PAPER SOLUTION

30 JAN 2024 (S-02)

CHEMISTRY

Q. Geometry of Decacarbonyl dimanganese (0) is :

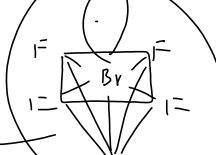



(1) Octahedral

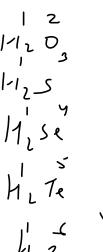
(2) Square planar

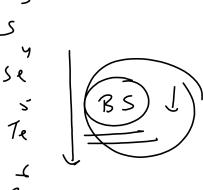
(3) Trigonal bipyramidal

(4) Square pyramidal

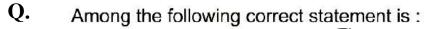


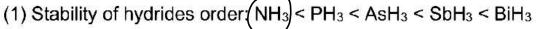
(1) PCl₅

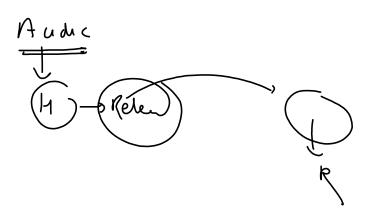


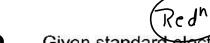


Q. Statement-1: (H₂Te) is more acidic than H₂S.


Statement-2: H₂Te has less bond strength than H₂S.


- **Statement-1 and Statement-2 are correct.
- (2) Statement-1 and Statement-2 are incorrect.
- (3) Statement-1 is correct and Statement-2 is incorrect.
- (4) Statement-1 is incorrect and Statement-2 is correct.




(3) NH₃ is strongest reducing agent while BiH₃ is mild reducing agent

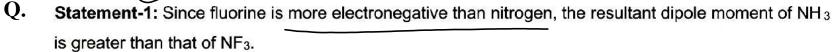
(4) Basicity of hydrides: NH₃ < PH₃ < AsH₃ < SbH₃ < (BiH₃)

C, Aude

Given standard electrode potential of (BrO₄-,)IO₄- and ClO₄- are 1.85 V, 1.65 V and 1.20 V respectively Q.

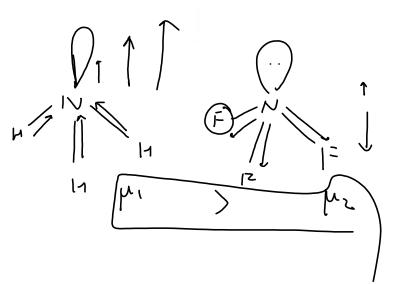
then select order of their oxidizing power:

(1)
$$CIO_4^- < BrO_4^- < IO_4^-$$


(2)
$$IO_4^- < BrO_4^- < CIO_4^-$$

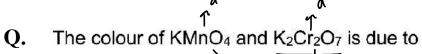
(4) $BrO_4^- < CIO_4^- < IO_4^-$

Oxiding Power 1


7

Statement-2: In case of NH₃ the orbital dipole due to lone pair is in the same direction as the resultant dipole moment of N-H bonds, whereas in NF₃ the orbital dipole is in the direction opposite to the resultant dipole moment of three N-F bonds.

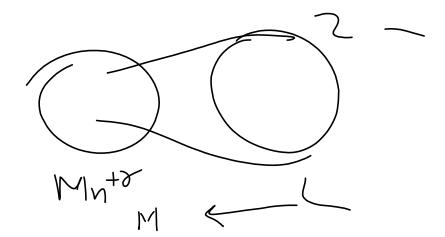
- (1) Statement I and Statement II are correct.
- (2) Statement I is correct and Statement II is incorrect
- (3) Statement I is incorrect and Statement II is correct
- (4) Statement I and Statement II are incorrect

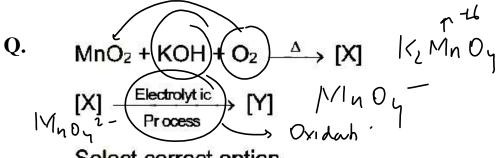

Q. In a mixture of B & C, A is added. Given moles of A, B & C are respectively n_A, n_B & n_C then determine mole fraction of C.

$$(1) \frac{n_{C}}{n_{A} + n_{B} + n_{C}}$$
 (2) $\frac{n_{C}}{n_{A} \cdot n_{B} + n_{C}}$ (3) $\frac{n_{C}}{n_{A} \cdot n_{C} + n_{B}}$ (4) $\frac{n_{C}}{n_{A} + n_{B}}$

$$(2) \frac{n_C}{n_A.n_B + n_C}$$

$$(3) \frac{n_C}{n_A.n_C + n_B}$$


$$(4) \frac{n_C}{n_A + n_B}$$

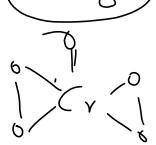


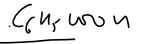
- (1) d-d transition > +>
- (3) Ligand to metal charge transfer

- (2) Metal to ligand charge transfer
- (4) F-Center

Select correct option

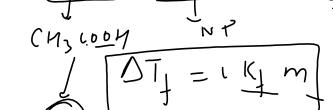
	[X]	[Y]
(1)	MnO ₄ -	MnO ₄ -2
(2)	MnO ₄ -2	MnO ₄ -
(3)	. Mn ₂ O ₃	Mn
(4)	Mn ₂ O ₇	MnO ₄ -


Q.
$$CrO_2Cl_2$$
+ NaOH \longrightarrow [X]
[X] + HCl + H₂O₂ \longrightarrow [Y]

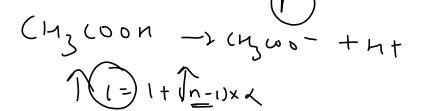

Naz(roy + Hu + noz

Select correct option

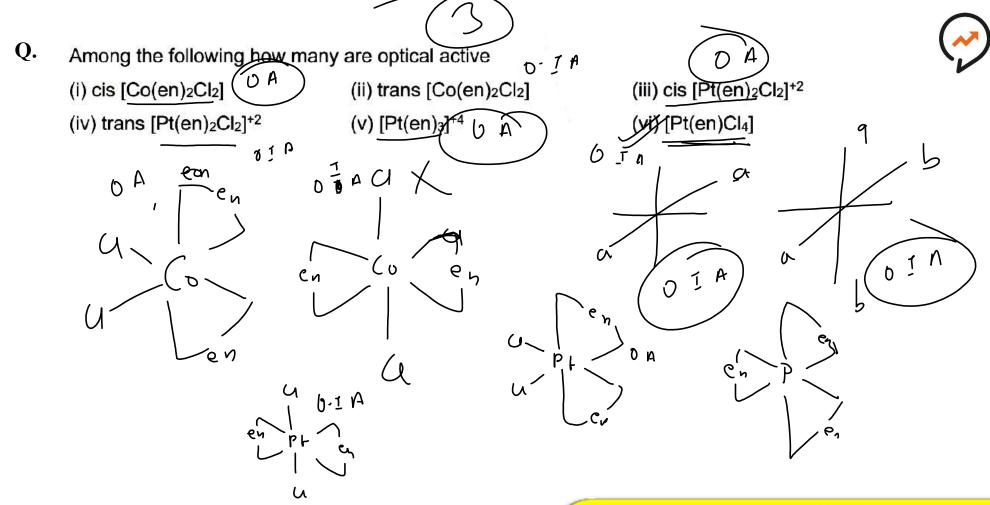
- (3) CrO₅ Na₂CrO₄
- (4) Cr₂O₃ Na₂Cr₂O₇


- Q. Which of the following solution have maximum depression in freezing point?
 - (1) 180 g of glucose in water <

(2) 180 g of Benzoic acid in Benzene


(3) 180 g of Acetic acid in Benzene

180 g of Acetic acid in water


12×7- +2×16+6

C/2 6009 84+32 th

RANKERS OFFLINE CLASSES VARANASI

Q. In He⁺ ion an electron Jumps from 5th excited state to 1st excited state, then total number of spectral lines formed are 1^{to}.

$$TSL = (n_{1} - n_{1}) (n_{2} - n_{1} + 1)$$

$$= (6 - 2) (6 - 2 + 1)$$

$$= 2 \times 10$$

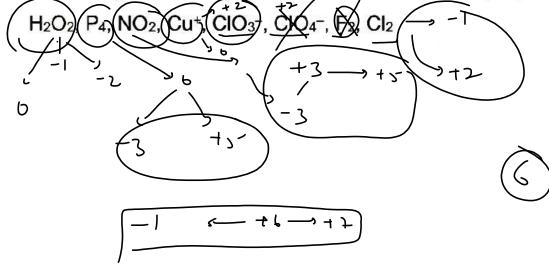
$$= 2 \times 10$$

$$= 10$$

(i) 2 Fe_(s) + $\frac{3}{2}$ O₂(g) \longrightarrow Fe₂O_{3(s)} Δ H°_{rxn} = - 822 KJ\mole.

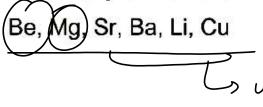
(ii) $\bigcirc (ij) + \frac{1}{2} O_{2(g)} \longrightarrow \bigcirc (O_{(g)})$

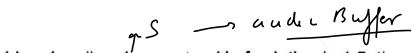
 $\Delta H^{o}_{rxn} = -110 \text{ KJ/Mole.}$


The value of ΔH^{o}_{rxn} for reactior (Fe₂O_{3(s)})+ 3C_(s) \longrightarrow 2Fe_(s) + 3CO is _____ KJ [Nearest integer]

Fez 03 ---> 2 Fe + 362 | NM = +822 | (5 | mb) 3C+ 302 --> 3 CO | NM -- - 330

Fezo3 + 3 C -> 21-e + 3 Co 492 (co mo)


Q. How many of following species can show redox disproportion reaction.


Q. How many of the following can show flame colour test?

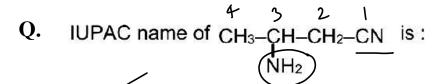
In buffer solution of benzoic acid and sodium benzoate pH of solution is 4.5. then ratio of moles of salt to Q. moles of acid is $\angle (\mathcal{O})$ [Nearest Integer]

[Give pKa (Benzoic acid) = 4,5 and log2 = 0.3]

$$-3 \quad |3| = p| + \log \left(\frac{s}{q}\right)$$

$$n \qquad 45 = 42 + \log\left(\frac{s}{q}\right)$$

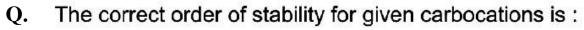
$$h = 03 - \log(\frac{s}{q})$$


$$\left(\frac{S}{q}\right)$$
 - 2

$$\left(\frac{n_s}{n_q} - 2\right)$$

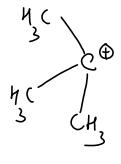
- (1) 3-Aminobutanenitrile
- (3) 2-Amino-1-cyanopropane

- (2) 3-Aminobutanecarbonitrile
- (4) 3-Aminebutanenitrile


Q. Which reagent on reaction with phenol give salicyldebyde:

(1) CO₂, NaOH

(2) CHCl₃, NaOH


(3) CCl₄, NaOH

(4) H₂O, H⁺

- (I) (CH₃)₃C⁺, (II) (CH₃)₂CH⁺, (III) CH₃CH₂⁺, (IV) CH₃⁺
- (1) || > | > || > |V
- (3) |V > |I| > |I| > |I|

$$\propto =$$
?

Q. (A)
$$\leftarrow \frac{BH_3/THF}{H_2O_2/OHT}$$
 (B)?

A & B are respectively

OH

(A) (A) (B)

OH

(B)

OH

(A) OH

(B)

OH

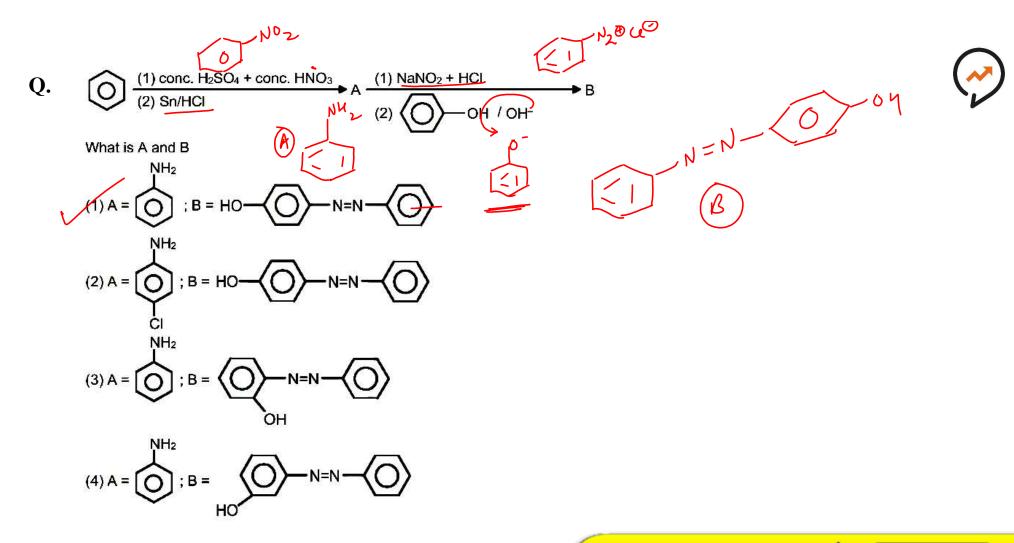
(B)

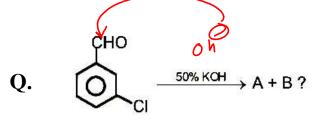
OH

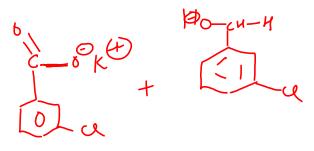
(B)

OH

(B)


OH


(B)


OH

(B)

A & B are respectively

(1)
$$A = \bigcirc$$
COO-
CH₂-OH

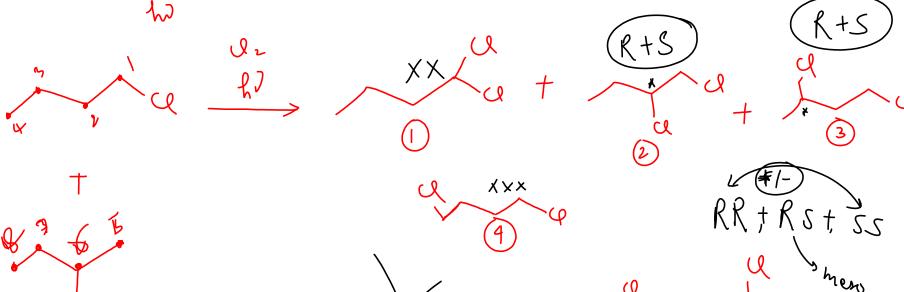
COO-
CH₂-OH

(3) $A = \bigcirc$
CH₂-OH

CH₂-OH

(2)
$$A = \bigcirc$$
OH
$$COO^{-}$$

$$CH_{2}-OH$$

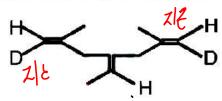

$$COO^{-}$$

$$COO^{-}$$

$$CH_{2}-OH$$

$$CH_{2}-$$

Q. Total number of optical isomer formed is Chlorobutane + $Cl_2 \longrightarrow dichlorobutane$


RANKERS OFFLINE CLASSES VARANASI

GET SCHOLARSHIP FOR NEW ADMISSION

GOOGLE FORM

Q. Total number of geometrical isomer possible for given compound is ?

$$n_e$$
 $c = \begin{pmatrix} z \\ z \end{pmatrix}$

$$\frac{3}{h} = c = c = c$$

$$\frac{x}{\xi}$$

$$C = C = C$$

