

# JEE Main 2024 (Shift - 01 Chemistry Paper)

# 30.01.2024

|      |                                                                                                                        |      | J                                                           |                        |  |
|------|------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------|------------------------|--|
|      | CHEMISTRY                                                                                                              |      | <b>TEST PAPER WITH S</b>                                    | OLUTION                |  |
|      | SECTION-A                                                                                                              | 63.  | Sugar which does not give reddish brown precipitat          |                        |  |
| 61.  | Given below are two statements:                                                                                        |      | with Fehling's reagent is:                                  |                        |  |
|      | Statement-I: The gas liberated on warming a salt                                                                       |      | (1) Sucrose (2)                                             | Lactose                |  |
|      | with dil $H_2SO_4$ , turns a piece of paper dipped in                                                                  |      | (3) Glucose (4)                                             | Maltose                |  |
|      | lead acetate into black, it is a confirmatory test for                                                                 | Ans. | (1)                                                         |                        |  |
|      | sulphide ion.<br>Statement-II: In statement-I the colour of paper<br>turns black because of formation of lead sulphite | Sol. | Sucrose do not contain hemiac                               | cetal group.           |  |
|      |                                                                                                                        |      | Hence it does not give test with Fehling solution           |                        |  |
|      | In the light of the above statements, choose the                                                                       |      | While all other give positive test with Febling             |                        |  |
|      | most appropriate answer from the options given<br>below:<br>(1) Both Statement-I and Statement-II are false            |      | solution                                                    | ve test with renning   |  |
|      |                                                                                                                        | 64.  | Given below are the two statements: one is labeled as       |                        |  |
|      | (2) Statement-I is false but Statement-II is true                                                                      |      | Assertion (A) and the other is la                           | abeled as Reason (R).  |  |
|      | (3) Statement-I is true but Statement-II is false                                                                      |      | Assertion (A): There is a considerable increase in          |                        |  |
|      | (4) Both Statement-I and Statement-II are true.                                                                        |      | covalent radius from N to P. However from As                |                        |  |
| Ans. | (3)                                                                                                                    |      | Bi only a small increase in                                 | n covalent radius is   |  |
| Sol. | $Na_2S + H_2SO_4 \rightarrow Na_2SO_4 + H_2S$                                                                          |      | observed.                                                   |                        |  |
|      | $(CH_3COO)_2Pb + H_2S \rightarrow PbS + 2CH_3COOH$                                                                     |      | <b>Reason (R):</b> covalent and ionic radii in a particular |                        |  |
|      | sulphide                                                                                                               |      | oxidation state increases down                              | the group              |  |
|      | O<br>U                                                                                                                 |      | In the light of the above st                                | tatement choose the    |  |
|      | C CHO                                                                                                                  |      | most appropriate answer from                                | m the options given    |  |
|      |                                                                                                                        |      | helow.                                                      | in the options given   |  |
| 62.  | Pd-BaSO <sub>4</sub>                                                                                                   |      | (1) (A) is false but ( <b>P</b> ) is true                   |                        |  |
|      | This reduction reaction is known as:                                                                                   |      | (1) (A) is faise out (R) is the                             | ve hut (D) is not the  |  |
|      | (1) Rosenmund reduction                                                                                                |      | (2) Both (A) and (R) are true $f(A)$                        | te dut (K) is not the  |  |
|      | (2) Wolff-Kishner reduction                                                                                            |      | correct explanation of (A)                                  |                        |  |
|      | (3) Stephen reduction<br>(4) Etard reduction                                                                           |      | (3) (A) is true but (R) is false                            |                        |  |
| Ans. |                                                                                                                        |      | (4) Both (A) and (R) are true                               | and (R) is the correct |  |
| Sol. | (-)                                                                                                                    |      | explanation of (A)                                          |                        |  |
|      | 0<br>•                                                                                                                 | Ans. | (2)                                                         |                        |  |
|      |                                                                                                                        | Sol. | According to NCERT,                                         |                        |  |
|      | Pd-B aSO <sub>4</sub>                                                                                                  |      | Statement-I : Factual data,                                 |                        |  |
|      | It is known as resemmind reduction that is the                                                                         |      | Statement-II is true.                                       |                        |  |
|      | nartial reduction of acid chloride to aldehyde                                                                         |      | But correct explanation is pre-                             | esence of completely   |  |
|      | partial reduction of acid emotion to aldenyde                                                                          |      | filled d and f-orbitals of heavi                            | er members             |  |
|      |                                                                                                                        |      |                                                             |                        |  |
| _    |                                                                                                                        |      |                                                             |                        |  |

**65.** Which of the following molecule/species is most stable?





**Sol.** it is aromatic species

66. Diamagnetic Lanthanoid ions are: (1) Nd<sup>3+</sup> and Eu<sup>3+</sup> (2) La<sup>3+</sup> and Ce<sup>4+</sup> (3) Nd<sup>3+</sup> and Ce<sup>4+</sup> (4) Lu<sup>3+</sup> and Eu<sup>3+</sup>

Ans. (2)

- Sol. Ce : [Xe]  $4f^{1}5d^{1}6s^{2}$ ; Ce<sup>4+</sup> diamagnetic La : [Xe]  $4f^{0}5d^{1}6s^{2}$ ; La<sup>3+</sup> diamagnetic
- **67.** Aluminium chloride in acidified aqueous solution forms an ion having geometry
  - (1) Octahedral
  - (2) Square Planar
  - (3) Tetrahedral
  - (4) Trigonal bipyramidal

Ans. (1)

Sol.  $AlCl_3$  in acidified aqueous solution forms octahedral geometry  $[Al(H_2O)_6]^{3+}$ 

**68.** Given below are two statements:

**Statement-I:** The orbitals having same energy are called as degenerate orbitals.

**Statement-II:** In hydrogen atom, 3p and 3d orbitals are not degenerate orbitals.

In the light of the above statements, choose the **most appropriate** answer from the options given

- (1) Statement-I is true but Statement-II is false
- (2) Both Statement-I and Statement-II are true.
- (3) Both Statement-I and Statement-II are false
- (4) Statement-I is false but Statement-II is true

### Ans. (1)

**Sol.** For single electron species the energy depends upon principal quantum number 'n' only. So, statement II is false.

Statement I is correct definition of degenerate orbitals.

**69.** Example of vinylic halide is



Ans. (1)





**70.** Structure of 4-Methylpent-2-enal is

$$\begin{array}{c} CH_{3} & O \\ & \parallel \\ (1) H_{2}C = C - C - CH_{2} - C - H \\ & \parallel \\ H & H \end{array}$$

$$(2) CH_{3} - CH_{2} - C = CH - C - H \\ & \parallel \\ CH_{3} \end{array}$$

$$(3) CH_{3} - CH_{2} - CH = C - C - H \\ & \parallel \\ CH_{3} \end{array}$$

$$O \\ H_{3} - CH_{2} - CH = CH - C - H \\ & \parallel \\ CH_{3} \end{array}$$

Ans. (4)

Sol. 
$$5 \\ CH_3 - CH_3 - CH_3 - CH_3 = CH_2 - CH_1 - H_1 \\ CH_3 - CH_3 - CH_3 - CH_2 - H_1 - H_2$$

ĊH<sub>3</sub>

| 71. | Match List-I with List-II           |                       |  |
|-----|-------------------------------------|-----------------------|--|
|     | List-I                              | List-II               |  |
|     | Molecule                            | Shape                 |  |
|     | (A) BrF <sub>5</sub>                | (I) T-shape           |  |
|     | (B) H <sub>2</sub> O                | (II) See saw          |  |
|     | (C) ClF <sub>3</sub>                | (III) Bent            |  |
|     | (D) SF <sub>4</sub>                 | (IV) Square pyramidal |  |
|     | (1) (A)-I, (B)-II, (C)-IV, (D)-III  |                       |  |
|     | (2) (A) –II, (B)-I, (C)-III, (D)-IV |                       |  |
|     | (3) (A)-III, (B)-IV, (C)-I, (D)-II  |                       |  |
|     | (4) (A)-IV, (B                      | 5)-III, (C)-I, (D)-II |  |

Ans. (4)



**72.** The final product A, formed in the following multistep reaction sequence is:



## Ans. (2)

#### Sol.



**73.** In the given reactions identify the reagent A and reagent B



Sol.



74. Given below are two statement one is labeled as Assertion (A) and the other is labeled as Reason (R).
Assertion (A): CH<sub>2</sub> = CH - CH<sub>2</sub> - Cl is an example of allyl halide

**Reason (R):** Allyl halides are the compounds in which the halogen atom is attached to  $sp^2$  hybridised carbon atom.

In the light of the two above statements, choose the **most appropriate** answer from the options given below:

(1) (A) is true but (R) is false

(2) Both (A) and (R) are true but (R) is not the correct explanation of (A)

(3) (A) is false but (R) is true

(4) Both (A) and (R) are true and (R) is the correct explanation of (A)

### Ans. (1)

 $Sol. \quad CH_2 = CH - CH_2 - Cl$ 

↑

It is allyl carbon and sp<sup>3</sup> hybridized

- **75.** What happens to freezing point of benzene when small quantity of napthalene is added to benzene?
  - (1) Increases
  - (2) Remains unchanged
  - (3) First decreases and then increases
  - (4) Decreases

### Ans. (4)

**Sol.** On addition of naphthalene to benzene there is depression in freezing point of benzene.

#### 76. Match List-I with List-II

| List-I                             | List-II                          |  |  |  |  |
|------------------------------------|----------------------------------|--|--|--|--|
| Species                            | Electronic distribution          |  |  |  |  |
| (A) $Cr^{+2}$                      | (I) $3d^8$                       |  |  |  |  |
| (B) $Mn^+$                         | (II) $3d^34s^1$                  |  |  |  |  |
| (C) Ni <sup>+2</sup>               | (III) $3d^4$                     |  |  |  |  |
| (D) $V^+$                          | (IV) $3d^54s^1$                  |  |  |  |  |
| Choose the correct                 | et answer from the options given |  |  |  |  |
| below:                             |                                  |  |  |  |  |
| (1) (A)-I, (B)-II, (               | C)-III, (D)-IV                   |  |  |  |  |
| (2) (A)-III, (B) – I               | IV, (C) – I, (D)-II              |  |  |  |  |
| (3) (A)-IV, (B)-II                 | I, (C)-I, (D)-II                 |  |  |  |  |
| (4) (A)-II, (B)-I, (C)-IV, (D)-III |                                  |  |  |  |  |

Sol. <sub>24</sub>Cr → [Ar]  $3d^54s^1$ ; Cr<sup>2+</sup> → [Ar]  $3d^4$ <sub>25</sub>Mn → [Ar]  $3d^54s^2$ ; Mn<sup>+</sup> → [Ar]  $3d^54s^1$ <sub>28</sub>Ni → [Ar]  $3d^84s^2$ ; Ni<sup>2+</sup> → [Ar]  $3d^8$ <sub>23</sub>V → [Ar]  $3d^34s^2$ ; V<sup>+</sup> → [Ar]  $3d^34s^1$ 

77. Compound A formed in the following reaction reacts with B gives the product C. Find out A and B.

Sol.

$$CH_3 - C \equiv CH \xrightarrow{Na} CH_3 - C \equiv C^-Na^+ \frac{CH_3CH_2CH_2 - Br}{\checkmark}$$
$$NaBr + CH_3 - C \equiv C - CH_2CH_2CH_3$$

**78.** Following is a confirmatory test for aromatic primary amines. Identify reagent (A) and (B)





Sol.

81.

Sol.







- The Lassiagne's extract is boiled with dil HNO3 79. before testing for halogens because,
  - (1) AgCN is soluble in HNO<sub>3</sub>
  - (2) Silver halides are soluble in HNO<sub>3</sub>
  - (3)  $Ag_2S$  is soluble in HNO<sub>3</sub>
  - (4) Na<sub>2</sub>S and NaCN are decomposed by HNO<sub>3</sub>

### Ans. (4)

- Sol. If nitrogen or sulphur is also present in the compound, the sodium fusion extract is first boiled with concentrated nitric acid to decompose cyanide or sulphide of sodium during Lassaigne's test
- 80. Choose the correct Statements from the following:
  - (A) Ethane-1 2-diamine is a chelating ligand.
  - aluminium is (B) Metallic produced by elecrtrolysis of aluminium oxide in presence of cryolite.
  - (C) Cyanide ion is used as ligand for leaching of silver.
  - (D) Phosphine act as a ligand in Wilkinson catalyst.
  - (E) The stability constants of  $Ca^{2+}$  and  $Mg^{2+}$  are similar with EDTA complexes.

Choose the correct answer from the options given below:

- (1) (B), (C), (E) only
- (2) (C), (D), (E) only
- (3) (A), (B), (C) only
- (4) (A), (D), (E) only

Ans. (3)

NH, Bidentate, chelating Based on Hall-Heroults process [Rh(PPh<sub>3</sub>)<sub>3</sub>Cl] Wilkinson's catalyst  $Ag_2S + NaCN \xrightarrow{Air} Na[Ag(CN)_2] + Na_2S$ Ca<sup>++</sup> ion forms more stable complex with EDTA **SECTION-B** The rate of first order reaction is 0.04 mol  $L^{-1}$  s<sup>-1</sup> at 10 minutes and 0.03 mol  $L^{-1}$  s<sup>-1</sup> at 20 minutes after initiation. Half life of the reaction is minutes. (Given log2=0.3010, log3=0.4771) Ans. (24)  $0.04 = k[A]_0 e^{-k \times 10 \times 60}$ ...(1)  $0.03 = k[A]_0 e^{-k \times 20 \times 60}$ ...(2) (1)/(2) $\frac{4}{3} = e^{600k(2-1)}$  $\frac{4}{2} = e^{600k}$  $\ln \frac{4}{3} = 600 \text{k}$  $\ln\frac{4}{3} = 600 \times \frac{\ln 2}{t_{1/2}}$  $t_{1/2} = 600 \frac{\ln 2}{\ln \frac{4}{2}} \sec \frac{1}{2}$  $t_{1/2} = 600 \times \frac{\log 2}{\log 4 - \log 3}$  sec. =  $10 \times \frac{0.3010}{0.6020 - 0.477}$  min  $t_{1/2} = 24.08 \text{ min}$ Ans. 24

The pH at which Mg(OH)<sub>2</sub> [K<sub>sp</sub> =  $1 \times 10^{-11}$ ] begins 82. to precipitate from a solution containing 0.10 M  $Mg^{2+}$  ions is

Ans. (09)

**Sol.** Precipitation when  $Q_{sp} = K_{sp}$  $[Mg^{2+}][OH^{-}]^{2} = 10^{-11}$  $0.1 \times [OH^{-}]^{2} = 10^{-11} \implies [OH^{-}] = 10^{-5}$  $\Rightarrow$  pOH = 5  $\Rightarrow$  pH = 9





An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path  $A \rightarrow B \rightarrow C \rightarrow A$ as shown in the diagram. The total work done in the process is \_\_\_\_\_ J.

### Ans. (200)

83.

**Sol.** Work done is given by area enclosed in the P vs V cyclic graph or V vs P cyclic graph.

Sign of work is positive for clockwise cyclic process for V vs P graph.

 $W = \frac{1}{2} \times (30 - 10) \times (30 - 10) = 200 \text{ kPa} - \text{dm}^3$  $= 200 \times 1000 \text{ Pa} - \text{L} = 2 \text{ L-bar} = 200 \text{ J}$ 

84. if IUPAC name of an element is "Unununnium" then the element belongs to nth group of periodic table. The value of n is \_\_\_\_\_

#### Ans. (11)

**Sol.** 111 belongs to 11<sup>th</sup> group

85. The total number of molecular orbitals formed from 2s and 2p atomic orbitals of a diatomic molecule

Ans. (08)

Sol. Two molecular orbitals  $\sigma$  2s and  $\sigma$ \*2s. Six molecular orbitals  $\sigma$  2p<sub>z</sub> and  $\sigma$ \*2p<sub>z</sub>.  $\pi$ 2p<sub>x</sub>,  $\pi$ 2p<sub>y</sub> and  $\pi$ \*2p<sub>x</sub>,  $\pi$ \*2p<sub>y</sub> 86. On a thin layer chromatographic plate, an organic compound moved by 3.5 cm, while the solvent moved by 5 cm. The retardation factor of the organic compound is  $\_\_\_ \times 10^{-1}$ 

Ans. (07)

|      |                       | Distance travelled by         |
|------|-----------------------|-------------------------------|
| Sal  | Poterdation feator -  | sample/organic compound       |
| 501. | Retartuation factor - | Distance travelled by solvent |

$$=\frac{3.5}{5}=7\times10^{-1}$$

87. The compound formed by the reaction of ethanal with semicarbazide contains \_\_\_\_\_number of nitrogen atoms.

Ans. (03)

Sol.

$$CH_{3}-C = \underbrace{O + H_{2}N}_{H} - NH - C - NH_{2} \rightarrow$$

$$H$$
Semicarbazide

$$\begin{array}{c} & O \\ \parallel \\ CH_3 - CH = N - NH - C - NH_2 \end{array}$$

88. 0.05 cm thick coating of silver is deposited on a plate of 0.05 m<sup>2</sup> area. The number of silver atoms deposited on plate are  $\_\_\_ \times 10^{23}$ . (At mass Ag = 108, d = 7.9 g cm<sup>-3</sup>)

 $\sim$ 

### Ans. (11)

Sol. Volume of silver coating =  $0.05 \times 0.05 \times 10000$ = 25 cm<sup>3</sup> Mass of silver deposited = 25 × 7.9 g Moles of silver atoms =  $\frac{25 \times 7.9}{108}$ 

Number of silver atoms =  $\frac{25 \times 7.9}{108} \times 6.023 \times 10^{23}$ 

$$= 11.01 \times 10^{23}$$

Ans. 11

| 89. $2MnO_4^- + bI^- + cH_2O \rightarrow xI_2 + yMnO_2 + zOH^-$<br>If the above equation is balanced with integer                                                                           |                               | 90.                           | Th     |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------|---|
|                                                                                                                                                                                             |                               |                               | to     |   |
| coefficients, the value of z is                                                                                                                                                             |                               |                               |        |   |
| Ans. (08)                                                                                                                                                                                   |                               | Ans.                          | (7)    |   |
| Sol.                                                                                                                                                                                        | <b>Reduction Half</b>         | <b>Oxidation</b> Half         | Sol.   | N |
|                                                                                                                                                                                             | $2MnO_4^- \rightarrow 2MnO_2$ | $2I^- \rightarrow I_2 + 2e^-$ |        | = |
| $2\mathrm{MnO}_{4}^{-} + 4\mathrm{H}_{2}\mathrm{O} + 6\mathrm{e}^{-} \rightarrow 2\mathrm{MnO}_{2} + 8\mathrm{OH}^{-} \qquad 6\mathrm{I}^{-} \rightarrow 3\mathrm{I}_{2} + 6\mathrm{e}^{-}$ |                               |                               |        | N |
| Adding oxidation half and reduction half, net                                                                                                                                               |                               |                               | =<br>A |   |
|                                                                                                                                                                                             | reaction is                   |                               |        |   |
| $2MnO_4^- + 6I^- + 4H_2O \rightarrow 3I_2 + 2MnO_2 + 8OH^-$                                                                                                                                 |                               |                               |        |   |
|                                                                                                                                                                                             | $\Rightarrow$ z = 8           |                               |        |   |
|                                                                                                                                                                                             | $\Rightarrow$ Ans 8           |                               |        |   |
|                                                                                                                                                                                             |                               |                               |        |   |
|                                                                                                                                                                                             |                               |                               |        |   |

- 90. The mass of sodium acetate (CH<sub>3</sub>COONa) required to prepare 250 mL of 0.35 M aqueous solution is \_\_\_\_\_\_g. (Molar mass of CH<sub>3</sub>COONa is 82.02 g mol<sup>-1</sup>)
- Sol. Moles = Molarity × Volume in litres =  $0.35 \times 0.25$ Mass = moles × molar mass =  $0.35 \times 0.25 \times 82.02 = 7.18$  g Ans. 7