

CONTENTS

MATRICES THEORY & ILLUSTRATIONS Page – 01 EXERCISE(O-1) Page – 20 EXERCISE(O-2) Page – 23 EXERCISE(S-1) Page – 26 EXERCISE(S-2) Page – 28 EXERCISE (JM) Page – 30 EXERCISE (JA) Page – 32 ANSWER KEY Page – 36

JEE (Main) Syllabus :

Matrices, algebra of matrices, types of matrices, matrices of order two and three. Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations. Test of consistency and solution of simultaneous linear equations in two or three variables using matrices.

JEE (Advanced) Syllabus :

Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.

MATRIX

1. INTRODUCTION:

A rectangular array of mn numbers (which may be **real or complex**) in the form of 'm' horizontal lines (called **rows**) and 'n' vertical lines (called **columns**), is called a matrix of order m by n, written as $m \times n$ matrix.

Such an array is enclosed by $[\]$ or $(\)$ or $\|\ An\ m \times n$ matrix is usually written as

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{ln} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

In compact form, the above matrix is represented by $A=[a_{ij}]_{m\times n}$. The number a_{11} , a_{12} ,.....etc are known as the elements of the matrix A, a_{ij} belongs to the i^{th} row and j^{th} column and is called the $(\mathbf{i}, \mathbf{j})^{th}$ element of the matrix $A=[a_{ii}]$.

e.g., $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 9 \end{bmatrix}$ is a matrix having 2 rows and 3 columns. Its order is 2×3 and it has 6 elements :

$$a_{11} = 1$$
, $a_{12} = 2$, $a_{13} = 3$, $a_{21} = 0$, $a_{22} = -1$, $a_{23} = 9$.

2. SPECIAL TYPE OF MATRICES:

- (a) Row Matrix (Row vector): $A = [a_{11}, a_{12}, \dots a_{1n}]$ i.e. row matrix has exactly one row.
- **(b)** Column Matrix (Column vector): $A = \begin{bmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{m1} \end{bmatrix}$ i.e. column matrix has exactly one column.
- (c) Zero or Null Matrix : $(A = O_{m \times n})$ An $m \times n$ matrix whose all entries are zero.

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
is a 3 × 2 null matrix & B =
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
is 3 × 3 null matrix

- (d) **Horizontal Matrix**: A matrix of order $m \times n$ is a horizontal matrix if n > m e.g. $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 1 \end{bmatrix}$
- (e) Vertical Matrix: A matrix of order $m \times n$ is a vertical matrix if m > n e.g. $\begin{bmatrix} 2 & 5 \\ 1 & 1 \\ 3 & 6 \\ 2 & 4 \end{bmatrix}$
- (f) Square Matrix: If number of rows = number of columns \Rightarrow matrix is a square matrix. If number of rows = number of columns = n then, matrix is of the **order 'n'**. **Note:** The pair of elements a_{ii} & a_{ii} are called **Conjugate Elements.**

3. TRACE OF MATRIX:

The sum of the elements of a **square matrix** A lying along the principal diagonal is called the trace of

A i.e. (tr(A)). Thus, if
$$A = [a_{ij}]_{n \times n}$$
, then $tr(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots + a_{nn}$

Properties of trace of a matrix:

Let $A=\left[a_{ii}\right]_{n\times n}$ and $B=\left[b_{ij}\right]_{n\times n}$ and λ be a scalar then

- (i)
 - $tr(\lambda A) = \lambda tr(A)$ (ii) tr(A + B) = tr(A) + tr(B)
- (iii) tr(AB) = tr(BA)

4.

Triangular Matrix Diagonal Matrix denoted as $A = diag (a_{11}, a_{22}, a_{nn})$ where $a_{ij} = 0$ for $i \neq j$ Scalar Matrix Unit or Identity Matrix Lower Triangular Upper Triangular $\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \qquad a_{ij} = \begin{bmatrix} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{bmatrix}$ $a_{\scriptscriptstyle ij} = \ 0 \ \ \forall \ \ i > j \qquad \qquad a_{\scriptscriptstyle ij} = \ 0 \ \ \forall \ \ i < j \label{eq:aij}$

SQUARE MATRICES

Note:

- (i) Minimum number of zeros in triangular matrix of order n = n(n-1)/2.
- Minimum number of zero in a diagonal matrix of order n = n (n-1). (ii)

5. **EQUALITY OF MATRICES:**

Let $A = [a_{ij}] & B = [b_{ij}]$ are equal if

- both have the same order.
- (b) $a_{ij} = b_{ij}$ for each pair of i & j.

Find the value of x, y, z and w which satisfy the matrix equation Illustration 1:

$$\begin{bmatrix} x+3 & 2y+x \\ z-1 & 4w-8 \end{bmatrix} = \begin{bmatrix} -x-1 & 0 \\ 3 & 2w \end{bmatrix}$$

Solution: As the given matrices are equal so their corresponding elements are equal.

$$x + 3 = -x - 1$$
 \Rightarrow $2x = -4$
 \therefore $x = -2$ (i)
 $2y + x = 0$ \Rightarrow $2y - 2 = 0$ [from (i)]
 \Rightarrow $y = 1$ (ii)
 $z - 1 = 3$ \Rightarrow $z = 4$ (iii)
 $4w - 8 = 2w$ \Rightarrow $2w = 8$

$$\therefore \quad \mathbf{w} = 4 \qquad \qquad \dots \dots \dots (i\mathbf{v}) \qquad \qquad \mathbf{Ans.}$$

Do yourself -1:

- Find 2×3 matrix $[a_{ij}]_{2 \times 3}$, where $a_{ij} = i + 2j$
- Find the minimum number of zeroes in a triangular matrix of order 4.
- (iii) Find minimum number of zeros in a diagonal matrix of order 6.

(iv) If
$$\begin{bmatrix} 2x+y & 2 & x-2y \\ a-b & 2a+b & -3 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 4 \\ 4 & -1 & -3 \end{bmatrix}$$
, then find the values of x,y,a and b.

ALGEBRA OF MATRICES: 6.

Addition : $A + B = [a_{ij} + b_{ij}]$ where A & B are of the same order.

- (a) **Addition of matrices is commutative :** i.e. A + B = B + A
- **(b) Matrix addition is associative :** (A + B) + C = A + (B + C)
- **Additive inverse :** If A + B = O = B + A, then B is called **additive inverse** of A. (c)
- **Existence of additive identity :** Let $A = [a_{ij}]$ be an $m \times n$ matrix and O be an $m \times n$ zero (d) matrix, then A + O = O + A = A. In other words, O is the additive identity for matrix addition.
- Cancellation laws hold good in case of addition of matrices. If A,B,C are matrices of the same **(e)** order, then $A + B = A + C \Rightarrow B = C$ (left cancellation law) and $B + A = C + A \Rightarrow B = C$ (right-cancellation law)

Note: The zero matrix plays the same role in matrix addition as the number zero does in addition of numbers.

If $A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \end{bmatrix}$ & $B = \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix}$ and $A + B - D = \mathbf{O}$ (zero matrix), then D matrix will be-Illustration 2:

$$(A) \begin{bmatrix} 0 & 2 \\ 3 & 7 \\ 6 & 5 \end{bmatrix}$$

$$\begin{array}{c}
(B) \begin{bmatrix} 0 & 2 \\ 3 & 7 \\ 5 & 6 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 0 & 1 \\ 3 & 7 \\ 5 & 6 \end{bmatrix}$$

(A)
$$\begin{bmatrix} 0 & 2 \\ 3 & 7 \\ 6 & 5 \end{bmatrix}$$
 (B) $\begin{bmatrix} 0 & 2 \\ 3 & 7 \\ 5 & 6 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & 1 \\ 3 & 7 \\ 5 & 6 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & -2 \\ -3 & -7 \\ -5 & -6 \end{bmatrix}$

Solution:

$$Let \mathbf{D} = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$

$$\therefore \quad A + B - D = \begin{bmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 1 - 1 - a & 3 - 2 - b \\ 3 + 0 - c & 2 + 5 - d \\ 2 + 3 - e & 5 + 1 - f \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow -a = 0 \Rightarrow a = 0, 1 - b = 0 \Rightarrow b = 1,$$
$$3 - c = 0 \Rightarrow c = 3, 7 - d = 0 \Rightarrow d = 7,$$

$$5-e=0 \Rightarrow e=5, 6-f=0 \Rightarrow f=6$$

$$\therefore \qquad D = \begin{bmatrix} 0 & 1 \\ 3 & 7 \\ 5 & 6 \end{bmatrix}$$
 Ans. (C)

Do yourself-2:

(i) If
$$A = \begin{bmatrix} 2 & 3 & 9 \\ 8 & -2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -5 & -7 & 2 \\ 6 & 4 & 8 \end{bmatrix}$, then find a matrix C such that $A - B + C = \mathbf{O}$ and

also find the order of the matrix C.

(ii) If
$$A = \begin{bmatrix} 8 & 9 \\ 7/2 & 8 \\ 1 & -1 \end{bmatrix}$$
, then find the additive inverse of A and show that additive inverse of additive

inverse will be the matrix itself.

7. MULTIPLICATION OF A MATRIX BY A SCALAR:

If
$$A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$
; $kA = \begin{bmatrix} ka & kb & kc \\ kb & kc & ka \\ kc & ka & kb \end{bmatrix}$

Properties of scalar multiplication:

- (a) If A and B are two matrices of the same order and 'k' be a scalar then k(A + B) = kA + kB.
- **(b)** If k_1 and k_2 are two scalars and 'A' is a matrix, then $(k_1 + k_2)A = k_1A + k_2A$.
- (c) If k_1 and k_2 are two scalars and 'A' is a matrix, then $(k_1k_2)A = k_1(k_2A) = k_2(k_1A)$

8. MULTIPLICATION OF MATRICES (Row by Column):

Let A be a matrix of order $m \times n$ and B be a matrix of order $p \times q$, then the matrix multiplication AB is possible if and only if n = p and matrices are said to be **conformable** for multiplication.

In the product AB, A is called pre-factor and B is called post factor.

 \Rightarrow AB is possible if and only if number of columns in pre-factor = number of rows in post-factor.

$$\text{Let } A_{m \times n} = [a_{ij}] \text{ and } B_{n \times p} = [b_{ij}], \text{ then order of AB is } m \times p \text{ \& } \boxed{ (AB)_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj} }$$

e.g.
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}_{2\times 3}$$
 and $B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \end{bmatrix}_{3\times 4}$

Then order of AB is 2×4 .

$$(AB)_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} = \sum_{r=1}^{3} a_{1r}b_{r1}$$

$$(AB)_{23} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} = \sum_{r=1}^{3} a_{2r}b_{r3}$$

In general
$$(ab)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} = \sum_{r=1}^{3} a_{ir}b_{rj}$$

Illustration 3: If
$$\begin{bmatrix} 1 & x & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -1 \end{bmatrix} = \mathbf{O}$$
, then the value of x is :-

$$(A) -1$$

Solution:

The LHS of the equation

$$= [2 \quad 4x + 9 \quad 2x + 5] \begin{bmatrix} x \\ 1 \\ -1 \end{bmatrix} = [2x + 4x + 9 - 2x - 5] = 4x + 4$$

Thus
$$4x + 4 = 0 \implies x = -1$$

Ans. (A)

Illustration 4: If A, B are two matrices such that $A + B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, $A - B = \begin{bmatrix} 3 & 2 \\ -2 & 0 \end{bmatrix}$, then find AB.

Solution :

Given
$$A + B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
(i) & $A - B = \begin{bmatrix} 3 & 2 \\ -2 & 0 \end{bmatrix}$ (ii)

Adding (i) & (ii)

$$2A = \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix} \quad \Rightarrow \quad A = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}$$

Subtracting (ii) from (i)

$$2B = \begin{bmatrix} -2 & 0 \\ 4 & 4 \end{bmatrix} \implies B = \begin{bmatrix} -1 & 0 \\ 2 & 2 \end{bmatrix}$$

Now AB =
$$\begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 4 \end{bmatrix}$$

Ans.

9. PROPERTIES OF MATRIX MULTIPLICATION:

(a) Matrix multiplication is not commutative: i.e. $AB \neq BA$

Here both AB & BA exist and also they are of the same type but $AB \neq BA$. Example:

Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 & $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$; then $AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$; $BA = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $\Rightarrow AB \neq BA$ (in general)

(b) $AB = O \implies A = O \text{ or } B = O \text{ (in general)}$

Let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$
 & $B = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$, then $AB = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Note:

If A and B are two non - zero matrices such that $AB = \mathbf{O}$ then A and B are called the divisors of zero. If A and B are two matrices such that

- (i) AB = BA then A and B are said to commute
- (ii) AB = -BA then A and B are said to anticommute

(c) Matrix Multiplication Is Associative :

If A, B & C are conformable for the product AB & BC, then (AB) C = A(BC)

(d) Distributivity:

$$A(B+C) = AB + AC$$

 $(A+B)C = AC + BC$ Provided A,B & C are conformable for respective products

Illustration 5: Let
$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{bmatrix}$ & $C = \begin{bmatrix} 1 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0 \end{bmatrix}$ be the matrices

then, prove that in matrix multiplication cancellation law does not hold.

Solution: We have to show that AB = AC; though B is not equal to C.

We have AB =
$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -3 & -3 & 0 & 1 \\ 1 & 15 & 0 & -5 \\ -3 & 15 & 0 & -5 \end{bmatrix}_{3\times 4}$$

Now, AC =
$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0 \end{bmatrix} = \begin{bmatrix} -3 & -3 & 0 & 1 \\ 1 & 15 & 0 & -5 \\ -3 & 15 & 0 & -5 \end{bmatrix}_{3\times 4}$$

Here, AB = AC though B is not equal to C. Thus cancellation law does not hold in general.

Do yourself - 3:

(i) If
$$A = \begin{bmatrix} 2 & 9 \\ -4 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 5 \\ 6 & 8 \end{bmatrix}$ and $C = \begin{bmatrix} 9 & -7 \\ -2 & 4 \end{bmatrix}$, then show that $A(B + C) = AB + AC$.

(ii) If
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix}$, then prove that $(A - B)^2 \neq A^2 - 2AB + B^2$.

(iii) Find the value of x :
$$2\begin{bmatrix} 3 & 1 & -2 \\ -1 & -3 & 4 \end{bmatrix} + x \begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -2 \\ -8 & -14 & -2 \end{bmatrix}$$

10. POSITIVE INTEGRAL POWERS OF A SQUARE MATRIX :

For a square matrix A, $\mathbf{A}^n = \underbrace{\mathbf{A.A.A.....A}}_{\text{upto n times}}$, where $n \in \mathbf{N}$

Note:

(i)
$$A^m \cdot A^n = A^{m+n}$$

(ii)
$$(\mathbf{A}^{\mathbf{m}})^{\mathbf{n}} = \mathbf{A}^{\mathbf{m}\mathbf{n}}$$
, where $\mathbf{m}, \mathbf{n} \in \mathbf{N}$

(iii) If A and B are square matrices of same order and AB = BA then
$$(A + B)^n = {}^nC_0A^n + {}^nC_1A^{n-1}B + {}^nC_2A^{n-2}B^2 + \dots + {}^nC_nB^n$$

Note that for a unit matrix I of any order , $I^{\scriptscriptstyle m} = I$ for all $m \in N$.

Do yourself -4:

(i) If
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
, then prove that $A^n = \begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix}$ where n is positive integer.

(ii) If
$$A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$$
, where $i = \sqrt{-1}$ and $x \in N$, then A^{4x} equals -

$$(A)\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \qquad (B)\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad (C)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$(B)\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$(C)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$(D)\begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$$

11. **SPECIAL SQUARE MATRICES:**

Idempotent Matrix: A square matrix is idempotent provided $A^2 = A$. (a)

For idempotent matrix note the following:

- $A^n = A \quad \forall \quad n \ge 2, n \in N$. (i)
- (ii) determinant value of idempotent matrix is either 0 or 1
- **Periodic Matrix**: A square matrix which satisfies the relation $A^{k+1} = A$, for some positive **(b)** integer K, is a periodic matrix. The period of the matrix is the least value of K for which this holds true.

Note that period of an idempotent matrix is 1.

- (c) Nilpotent Matrix: A square matrix of the order 'n' is said to be nilpotent matrix of order m, m $\in N$, if $A^m = \mathbf{O} \& A^{m-1} \neq \mathbf{O}$.
- **Involutary Matrix**: If $A^2 = I$, the matrix is said to be an involutary matrix. i.e. square roots of **(d)** identity matrix is involutary matrix.

Note: The determinant value of involutary matrix is 1 or -1.

Show that the matrix $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \end{bmatrix}$ is idempotent. Illustration 6:

Solution:

$$A^{2} = A.A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} \times \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 2.2 + (-2).(-1) + (-4).1 & 2(-2) + (-2).3 + (-4).(-2) & 2.(-4) + (-2).4 + (-4).(-3) \\ (-1).2 + 3.(-1) + 4.1 & (-1).(-2) + 3.3 + 4.(-2) & (-1).(-4) + 3.4 + 4.(-3) \\ 1.2 + (-2).(-1) + (-3).1 & 1.(-2) + (-2).3 + (-3).(-2) & 1.(-4) + (-2).4 + (-3).(-3) \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} = A$$

Hence the matrix A is idempotent.

Illustration 7: Show that
$$\begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
 is nilpotent matrix of order 3.

Solution: Let
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$

$$A^{2} = A.A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix} = \begin{bmatrix} 1+5-6 & 1+2-3 & 3+6-9 \\ 5+10-12 & 5+4-6 & 15+12-18 \\ -2-5+6 & -2-2+3 & -6-6+9 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{bmatrix}$$

$$A^{3} = A^{2}.A = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix} = \begin{bmatrix} 0+0+0 & 0+0+0 & 0+0+0 \\ 3+15-18 & 3+6-9 & 9+18-37 \\ -1-5+6 & -1-2+3 & -3-6+9 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{O}$$

$$\therefore \quad \mathbf{A}^3 = \mathbf{O} \qquad \text{i.e.,} \quad \mathbf{A}^k = \mathbf{O}$$

$$\therefore A^3 = \mathbf{O} \qquad \text{i.e.,} \qquad A^k = \mathbf{O}$$

Here

$$k = 3$$

Hence A is nilpotent of order 3.

Show that the matrix $A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ is involutory. Illustration 8:

Solution:
$$A^{2} = A.A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix} \times \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 25 - 24 + 0 & 40 - 40 + 0 & 0 + 0 + 0 \\ -15 + 15 + 0 & -24 + 25 + 0 & 0 + 0 + 0 \\ -5 + 6 - 1 & -8 + 10 - 2 & 0 + 0 + 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}$$

Hence the given matrix A is involutory.

Illustration 9: Show that a square matrix A is involutory, iff $(I - A) (I + A) = \mathbf{0}$

Solution: Let Abe involutory

Then
$$A^2 = I$$

$$(I - A) (I + A) = I^2 + IA - AI - A^2 = I + A - A - A^2 = I - A^2 = O$$

Conversly, let (I - A) (I + A) = O

$$\Rightarrow I^2 + IA - AI - A^2 = O \qquad \Rightarrow \qquad I + A - A - A^2 = O$$

$$\Rightarrow$$
 I - A² = **O** \Rightarrow A is involutory

Do yourself - 5:

(i) The matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{bmatrix}$$
 is

- (A) idempotent matrix
- (B) involutary matrix
- (C) nilpotent matrix
- (D) periodic matrix
- (ii) If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and A^2 is the identity matrix, then find the value of x

12. THE TRANSPOSE OF A MATRIX : (Changing rows & columns)

Let A be any matrix of order $m \times n$. Then A^T or $A' = [a_{ji}]$ for $1 \le i \le m$ & $1 \le j \le n$ of order $n \times m$

Properties of transpose:

If $\,A^{\scriptscriptstyle T}\,\,\&\,\,B^{\scriptscriptstyle T}$ denote the transpose of A and B ,

- (a) $(A+B)^T = A^T + B^T$; note that A & B have the same order.
- (b) $(A B)^T = B^T A^T$ (Reversal law) A & B are conformable for matrix product AB

Note: In general: $(A_1, A_2, \dots, A_n)^T = A_n^T \dots A_n^T$ (reversal law for transpose)

- $(\mathbf{c}) \qquad (\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$
- (d) $(kA)^T = kA^T$, k is a scalar.

Illustration 10: If A and B are matrices of order $m \times n$ and $n \times m$ respectively, then order of matrix $B^{T}(A^{T})^{T}$ is -

- (A) $m \times n$
- (B) $m \times m$
- (C) $n \times n$
- (D) Not defined

Solution: Order of B is $n \times m$ so order of B^T will be $m \times n$

Now $(A^T)^T = A$ & its order is $m \times n$. For the multiplication $B^T(A^T)^T$

Number of columns in prefactor ≠ Number of rows in post factor.

Hence this multiplication is not defined.

Ans. (**D**)

13. ORTHOGONAL MATRIX

A square matrix is said to be orthogonal matrix if $A A^T = I$

Note:

(i) The determinant value of orthogonal matrix is either 1 or -1.

(ii) Let
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
 \Rightarrow $A^T = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$

$$AA^T = \begin{bmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 & a_1c_1 + a_2c_2 + a_3c_3 \\ b_1a_1 + b_2a_2 + b_3a_3 & b_1^2 + b_2^2 + b_3^2 & b_1c_1 + b_2c_2 + b_3c_3 \\ c_1a_1 + c_2a_2 + c_3a_3 & c_1b_1 + c_2b_2 + c_3b_3 & c_1^2 + c_2^2 + c_3^2 \end{bmatrix}$$

If $AA^T = I$, then

$$\sum_{i=1}^{3} a_i^2 = \sum b_i^2 = \sum c_i^2 = 1 \quad \text{and} \quad \sum_{i=1}^{3} a_i b_i = \sum_{i=1}^{3} b_i c_i = \sum_{i=1}^{3} c_i a_i = 0$$

Illustration 11: Determine the values of α , β , γ , when $\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$ is orthogonal.

Solution: Let A

Let
$$A = \begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$$

$$.. \quad A' = \begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & -\beta \\ \gamma & -\gamma & \gamma \end{bmatrix}$$

But given A is orthogonal.

$$AA^{T} = I$$

$$\Rightarrow \begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix} \begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & -\beta \\ \gamma & -\gamma & \gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 4\beta^2 + \gamma^2 & 2\beta^2 - \gamma^2 & -2\beta^2 + \gamma^2 \\ 2\beta^2 - \gamma^2 & \alpha^2 + \beta^2 + \gamma^2 & \alpha^2 - \beta^2 - \gamma^2 \\ -2\beta^2 + \gamma^2 & \alpha^2 - \beta^2 - \gamma^2 & \alpha^2 + \beta^2 + \gamma^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Equating the corresponding elements, we have

$$4\beta^2 + \gamma^2 = 1 \qquad \qquad \dots (i)$$

$$2\beta^2 - \gamma^2 = 0 \qquad \qquad \dots \dots (ii)$$

$$\alpha^2 + \beta^2 + \gamma^2 = 1$$
(iii)

From (i) and (ii),
$$6\beta^2 = 1$$
 : $\beta^2 = \frac{1}{6}$ and $\gamma^2 = \frac{1}{3}$

From (iii)
$$\alpha^2 = 1 - \beta^2 - \gamma^2 = 1 - \frac{1}{6} - \frac{1}{3} = \frac{1}{2}$$

Hence,
$$\alpha = \pm \frac{1}{\sqrt{2}}$$
, $\beta = \pm \frac{1}{\sqrt{6}}$ and $\gamma = \pm \frac{1}{\sqrt{3}}$

Do yourself - 6:

(i) If
$$A = \begin{bmatrix} 4 & 2 & -5 \\ 1 & 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix}$, then show that $(AB)^T = B^T . A^T .$

(ii) If
$$A = \begin{bmatrix} 2 & 3 & -4 \\ -1 & 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 \\ 3 & 4 \\ -5 & -6 \end{bmatrix}$, then find $A + B^T$.

(iii) If
$$A = \begin{bmatrix} 9 & -3 & 6 \\ 8 & \frac{1}{2} & 7 \\ -1 & 0 & 0 \end{bmatrix}$$
, then, show that $(A^T)^T = A$.

(iv) Show that the matrix
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
 is an orthogonal matrix.

14. SYMMETRIC & SKEW SYMMETRIC MATRIX:

(a) Symmetric matrix:

A square matrix $A = [a_{ij}]$ is said to be, symmetric if, $a_{ij} = a_{ji} \forall i \& j$ (conjugate elements are equal). Hence for symmetric matrix $A = A^{T}$.

Note: Max. number of distinct entries in any symmetric matrix of order n is $\frac{n(n+1)}{2}$.

(b) Skew symmetric matrix:

Square matrix $A = [a_{ij}]$ is said to be skew symmetric if $a_{ij} = -a_{ji} \ \forall \ i \& j$ (the pair of conjugate elements are additive inverse of each other). For a skew symmetric matrix $A = -A^{T}$.

Note:

- (i) If A is skew symmetric, then $a_{ii} = -a_{ii} \implies a_{ii} = 0 \ \forall i$. Thus the diagonal elements of a skew square matrix are all zero, but not the converse.
- (ii) The determinant value of odd order skew symmetric matrix is zero.

(c) Properties of symmetric & skew symmetric matrix:

- (i) A is symmetric if $A^T = A$ & A is skew symmetric if $A^T = -A$
- (ii) Let A be any square matrix then, $A + A^{T}$ is a symmetric matrix & $A A^{T}$ is a skew symmetric matrix.
- (iii) The sum of two symmetric matrix is a symmetric matrix and the sum of two skew symmetric matrix is a skew symmetric matrix.

- (iv) If A & B are symmetric matrices then,
 - AB + BA is a symmetric matrix
 - AB BA is a skew symmetric matrix.
- Every square matrix can be uniquely expressed as a sum or difference of a symmetric and (v) a skew symmetric matrix.

$$A = \underbrace{\frac{1}{2} (A + A^{T})}_{\text{symmetric}} + \underbrace{\frac{1}{2} (A - A^{T})}_{\text{skew symmetric}} \text{ and } A = \underbrace{\frac{1}{2} (A^{T} + A) - \frac{1}{2} (A^{T} - A)}_{\text{skew symmetric}}$$

Illustration 12: If A is symmetric as well as skew symmetric matrix, then A is -

(A) diagonal matrix (B) null matrix

(C) triangular matrix (D) none of these

Since A is skew symmetric $a_{ij} = -a_{ji}$ **Solution:** Let $A = [a_{ij}]$

for i = j, $a_{ii} = -a_{ii} \Rightarrow a_{ii} = 0$

for $i \neq j$, $a_{ij} = -a_{ji}$ [: A is skew symmetric] & $a_{ij} = a_{ji}$ [: A is symmetric] \vdots $a_{ij} = 0$ for all $i \neq j$

.. $a_{ij} = 0$ for all $i \neq j$ so, $a_{ij} = 0$ for all 'i' and 'j' i.e. A is null matrix.

Ans. (B)

Do yourself - 7:

(i) If
$$A = \begin{bmatrix} -2 & -1 & 1 \\ -1 & 7 & 4 \\ 1 & -x & -3 \end{bmatrix}$$
 be symmetric matrix then find the value of x.

(ii) Express matrix
$$A = \begin{bmatrix} 2 & 5 & 7 \\ 9 & -7 & 2 \\ 1 & -1 & 0 \end{bmatrix}$$
 as a sum of a symmetric and a skew symmetric matrix.

ADJOINT OF A SQUARE MATRIX: 15.

Let $A = [a_{ij}]$ be a square matrix of order n and let C_{ij} be cofactor of a_{ij} in A then the adjoint of A, denoted by adjA, is defined as the transpose of the cofactor matrix.

Then,
$$adjA = [C_{ij}]^T \Rightarrow adjA = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{23} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^T$$

Theorem: A (adj. A) = (adj. A) $\cdot A = |A| I_{\perp}$

Proof : A.(adj A) =
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{pmatrix}$$

$$\begin{pmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{pmatrix} = |A| \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \implies A.(Adj. A) = |A| I$$

(whatever may be the value only |A| will come out as a common element)

If $|A| \neq 0$, then $\frac{\mathbf{A.(adj.A)}}{|A|} = \mathbf{I}$ = unit matrix of the same order as that of A

Properties of adjoint matrix:

If A be a square matrix of order n, then

(i)
$$|adj A| = |A|^{n-1}$$

(ii) adj(adj A) =
$$|A|^{n-2}$$
 A, where $|A| \neq 0$

(iii) |
$$| adj(adj A) | = | A |^{(n-1)^2}$$
, where $| A | \neq 0$

(iv)
$$adj(AB) = (adj B) (adj A)$$

(v)
$$adj(KA) = K^{n-1}(adj A)$$
, K is a scalar

(vi)
$$\operatorname{adj} A^{T} = (\operatorname{adj} A)^{T}$$

Method to find adjoint of a 2×2 square matrix, directly:

Let A be a 2×2 square matrix. In order to find the adjoint simply interchange the diagonal elements and reverse the sign of off diagonal elements (rest of the elements).

e.g. If
$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \implies adj A = \begin{bmatrix} s & -q \\ -r & p \end{bmatrix}$$

Illustration 13: If $A = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 5 & 1 \\ 5 & 1 & 3 \end{bmatrix}$, then adj A is equal to -

(A)
$$\begin{bmatrix} 14 & -4 & -22 \\ -4 & -22 & 14 \\ -22 & 14 & -4 \end{bmatrix}$$

(B)
$$\begin{bmatrix} -14 & 4 & 22 \\ 4 & 22 & -14 \\ 22 & -14 & 4 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 14 & 4 & -22 \\ 4 & -22 & -14 \\ -22 & -14 & -4 \end{bmatrix}$$

(D) none of these

Solution:

adj. A =
$$\begin{bmatrix} 14 & -4 & -22 \\ -4 & -22 & 14 \\ -22 & 14 & -4 \end{bmatrix}^{T} = \begin{bmatrix} 14 & -4 & -22 \\ -4 & -22 & 14 \\ -22 & 14 & -4 \end{bmatrix}$$

Ans. (A)

Illustration 14: If $A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{bmatrix}$, then adj (adj A) is equal to -

$$\begin{array}{c|cccc}
(A) & 8 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}$$

(B)
$$16\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

(A)
$$8\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
 (B) $16\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ (C) $64\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ (D) none of these

Solution:

$$|A| = \begin{vmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{vmatrix} = 8$$

Now adj (adj A) = $|A|^{3-2}$ A

$$= 8 \begin{vmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{vmatrix} = 16 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Ans. (B)

Do yourself - 8:

- For any 2×2 matrix, if $A(AdjA) = \begin{bmatrix} 15 & 0 \\ 0 & 15 \end{bmatrix}$, then |A| is equal -(i)
 - (A) 20
- (B) 625
- (C) 15
- (D) 0

- Which of the following is/are incorrect? (ii)
 - (A) Adjoint of a symmetric matrix is skew symmetric matrix.
 - (B) Adjoint of a diagonal matrix is a diagonal matrix.
 - (C) A(AdjA) = (AdjA)A = |A|I
 - (D) Adjoint of a unit matrix is a diagonal matrix
- (iii) If A be a square matrix of the order 5 and B = Adi(A) then find Adi (5A).
- If A be a square matrix of order 4 and |A| = 3 then find adj(adjA). (iv)

INVERSE OF A MATRIX (Reciprocal Matrix): 16.

A square matrix A said to be invertible if and only if it is non-singular (i.e. $|A| \neq 0$) and there exists a matrix B such that, AB = I = BA.

B is called the **inverse** (reciprocal) of A and is denoted by A^{-1} . Thus

$$A^{-1} = B \Leftrightarrow AB = I = BA$$

We have, $A.(adj A) = |A| I_n$

$$A^{-1}$$
. $A(adj A) = A^{-1} I_n | A |$

$$I_{n}(adj A) = A^{-1} | A | I_{n}$$

$$\therefore \mathbf{A}^{-1} = \frac{(\mathbf{adj} \ \mathbf{A})}{|\mathbf{A}|}$$

Note: The necessary and sufficient condition for a square matrix A to be invertible is that $|A| \neq 0$

Properties of inverse:

If A & B are invertible matrices of the same order, then $(AB)^{-1} = B^{-1}A^{-1}$.

Note: If A_1, A_2, \dots, A_n are all invertible square matrices of order n then $(A_1 A_2 \dots A_n)^{-1} = A_n^{-1} A_{n-1}^{-1} \dots A_2^{-1} A_1^{-1}$

- If A be an invertible matrix, then A^{T} is also invertible & $(A^{T})^{-1} = (A^{-1})^{T}$. (ii)
- If A is invertible, (a) $(A^{-1})^{-1} = A$ (iii)
- (b) $(A^k)^{-1} = (A^{-1})^k = A^{-k}$; $k \in N$
- (iv) If A is non-singular matrix, then $|A^{-1}| = |A|^{-1}$
- If idempotent matrix is invertible then its inverse will be identity matrix.
- (vi) A nilpotent matrix will not be invertible because its determinant value is zero.
- (vii) Orthogonal matrix A is always invertible and $A^{-1} = A^{T}$.
- (viii) $A = A^{-1}$ for an involutary matrix.

Cancellation law: Let A,B,C be square matrices of the same order 'n'.

If A is a non-singular matrix, then

- (a) $AB = AC \Rightarrow B = C$ (Left cancellation law)
- $BA = CA \Rightarrow B = C$ (Right cancellation law) (b) Note that these cancellation laws hold only if the matrix 'A' is **non-singular** (i.e. $|A| \neq 0$).

Illustration 15: Prove that if A is non-singular matrix such that A is symmetric then A⁻¹ is also symmetric.

$$A^{T} = A$$
 [: A is a symmetric matrix]

$$(A^{T})^{-1} = A^{-1}$$
 [since A is non-singular matrix]

$$\Rightarrow (A^{-1})^T = A^{-1}$$
 Hence proved

Illustration 16:
$$\begin{bmatrix} 1 & -\tan\theta/2 \\ \tan\theta/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta/2 \\ -\tan\theta/2 & 1 \end{bmatrix}^{-1}$$
 is equal to -

$$(A) \begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix} \ (B) \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \ (C) \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \ (D) \ \text{none of these}$$

Solution:

$$\begin{bmatrix} 1 & \tan \theta / 2 \\ \tan \theta / 2 & 1 \end{bmatrix}^{-1} = \frac{1}{\sec^2 \theta / 2} \begin{bmatrix} 1 & -\tan \theta / 2 \\ \tan \theta / 2 & 1 \end{bmatrix}$$

$$\therefore \quad \text{Product} = \frac{1}{\sec^2 \theta / 2} \begin{bmatrix} 1 & -\tan \theta / 2 \\ \tan \theta / 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan \theta / 2 \\ \tan \theta / 2 & 1 \end{bmatrix}$$

$$= \frac{1}{\sec^2 \theta/2} \begin{bmatrix} 1 - \tan^2 \theta/2 & -2 \tan \theta/2 \\ 2 \tan \theta/2 & 1 - \tan^2 \theta/2 \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2 \theta / 2 & \sin^2 \theta / 2 & -2\sin \theta / 2\cos \theta / 2 \\ 2\sin \theta / 2 & \cos \theta / 2 & \cos^2 \theta / 2 - \sin^2 \theta / 2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 Ans. (C)

Illustration 17: If
$$A = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $M = AB$, then M^{-1} is equal to-

$$(A)\begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 1/3 & 1/3 \\ -1/3 & 1/6 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 1/3 & -1/3 \\ 1/3 & 1/6 \end{bmatrix}$$

(A)
$$\begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1/3 & 1/3 \\ -1/3 & 1/6 \end{bmatrix}$ (C) $\begin{bmatrix} 1/3 & -1/3 \\ 1/3 & 1/6 \end{bmatrix}$ (D) $\begin{bmatrix} 1/3 & -1/3 \\ -1/3 & 1/6 \end{bmatrix}$

Solution:
$$M = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & 2 \end{bmatrix}$$

$$|\mathbf{M}| = 6$$
, adj $\mathbf{M} = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$

$$\therefore M^{-1} = \frac{1}{6} \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1/3 & -1/3 \\ 1/3 & 1/6 \end{bmatrix}$$

Ans. (C)

Do vourself -9:

- If 'A' is a square matrix such that $A^2 = I$ then A^{-1} is equal to -(i)
 - (A) A + I
- (B) A
- (C) 0
- (D) 2A
- If 'A' is an orthogonal matrix, then A⁻¹ equals -(ii)
 - (A) A
- $(B) A^{T}$
- (C) A²
- (D) none of these

- (iii) If $A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$, then $(A^{-1})^3$ is equal to -
 - (A) $\frac{1}{27}\begin{bmatrix} 1 & -26 \\ 0 & 27 \end{bmatrix}$ (B) $\frac{1}{27}\begin{bmatrix} 1 & 26 \\ 0 & 27 \end{bmatrix}$ (C) $\frac{1}{27}\begin{bmatrix} 1 & -26 \\ 0 & -27 \end{bmatrix}$ (D) $\frac{1}{27}\begin{bmatrix} -1 \\ 0 \end{bmatrix}$

17. MATRIX POLYNOMIAL:

If
$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n x^0$$
, then we define a matrix polynomial

$$f(A) = a_0 A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_n I^n.$$

where A is the given square matrix. If f(A) is the null matrix, then A is called the zero or root of the polynomial f(x).

18. **CHARACTERISTIC EQUATION:**

Let A be a square matrix. Then the polynomial |A - xI| is called as characteristic polynomial of A & the equation |A - xI| = 0 is called as characteristic equation of A. After solving the characteristic polynomial the values of 'x' are said to be characteristic roots of the polynomial.

Note: (i) Sum of the roots of the characteristic equation is equal to trace of the matrix.

- (ii) Product of the roots of the characteristic equation is equal to the determinant value.
- (iii) The degree of characteristic equation is same as the order of the matrix.

Illustration 18: If $f(x) = x^2 - 3x + 3$ and $A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$ be a square matrix then prove that $f(A) = \mathbf{O}$. Hence find A⁴.

Solution:

$$\mathbf{A}^2 = \mathbf{A}.\mathbf{A} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ -3 & 0 \end{bmatrix}$$

Hence
$$A^2 - 3A + 3I = \begin{bmatrix} 3 & 3 \\ -3 & 0 \end{bmatrix} - 3 \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{O}$$

Aliter: ::
$$|A - XI| = 0 \Rightarrow \begin{vmatrix} 2-x & 1 \\ -1 & 1-x \end{vmatrix} = 0$$

$$\Rightarrow$$
 $(2-x)(1-x) + 1 = 0 \Rightarrow x^2 - 3x + 3 = 0$ (characteristic polynomial)

by Cayley-Hamilton Theorem $A^2 - 3A + 3I = \mathbf{O}$. Hence proved.

Now
$$A^2 = 3A - 3I$$

squaring on both the sides

$$A^{4} = 9(A^{2} - 2A + I)$$

$$= 9 \begin{pmatrix} 3 & 3 \\ -3 & 0 \end{pmatrix} - \begin{bmatrix} 4 & 2 \\ -2 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 9 \begin{bmatrix} 3 - 4 + 1 & 3 - 2 \\ -3 + 2 & -2 + 1 \end{bmatrix}$$

$$= 9 \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 9 \\ -9 & -9 \end{bmatrix}$$

19. CAYLEY - HAMILTON THEOREM:

Every square matrix A satisfy its characteristic equation

i.e.
$$a_0x^n+a_1x^{n-1}+......+a_{n-1}x+a_n=0 \text{ is the characteristic equation of } A, \text{ then}$$

$$a_0A^n+a_1A^{n-1}+......+a_{n-1}A+a_nI=\mathbf{O}$$

Note: This theorem is helpful to find the inverse of any non-singular square matrix.

i.e.
$$a_0 A^n + a_1 A^{n-1} + \dots + a_{n-1} A + a_n I = \mathbf{0}$$

On multiplying by A-1 on both the sides of above equation, we get

$$A^{\scriptscriptstyle -1} = -\frac{1}{a_{\scriptscriptstyle n}} \Big(a_{\scriptscriptstyle 0} A^{\scriptscriptstyle n-1} + a_{\scriptscriptstyle 1} A^{\scriptscriptstyle n-2} + a_{\scriptscriptstyle n-1} I \Big)$$

Illustration 19: If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
, show that $5A^{-1} = A^2 + A - 5I$

Solution: We have the characteristic equation of A.

$$|A - xI| = 0$$

i.e.
$$\begin{vmatrix} 1-x & 2 & 0 \\ 2 & -1-x & 0 \\ 0 & 0 & -1-x \end{vmatrix} = 0$$

i.e.
$$x^3 + x^2 - 5x - 5 = 0$$

Using Cayley – Hamilton theorem

$$A^{3} + A^{2} - 5A - 5I = \mathbf{O}$$
 \Rightarrow $5I = A^{3} + A^{2} - 5A$

Multiplying by A^{-1} , we get $5A^{-1} = A^2 + A - 5I$

Do yourself -10:

(i) Determine the characteristic roots of the matrix A. Hence find the trace and determinant value of A.

Where
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 and also prove that $A^3 - 18A^2 + 45A = \mathbf{O}$.

20. SYSTEM OF EQUATION & CRITERIA FOR CONSISTENCY

Gauss - Jordan method:

$$a_{\scriptscriptstyle 1}x + b_{\scriptscriptstyle 1}y + c_{\scriptscriptstyle 1}z = d_{\scriptscriptstyle 1}$$

$$a_2x + b_2y + c_2z = d_2$$

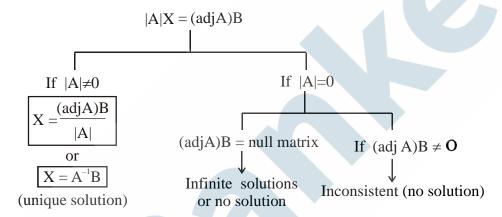
$$a_3 x + b_3 y + c_3 z = d_3$$

$$\Rightarrow \begin{bmatrix} a_1x + b_1y + c_1z \\ a_2x + b_2y + c_2z \\ a_3x + b_3y + c_3z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \Rightarrow \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

$$\Rightarrow$$
 A X = B(i)

Multiplying adjA on both the sides of (i)

$$\Rightarrow$$
 (adjA) AX = (adjA)B \Rightarrow |A|X = (adjA) B



$$x + y + z = 16$$

Illustration 20: Solve the system x - y + z = 2 using matrix method.

$$2x + y - z = 1$$

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ & $B = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$

Then the system is AX = B.

|A| = 6, hence A is non singular,

Cofactor A =
$$\begin{bmatrix} 0 & 3 & 3 \\ 2 & -3 & 1 \\ 2 & 0 & -2 \end{bmatrix}$$

$$adj A = \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{6} \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & -1/2 & 0 \\ 1/2 & 1/6 & -1/3 \end{bmatrix}$$

$$X = A^{-1} B = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & -1/2 & 0 \\ 1/2 & 1/6 & -1/3 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$$
 i.e.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\Rightarrow$$
 x = 1, y = 2, z = 3

Ans.

Do yourself -11:

- (i) The system of equations x + 2y - 3z = 1, x - y + 4z = 0, 2x + y + z = 1 has -
 - (A) only two solutions
- (B) only one solution

(C) no solution

- (D) infinitely many solutions
- The system of equations x + y + z = 8, x y + 2z = 6, 3x + 5y 7z = 14 has-(ii)
 - (A) Unique solution

(B) infinite number of solutions

(C) no solution

(D) none of these

ANSWERS FOR DO YOURSELF

- **(ii)** 6
- (iii) 30
- (iv) x = 2, y = -1, a = 1, b = -3
- (i) $\begin{bmatrix} -7 & -10 & -7 \\ -2 & 6 & 3 \end{bmatrix}$ & 2×3 (ii) $\begin{bmatrix} -8 & -9 \\ -7/2 & -8 \end{bmatrix}$

- (iii) x = -2

- (ii) x = 0
- **7**: (i) -4
- (ii) $\begin{bmatrix} 2 & 7 & 4 \\ 7 & -7 & \frac{1}{2} \\ 4 & \frac{1}{2} & 0 \end{bmatrix} + \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & \frac{3}{2} \\ -3 & -\frac{3}{2} & 0 \end{bmatrix}$
- (i) C
- (ii) A
- (iii) 625 B
- (iv) 9A

- **(i)** В
- (**ii**) B
- (iii) A
- $\lambda = 0.3$ and 15 tr(A) = 18, |A| = 010: (i)
- 11: (i) D
- (ii) A

EXERCISE (O-1)

Let $A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix}$ and $2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$, then Tr (A) – Tr (B) has the value equal

to

(A) 0

(B) 1

(C)2

(D) none

- If $\begin{bmatrix} x & 3x y \\ 7x + 7 & 3y w \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & 7 \end{bmatrix}$, then
 - (A) x = 3, y = 7, z = 1, w = 14
- (B) x = 3, y = -5, x = -1, w = -4

(C) x = 3, y = 6, z = 2, w = 7

- (D) None of these
- The matrix $A^2 + 4A 5I$, where I is identity matrix and $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$ equals :[JEE-MAIN Online 2013] **3.**
- (A) $32\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ (B) $4\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$ (C) $4\begin{bmatrix} 0 & -1 \\ 2 & 2 \end{bmatrix}$ (D) $32\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$

- **4.** If $M = \begin{bmatrix} 0 & 2 \\ 5 & 0 \end{bmatrix}$ and $N = \begin{bmatrix} 0 & 5 \\ 2 & 0 \end{bmatrix}$, then M^{2011} is -
 - (A) 10^{1005} M
- (B) 10^{1005} N (C) 10^{2010} M
- (D) 10^{2011} M
- 5. If $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $A^2 kA I_2 = 0$, then value of k is-
 - (A) 4

(C) 1

- (D) -4
- Let three matrices are $A = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$, then
 - $t_r(A) + t_r\left(\frac{ABC}{2}\right) + t_r\left(\frac{A(BC)^2}{4}\right) + t_r\left(\frac{A(BC)^3}{8}\right) + \dots + \infty$ is equal to-
 - (A) 6

(B)9

(C) 12

- (D) none
- For a matrix $A = \begin{bmatrix} 1 & 2r-1 \\ 0 & 1 \end{bmatrix}$, the value of $\prod_{r=1}^{50} \begin{bmatrix} 1 & 2r-1 \\ 0 & 1 \end{bmatrix}$ is equal to -

- (A) $\begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 4950 \\ 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 5050 \\ 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 2500 \\ 0 & 1 \end{bmatrix}$

- 8. A and B are two given matrices such that the order of A is 3×4, if A' B and BA' are both defined
 - (A) order of B' is 3×4

(B) order of B'A is 4×4

(C) order of B'A is 3×3

- (D) B'A is undefined
- If the product of n matrices $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ is equal to the matrix $\begin{bmatrix} 1 & 378 \\ 0 & 1 \end{bmatrix}$ then 9.

the value of n is equal to -

- (A) 26
- (B) 27
- (C) 377
- (D) 378

- Consider a matrix A $(\theta) = \begin{bmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{bmatrix}$ then 10.
 - (A) $A(\theta)$ is symmetric

(B) $A(\theta)$ is skew symmetric

(C) $A^{-1}(\theta) = A(\pi - \theta)$

- (D) $A^2(\theta) = A\left(\frac{\pi}{2} 2\theta\right)$
- If p, q, r are 3 real number satisfying the matrix equation, $\begin{bmatrix} p & q & r \end{bmatrix} \begin{bmatrix} 3 & 4 & 1 \\ 3 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 1 \end{bmatrix}$, then 11.

2p + q - r equals :-

[JEE-MAIN Online 2013]

- (A) -1
- (B) 4

- (D) 2
- If A, B and C are $n \times n$ matrices and det(A) = 2, det(B) = 3 and det(C) = 5, then the value of the **12.** $\det(A^2BC^{-1})$ is equal to
 - (A) $\frac{6}{5}$

- (C) $\frac{18}{5}$
- (D) $\frac{24}{5}$

Which of the following is an orthogonal matrix -**13.**

(A)
$$\begin{bmatrix} 6/7 & 2/7 & -3/7 \\ 2/7 & 3/7 & 6/7 \\ 3/7 & -6/7 & 2/7 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 6/7 & 2/7 & 3/7 \\ 2/7 & -3/7 & 6/7 \\ 3/7 & 6/7 & -2/7 \end{bmatrix}$$

(C)
$$\begin{bmatrix} -6/7 & -2/7 & -3/7 \\ 2/7 & 3/7 & 6/7 \\ -3/7 & 6/7 & 2/7 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 6/7 & -2/7 & 3/7 \\ 2/7 & 2/7 & -3/7 \\ -6/7 & 2/7 & 3/7 \end{bmatrix}$$

- Matrix A = $\begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & \end{bmatrix}$, if xyz = 60 and 8x + 4y + 3z = 20, then A (adj A) is equal to -

- The matrix $\begin{vmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{vmatrix}$ is a 15.
 - (A) non-singular
- (B) Idempotent
- (C) Nipotent
- (D) Orthogonal

- **16.** If $A = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix}$, then A is
 - (A) Involutory matrix
- (B) Idempotent matrix
- (C) Nilpotent matrix
- (D) none of these

- **17.** If A and B are symmetric matrices, then ABA is -
 - (A) symmetric matrix

(B) skew symmetric matrix

(C) diagonal matrix

- (D) scalar matrix
- $\label{eq:Let A} \text{Let } A = \begin{pmatrix} 0 & \sin\alpha & \sin\alpha\sin\beta \\ -\sin\alpha & 0 & \cos\alpha\cos\beta \\ -\sin\alpha\sin\beta & -\cos\alpha\cos\beta & 0 \end{pmatrix} \text{, then -}$
 - (A) |A| is independent of α and β
- (B) A^{-1} depends only on α

(C) A^{-1} depends only on β

- (D) none of these
- Number of real values of λ for which the matrix $A = \begin{bmatrix} \lambda 1 & \lambda & \lambda + 1 \\ 2 & -1 & 3 \\ \lambda + 3 & \lambda 2 & \lambda + 7 \end{bmatrix}$ has no inverse 19.

- (D) infinite
- (A) 0 (B) 1 (C) 2 **20.** If $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{2\times 2}$ where $a_{ij} = \begin{cases} i+j & i \neq j \\ i^2 2j & i = j \end{cases}$, then A^{-1} is equal to -
- (A) $\frac{1}{9} \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$ (B) $\frac{1}{9} \begin{bmatrix} 0 & -3 \\ 3 & -1 \end{bmatrix}$ (C) $\frac{1}{9} \begin{bmatrix} 0 & -3 \\ -3 & -1 \end{bmatrix}$ (D) $\frac{1}{3} \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$

EXERCISE (O-2)

Let A, other than I or -I, be a 2×2 real matrix such that $A^2 = I$, I being the unit matrix. Let Tr(A)1. [JEE-MAIN Online 2013] be the sum of diagonal elements of A.

Statement–1: Tr(A) = 0Statement-2: det(A) = -1

- (A) Statement-1 and Statement-2 are true and Statement-2 is not the correct explanation for Statement-1
- (B) Statement-1 and Statement-2 are true and Statement-2 is a correct explanation for Statement-1.
- (C) Statement-1 is true and Statement-2 is false.
- (D) Statement-1 is false and Statement-2 is true.
- Let $S = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} : a_{ij} \in \{0, 1, 2\}, a_{11} = a_{22} \right\}$. Then the number of non-singular matrices in the set S

is:

[JEE-MAIN Online 2013]

(A) 24

3. If
$$A = \begin{bmatrix} \cos^2 \alpha & \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha & \sin^2 \alpha \end{bmatrix}$$
; $B = \begin{bmatrix} \cos^2 \beta & \sin \beta \cos \beta \\ \sin \beta \cos \beta & \sin^2 \beta \end{bmatrix}$

are such that, AB is a null matrix, then which of the following should necessarily be an odd integral multiple of $\frac{\pi}{2}$.

 $(A) \alpha$

(B) β

- (C) $\alpha \beta$
- (D) $\alpha + \beta$
- If A and B are invertible matrices, which one of the following statement is/are incorrect -4.
 - $(A) Adj(A) = |A|A^{-1}$
- (B) $\det(A^{-1}) = |\det(A)|^{-1}$ (D) $(AB)^{-1} = B^{-1}A^{-1}$
- (C) $(A + B)^{-1} = B^{-1} + A^{-1}$

- Identify the incorrect statement in respect of two square matrices A and B conformable for sum and 5. product -
 - (A) $t_r(A + B) = t_r(A) + t_r(B)$

 $\begin{array}{l} \textbf{(B)} \ t_r(\alpha A) = \alpha \ t_r(A), \ \alpha \in R \\ \textbf{(D)} \ t_r(AB) \neq t_r(BA) \end{array}$

(C) $t_r(A^T) = t_r(A)$

- Let $A = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -x & -y & z \\ 0 & y & 2z \\ x & -y & z \end{bmatrix}$ where $x,y,z \in R$. If $B^TAB = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 27 & 0 \\ 0 & 0 & 42 \end{bmatrix}$ then the

number of ordered triplet (x,y,z) is-

(A) 2

(C) 8

- (D) 9
- Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$. If B is the inverse of matrix A, then α is -

- **8.** $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$ then let us define a function $f(x) = \det(A^T A^{-1})$ then which of the following

can not be the value of $\underbrace{f(f(f(f......f(x))))}_{n \text{ times}}$ is $(n \ge 2)$

- $(A) f^{n}(x)$
- (B) 1

- (C) $f^{n-1}(x)$
- (D) n f(x)

[ONE OR MORE THAN ONE ARE CORRECT]

9. Let
$$det(adj(adjA)) = 14^4$$
 where $A = \begin{bmatrix} x & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$, $x \neq -\frac{11}{3}$, then

- (A) x = 1
- (B) det(2A) = 112 (C) x = 2
- (D) det(2A) = 256

10. Let
$$A^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$
, then -

(A) $7 | A | = \frac{1}{2}$

(B) $|adj A| = \frac{1}{196}$

(C) trace (adjA) = $-\frac{1}{7}$

(D) Matrix A is a symmetric matrix

11. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 2 & 0 \\ 4 & 5 & 3 \end{bmatrix}$$
, then which of the following is(are) true?

(trace of A denotes sum of principal diagonal elements of A)

(A) A is invertible

(B) trace(adj(adj(A))) = 144

(C) trace(adj(adj(A))) = 8

(D) |adj A| is less than 400

12. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & -1 \\ 3 & 0 & k \end{bmatrix}$$
 and $f(x) = x^3 - 2x^2 - \alpha x + \beta = 0$. If A satisfies $f(x) = 0$, then-

- (A) k = 1, $\alpha = 14$ (B) $\alpha = 14$, $\beta = 22$ (C) k = -1, $\beta = 22$ (D) $\alpha = -14$, $\beta = -22$
- If A and B are 3×3 matrices and $|A| \neq 0$, then which of the following are true? 13.
 - $(A) \mid AB \mid = 0 \implies \mid B \mid = 0$

(B) $|AB| = 0 \implies B = 0$

(C) $|A^{-1}| = |A|^{-1}$

- (D) |A + A| = 2 |A|
- 14. If D_1 and D_2 are two 3×3 diagonal matrices where none of the diagonal element is zero, then -
 - (A) D_1D_2 is a diagonal matrix
 - (B) $D_1D_2 = D_2D_1$
 - (C) $D_1^2 + D_2^2$ is a diagonal matrix
 - (D) none of these
- 15. If A and B are two 3×3 matrices such that their product AB is a null matrix then
 - (A) det. $A \neq 0 \Rightarrow B$ must be a null matrix.
 - (B) det. $B \neq 0 \implies A$ must be a null matrix.
 - (C) If none of A and B are null matrices then at least one of the two matrices must be singular.
 - (D) If neither det. A nor det. B is zero then the given statement is not possible.

if i = j, $x \in R$ **16.** Let $A = a_{ij}$ be a matrix of order 3 where $a_{ij} = \begin{vmatrix} 1 & \text{if } |i-j|=1 \end{vmatrix}$, then which of the following hold(s)

good?

- (A) for x = 2, A is a diagonal matrix.
- (B) A is a symmetric matrix
- (C) for x = 2, det A has the value equal to 6
- (D) Let $f(x) = \det A$, then the function f(x) has both the maxima and minima.
- If A & B are square matrices of order 2 such that $A + adj(B^T) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ & $A^T adj(B) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ **17.**

then-

- (A) B is symmetric matrix (B) $A^n = A \ \forall \ n \in \mathbb{N}$ (C) $|A + A^2 + A^3 + A^4 + A^5| = 0$ (D) $|B + B^2 + B^3 + B^4 + B^5| = 0$

18. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \& A^n = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, (where $n \ge 2 \& n \in N$), then -

(A) a = d

(B) b = c

(C) b = a + 1 if n is odd

- (D) b = a 1 if n is even
- If A and B are two orthogonal matrices of order 3, then -**19.**
 - (A) A and B both will be invertible matrices
- (B) matrix ABA will also be orthogonal
- (C) matrix A^2B^2 will also be orthogonal
- (D) maximum value of $\det \left(\frac{A}{2} \operatorname{adj}(2B) \right)$ is 8.
- If A & B are two non singular matrices of order 3×3 such that $A^T + B = I$ & $BA^T = -B$, then which is/are always true (where X^T denotes transpose of X and I denotes unit matrix)-
 - (A) |B| = 2
- (B) |B| = 8
- (C) |A| = -1
- (D) |A| = 1

(where |X| denotes determinant value of X)

Paragraph for Question 21 to 22

Consider the system AX = B, where $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 2 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$.

- Sum of elements of (adjA) B is-21.
 - (A) 1
- (B) 2

- (C) -2
- (D) -4
- Value of $tr(XB^T)$ is (where tr(A) denotes trace of matrix A)-22.
 - (A) 0

(B) 1

(D)3

Paragraph for question nos. 23 to 25

If A is a symmetric and B skew symmetric matrix and A + B is non singular and $C = (A + B)^{-1}(A - B)$ then

- $C^{T}(A + B)C =$ 23.
 - (A)A+B
- (B)A-B
- (C)A

(D) B

- $C^{T}(A B)C =$ 24.
 - (A)A+B
- (B)A-B
- (C)A

(D) B

- 25. $C^{T}AC$
 - (A) A + B
- (B)A-B
- (C)A

(D) B

EXERCISE (S-1)

- 1. Let $M = \begin{bmatrix} a & -360 \\ b & c \end{bmatrix}$, where a, b and c are integers. Find the smallest positive value of b such that $M^2 = \mathbf{O}$, where \mathbf{O} denotes 2×2 null matrix.
- 2. Find the number of 2×2 matrix satisfying following conditions:
 - (i) a_{ii} is 1 or -1;
- (ii) $a_{11}a_{21} + a_{12}a_{22} = 0$
- 3. Find the value of x and y that satisfy the equations

$$\begin{bmatrix} 3 & -2 \\ 3 & 0 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} y & y \\ x & x \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3y & 3y \\ 10 & 10 \end{bmatrix}$$

- 4. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} p \\ q \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Such that AB = B and a + d = 5050. Find the value of (ad bc).
- 5. Define $A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$. Find a vertical vector V such that $(A^8 + A^6 + A^4 + A^2 + I)V = \begin{bmatrix} 0 \\ 11 \end{bmatrix}$ (where I is the 2 × 2 identity matrix).
- 6. If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$, then show that the matrix A is a root of the polynomial $f(x) = x^3 6x^2 + 7x + 2$.
- 7. If the matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - (a, b, c, d not all simultaneously zero) commute, find the value of $\frac{d-b}{a+c-b}$. Also show that the matrix which commutes with A is of the form $\begin{bmatrix} \alpha-\beta & 2\beta/3 \\ \beta & \alpha \end{bmatrix}$
- 8. If $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ is an idempotent matrix. Find the value of f(a), where f(x) = x x², when bc = 1/4. Hence otherwise evaluate a.
- 9. If the matrix A is involutary, show that $\frac{1}{2}(I + A)$ and $\frac{1}{2}(I A)$ are idempotent and $\frac{1}{2}(I + A)$. $\frac{1}{2}(I A) = \mathbf{O}$.
- Show that the matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ can be decomposed as a sum of a unit and a nilpotent matrix. Hence evaluate the matrix $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}^{2007}$.

11.
$$A = \begin{pmatrix} 3 & a & -1 \\ 2 & 5 & c \\ b & 8 & 2 \end{pmatrix}$$
 is Symmetric and
$$B = \begin{pmatrix} d & 3 & a \\ b-a & e & -2b-c \\ -2 & 6 & -f \end{pmatrix}$$
 is Skew Symmetric, then find AB.

Is AB a symmetric, Skew Symmetric or neither of them. Justify your answer.

12. Express the matrix $\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & -6 \\ -1 & 0 & 4 \end{bmatrix}$ as a sum of a lower triangular matrix & an upper triangular matrix

with zero in its leading diagonal. Also express the matrix as a sum of a symmetric and a skew symmetric matrix.

13. (a) A is a square matrix of order n.

 ℓ = maximum number of distinct entries if A is a triangular matrix

m = maximum number of distinct entries if A is a diagonal matrix

p = minimum number of zeroes if A is a triangular matrix.

If $\ell + 5 = p + 2m$, find the order of the matrix.

- (b) Let A be the set of all 3×3 skew symmetric matrices whose entries are either -1, 0 or 1. If there are exactly three 0's, three 1's and three (-1)'s, then find the number of such matrices.
- 14. If A is an idempotent non-zero matrix and I is an identity matrix of the same order, find the value of $n, n \in \mathbb{N}$, such that $(A + I)^n = I + 127 A$.

15. Let
$$A = \begin{bmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -x & 14x & 7x \\ 0 & 1 & 0 \\ x & -4x & -2x \end{bmatrix}$ are two matrices such that $AB = (AB)^{-1}$ and $AB \neq AB = (AB)^{-1}$

I (where I is an identity matrix of order 3×3)

Find the value of Tr. $(AB + (AB)^2 + (AB)^3 + + (AB)^{100})$,

where Tr. (A) denotes the trace of matrix A.

16. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then prove that value of f and g satisfying the matrix equation $A^2 + fA + gI = \mathbf{O}$ are equal to $-t_r(A)$ and determinant of A respectively. Given a, b, c, d are non zero reals and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$; $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

17. Let
$$A = \begin{bmatrix} 3x^2 \\ 1 \\ 6x \end{bmatrix}$$
, $B = [a \ b \ c]$ and $C = \begin{bmatrix} (x+2)^2 & 5x^2 & 2x \\ 5x^2 & 2x & (x+2)^2 \\ 2x & (x+2)^2 & 5x^2 \end{bmatrix}$ be three given matrices, where

a, b, c and $x \in R$. Given that $tr(AB) = tr(C) \ \forall \ x \in R$, where tr(A) denotes trace of A. Find the value of (a + b + c)

EXERCISE (S-2)

- 1. Let A be the 2 × 2 matrices given by $A = [a_{ij}]$, where $a_{ij} \in \{0,1,2,3,4\}$ such that $a_{11} + a_{12} + a_{21} + a_{22} = 4$
 - (i) Find the number of matrices A such that the trace of A is equal to 4.
 - (ii) Find the number of matrices A such that A is invertible.
 - (iii) Find the absolute value of the difference between maximum value and minimum value of det (A).
 - (iv) Find the number of matrices A such that A is either symmetric or skew-symmetric or both and det(A) is divisible by 2.
- 2. For the matrix $A = \begin{bmatrix} 4 & -4 & 5 \\ -2 & 3 & -3 \\ 3 & -3 & 4 \end{bmatrix}$ find A^{-2} .
- 3. (a) Given $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 1 \\ 2 & 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$. Find P such that $BPA = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.
 - (b) Find the matrix A satisfying the matrix equation, $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$. A. $\begin{bmatrix} 3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 3 & -1 \end{bmatrix}$.
- 4. If $F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then show that F(x).F(y) = F(x+y). Hence prove that $[F(x)]^{-1} = F(-x)$.
- 5. Let A be a 3×3 matrix such that $a_{11} = a_{33} = 2$ and all the other $a_{ij} = 1$. Let $A^{-1} = xA^2 + yA + zI$, then find the value of (x + y + z) where I is a unit matrix of order 3.
- 6. Given that $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 3 \\ 1 & -1 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 10 \\ 13 \\ 9 \end{bmatrix}$ and that Cb = D.

Solve the matrix equation Ax = b.

7. Let $A = \begin{bmatrix} 1 & \frac{3}{2} \\ 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & -3 \\ -2 & 2 \end{bmatrix}$ and $C_r = \begin{bmatrix} r.3^r & 2^r \\ 0 & (r-1)3^r \end{bmatrix}$ be 3 given matrices.

Compute the value of $\sum_{r=1}^{50} tr.((AB)^r C_r)$. (where tr.(A) denotes trace of matrix A)

8. Let X be the solution set of the equation $A^x = I$, where $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ and I is the corresponding

unit matrix and $x \subseteq N$ then find the minimum value of $\sum (\cos^x \theta + \sin^x \theta), \theta \in R$.

Consider the two matrices A and B where $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$; $B = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$. Let n(A) denotes the number of 9. elements in A and $n(XY) = \mathbf{O}$, when the two matrices X and Y are not conformable for multiplication.

$$If \ C = (AB)(B'A); \ D = (B'A)(AB) \ then, \ find \ the \ value \ of \left(\frac{n(C)\big((|D|^2 + n(D)\big)}{n(A) - n(B)}\right).$$

- Given $A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$. I is a unit matrix of order 2. Find all possible matrix X in the 10. following cases.
 - AX = A(a)
- (b)
 - XA = I(c) $XB = O \text{ but } BX \neq O.$
- Find the product of two matrices A & B, where $A = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix}$ & $B = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ and use it to 11. solve the following system of linear equations,

$$x + y + 2z = 1$$
; $3x + 2y + z = 7$; $2x + y + 3z = 2$.

- Determine the values of a and b for which the system $\begin{bmatrix} 3 & -2 & 1 \\ 5 & -8 & 9 \\ 2 & 1 & a \end{bmatrix} \begin{bmatrix} x \\ y \\ -1 \end{bmatrix} = \begin{bmatrix} b \\ 3 \\ -1 \end{bmatrix}$ **12.**
 - (a) has a unique solution;
- (b) has no solution and
- (c) has infinitely many solutions
- If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$; $B = \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ and $X = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$, then solve the following matrix equation.
 - (a) AX = B I
- (b) (B I)X = IC
- (c) CX = A
- $A_{3\times3}$ is a matrix such that |A|=a, $B=(adj\ A)$ such that |B|=b. Find the value of $(ab^2 + a^2b + 1)S$ where $\frac{1}{2}S = \frac{a}{b} + \frac{a^2}{b^3} + \frac{a^3}{b^5} + \dots$ up to ∞ , and a = 3.
- If A and B are square matrices of order 3, where |A| = -2 and |B| = 1, then find **15.** $\left|\left(A^{-1}\right)adj\left(B^{-1}\right)adj\left(2A^{-1}\right)\right|$.

EXERCISE (JM)

1.	Let A be a 2×2 matrix		[AIEEE- 2009]		
	Statement–1: $adj (adj A) = A$				
	Statement-2: $ adj A = A $				
	(1) Statement–1 is true, Statement–2 is false.				
	(2) Statement–1 is false, Statement–2 is true.				
	(3) Statement–1 is true, Statement–2 is true; Statement–2 is	a correct explanation	for Statement-1.		
	(4) Statement–1 is true, Statement–2 is true; Statement–2 is no	ot a correct explanation	n for statement–1.		
2.	The number of 3×3 non-singular matrices, with four entries	as 1 and all other ent	ries as 0, is :-		
			[AIEEE-2010]		
	(1) Less than 4 (2) 5 (3) 6	(4) At	least 7		
3.	Let A be a 2×2 matrix with non-zero entries and let $A^2 = I$, where I is 2×2 identity matrix. Define				
	Tr(A) = sum of diagonal elements of A and A = determinant	ant of matrix A.	[AIEEE-2010]		
	Statement–1 : $Tr(A) = 0$.				
	Statement–2 : $ A = 1$.				
	(1) Statement–1 is true, Statement–2 is true; Statement–2 is a correct explanation for Statement–1.				
	(2) Statement–1 is true, Statement–2 is true; Statement–2 is not a correct explanation for statement–1.				
	(3) Statement–1 is true, Statement–2 is false.				
	(4) Statement–1 is false, Statement–2 is true.				
4.	Let A and B be two symmetric matrices of order 3.				
	Statement-1: A(BA) and (AB)A are symmetric matrices.				
	Statement-2: AB is symmetric matrix if matrix multiplication of A with B is commutative. [AIEEE-2011]				
	(1) Statement-1 is true, Statement-2 is false.				
	(2) Statement-1 is false, Statement-2 is true				
	(3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1				
	(4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.				
5.	Statement-1: Determinant of a skew-symmetric matrix of				
	Statement-1: For any matrix A, $det(A^T) = det(A)$ and $det(A^T) = det(A)$	$(-A) = -\det(A).$			
	Where det(B) denotes the determinant of matrix B. Then:		[AIEEE-2011]		
	(1) Statement-1 is true and statement-2 is false				
	(2) Both statements are true				
	(3) Both statements are false				
	(4) Statement-1 is false and statement-2 is true.				
	(1, 0, 0)	(1)	$\langle \alpha \rangle$		

6. Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$. If u_1 and u_2 are column matrices such that $Au_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $Au_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, then

 $\mathbf{u}_1 + \mathbf{u}_2$ is equal to :

[AIEEE-2012]

$$\begin{pmatrix}
1 \\
-1 \\
-1
\end{pmatrix}$$

$$(2)\begin{pmatrix}
-1 \\
1 \\
0
\end{pmatrix}$$

$$(3)\begin{pmatrix}
-1 \\
1 \\
-1
\end{pmatrix}$$

$$(4)\begin{pmatrix}
-1 \\
-1 \\
0
\end{pmatrix}$$

7.	If $P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is the	adjoint of a 3 × 3 matrix	$x A \text{ and } A = 4, \text{ then } \alpha \text{ i}$	s equal to
				[JEE(Main) - 2013]
	(1) 4	(2) 11	(3) 5	(4) 0
8.	If A is an 3×3 non-sing	gular matrix such that AA	$' = A'A \text{ and } B = A^{-1} A', \text{ th}$	e BB' equals :
				[JEE(Main) - 2014]
	(1) I + B	(2) I	(3) B^{-1}	$(4) (B^{-1})'$
	$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$			
9.	$If A = \begin{bmatrix} 2 & 1 & -2 \\ a & 2 & b \end{bmatrix} is a m$	natrix satisfying the equation	on $AA^T = 9I$, where I is 3×3	3 identity matrix, then the
	ordered pair (a, b) is equ			[JEE(Main)-2015]
	(1)(2,1)	(2)(-2,-1)	(3)(2,-1)	(4)(-2,1)
10.	If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and Aa	(2) $(-2, -1)$ adj $A = A A^{T}$, then $5a + b$	is equal to :	[JEE(Main)-2016]
	(1) 13	(2) -1	(3) 5	(4) 4
11.	If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then ac	$dj (3A^2 + 12A)$ is equal to) :-	[JEE(Main)-2017]
	$(1)\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$	$(2)\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$	$(3) \begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$	$(4)\begin{bmatrix}51 & 84\\63 & 72\end{bmatrix}$
12.	Let A and B be two inve (BA ⁻¹ B ^T) is equal to :-	ertible matrices of order 3	\times 3. If det(ABA ^T) = 8 an	d det $(AB^{-1}) = 8$, then det [JEE(Main) Jan-2019]
	(1) 16	(2) $\frac{1}{16}$	(3) $\frac{1}{4}$	(4) 1
13.	Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1 \end{bmatrix}$ and $Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	= [q _{ij}] be two 3×3 matrices	s such that $Q-P^5 = I_3$. The	n $\frac{q_{21} + q_{31}}{q_{32}}$ is equal to:
				[JEE(Main) Jan-2019]
	(1) 15	(2) 9	(3) 135	(4) 10
14.	Let $A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$	$,(\alpha \in \mathbb{R})$ such that $A^{32} = \left(\begin{array}{c} \\ \end{array} \right)$	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Then a value of 0	ıis
	(533.37)			[JEE(Main) Apr-2019]
	π	45.	π	π
	(1) $\frac{\pi}{16}$	(2) 0	(3) $\frac{\pi}{32}$	$(4) \frac{\pi}{64}$
15.	$\operatorname{If} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$, then the	inverse of $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ is	[JEE(Main) Apr-2019]
	$(1)\begin{bmatrix} 1 & -13 \\ 0 & 1 \end{bmatrix}$	$(2)\begin{bmatrix} 1 & 0 \\ 12 & 1 \end{bmatrix}$	$(3)\begin{bmatrix} 1 & -12 \\ 0 & 1 \end{bmatrix}$	$(4)\begin{bmatrix} 1 & 0 \\ 13 & 1 \end{bmatrix}$
				31

- 16. If a is A symmetric matrix and B is a skew-symmetrix matrix such that $A + B = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$, then AB is equal to:

 [JEE(Main) Apr-2019]
 - $(1)\begin{bmatrix} -4 & 2 \\ 1 & 4 \end{bmatrix} \qquad (2)\begin{bmatrix} -4 & -2 \\ -1 & 4 \end{bmatrix} \qquad (3)\begin{bmatrix} 4 & -2 \\ -1 & -4 \end{bmatrix} \qquad (4)\begin{bmatrix} 4 & -2 \\ 1 & -4 \end{bmatrix}$

EXERCISE (JA)

Comprehension (3 questions)

- 1. Let \mathcal{A} be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0.
 - (a) The number of matrices in \mathcal{A} is -
 - (A) 12 (B) 6 (C) 9 (D) 3
 - (b) The number of matrices A in \mathcal{A} for which the system of linear equations

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

has a unique solution, is -

(A) less than 4

- (B) at least 4 but less than 7
- (C) at least 7 but less than 10
- (D) at least 10
- (c) The number of matrices A in \mathcal{A} for which the system of linear equations

$$\mathbf{A} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

is inconsistent, is -

- (A) 0
- (B) more than 2
- (C) 2

(D) 1

[JEE 2009, 4+4+4]

2. (a) The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system

$$A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 has exactly two distinct solutions, is

- (A) 0
- (B) $2^9 1$
- (C) 168
- (D) 2

(b) Let k be a positive real number and let

$$A = \begin{bmatrix} 2k-1 & 2\sqrt{k} & 2\sqrt{k} \\ 2\sqrt{k} & 1 & -2k \\ -2\sqrt{k} & 2k & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 2k-1 & \sqrt{k} \\ 1-2k & 0 & 2\sqrt{k} \\ -\sqrt{k} & -2\sqrt{k} & 0 \end{bmatrix}.$$

If det (adj A) + det(adj B) = 10^6 , then [k] is equal to

[Note: adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k].

						Matrix
(c) Le	t p be an odd pri	me number and '	Γ_{p} be the fo	llowing set of 2	× 2 matrices	:
		$T_{p} = \begin{cases} A = \begin{bmatrix} a & b \\ c & a \end{cases} \end{cases}$	$]: a, b, c \in \{0$	$\{0,1,2,\ldots,p-1\}$		
(i)	The number of		t A is either	r symmetric or s	skew-symmetr	ic or both, and
	det(A) divisible			. ~ 2		
400		(B) 2 (p -				
(ii)	The number of A	A in T_p such that	the trace of	A is not divisible	le by p but det	(A) is divisible
	by p is -					
	_	ce of a matrix is		_		
	(A) $(p-1)(p^2)$	-p + 1		(B) $p^3 - (p -$		
	(C) $(p-1)^2$			(D) $(p - 1) (p$		
(iii)	The number of (A) $2p^2$	A in T _p such th	at det (A)	is not divisible	by p is -	
	$(A) 2p^2$	(B) $p^3 - 3$	5p	(C) $p^3 - 3p$		$(3 - p^2)$ (3+3+3+3+3)
Let Mai	and N be two 3×3	s non-singular ske	ew-symmetr	ic matrices such		
	spose of P, then					[JEE 2011, 4]
(A) M ²		B) $-N^2$			(D) MN	
` /						
						$\begin{bmatrix} 1 & a & b \end{bmatrix}$
Let ω≠1	be a cube root of	unity and S be the	e set of all no	on-singular matri	ces of the form	$ \omega \omega 1 c$
						$\begin{bmatrix} \omega^2 & \omega & 1 \end{bmatrix}$
where e	ach of a,b and c	is either ω or α	\int_{0}^{2} Then the	number of dist	inct matrices	in the set S is-
(A) 2		B) 6	(C) 4	number of dist	(D) 8	
` /						2011, 3, (-1)]
		Γο]	[-1] [1	7 [17	$\lceil 1 \rceil \lceil 0 \rceil$	
Let M b	e 3 × 3 matrix sa	tisfying M 1 =	2 . M -	$\begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ and \mathbb{N}	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
			3 0	$\begin{vmatrix} -1 \end{vmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 12 \end{bmatrix}$	
	e sum of the diag] []		[JEE 2011, 4]
				$\mathbf{b} = 2^{\mathbf{i}+\mathbf{j}}$ for 1	/; i / 2 If +	
	$[a_{ij}]$ be a 3 × 3 m 2, then the deter			$b_{ij} - 2$ a_{ij} 101 1		012, 3M, –1M]
(A) 2^{10}		(B) 2^{11}		2^{12})12, 31 v1 , –11 v1]
	3 × 3 matrix such					e 3 × 3 identity
15 4			,	~		
						040 035 475
matrix, t	then there exists a	column matrix	$X = y \neq 0$	such that	[JEE 2	012,3M,-1M]
			$\lfloor z \rfloor \lfloor ($	0]		

(A) $PX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ (B) PX = X (C) PX = 2X

3.

4.

5.

(D) PX = -X

8.	If the adjoint of a 3 × 3 matrix P is $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$, then the possible value(s) of t	he determinant of F			
	is (are) -	[JEE 2012, 4M]			
	(A) -2 (B) -1 (C) 1 (D)				
9.					
·	(A) N ^T M N is symmetric or skew symmetric, according as M is symmetric or skew symmetric				
	(B) MN – NM is skew symmetric for all symmetric matrices M and N				
	(C) MN is symmetric for all symmetric matrices M and N				
	(D) (adj M) (adj N) = adj (M N) for all invertible matrices M and N				
		nced 2013, 4, (-1)			
10.					
	(A) the first column of M is the transpose of the second row of M				
	(B) the second row of M is the transpose of the first column of M				
	(C) M is a diagonal matrix with nonzero entries in the main diagonal				
	(D) the product of entries in the main diagonal of M is not the square of an	integer			
	[JEE(A	dvanced)-2014, 3]			
11.	1. Let M and N be two 3×3 matrices such that MN = NM. Further, if M \neq N	and $M^2 = N^4$, then			
	(A) determinant of $(M^2 + MN^2)$ is 0				
	(B) there is a 3×3 non-zero matrix U such that $(M^2 + MN^2)U$ is zero matrix				
	(C) determinant of $(M^2 + MN^2) \ge 1$				
	(D) for a 3×3 matrix U, if $(M^2 + MN^2)U$ equals the zero matrix then U is the zero matrix				
	[JEE(A	dvanced)-2014, 3]			
12.	2. Let X and Y be two arbitrary, 3 × 3, non-zero, skew-symmetric matrices and 3 × 3, non-zero, symmetric matrix. Then which of the following matrix symmetric?	d Z be an arbitrary ices is (are) skew			
	(A) $Y^3Z^4 - Z^4Y^3$ (B) $X^{44} + Y^{44}$ (C) $X^4Z^3 - Z^3X^4$ (D) X^2	$^{3} + Y^{23}$			
13.	3. Let $P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$, where $\alpha \in \mathbb{R}$, Suppose $Q = [q_{ij}]$ is a matrix such that PQ	$Q = kI$, where $k \in \mathbb{R}$			
	$k \neq 0$ and I is the identity matrix of order 3. If $q_{23} = -\frac{k}{8}$ and $det(Q) = \frac{k^2}{2}$, then-				
	(A) $\alpha = 0$, $k = 8$ (B) $4\alpha - k + 8 = 0$				
	(A) $\alpha = 0$, $k = 8$ (B) $4\alpha - k + 8 = 0$ (C) $\det(\text{Padj}(Q)) = 2^9$ (D) $\det(\text{Qadj}(P)) = 2^{13}$	1) 4042 47 57			
• •	[JEE(Adva	nced)-2016, 4(–2)]			

14. Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix}$ and I be the identity matrix of order 3. If $Q = [q_{ij}]$ is a matrix such that

 $P^{50} - Q = I$, then $\frac{q_{31} + q_{32}}{q_{21}}$ equals

[JEE(Advanced)-2016, 3(-1)]

- (A) 52
- (B) 103
- (C) 201
- (D) 205
- **15.** Which of the following is(are) NOT the square of a 3×3 matrix with real entries?

[JEE(Advanced)-2017, 4(-2)]

- (A) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ (B) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
- **16.** How many 3×3 matrices M with entries from $\{0,1,2\}$ are there, for which the sum of the diagonal entries of M^TM is 5 ? [JEE(Advanced)-2017, 3(-1)]
 - (A) 198
- (B) 126
- (C) 135
- (D) 162

For a real number α , if the system 17.

$$\begin{bmatrix} 1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

of linear equations, has infinitely many solutions, then $1 + \alpha + \alpha^2 = [JEE(Advanced)-2017, 3]$

Let S be the set of all column matrices $\begin{bmatrix} b_2 \\ b_3 \end{bmatrix}$ such that $b_1, b_2, b_3 \in \mathbb{R}$ and the system of equations 18.

(in real variables)

$$-x + 2y + 5z = b_1$$

 $2x - 4y + 3z = b_2$
 $x - 2y + 2z = b_3$

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at

least one solution of each $\begin{vmatrix} b_1 \\ b_2 \end{vmatrix} \in S$?

[JEE(Advanced)-2018, 4(-2)]

- (A) $x + 2y + 3z = b_1$, $4y + 5z = b_2$ and $x + 2y + 6z = b_3$
- (B) $x + y + 3z = b_1$, $5x + 2y + 6z = b_2$ and $-2x y 3z = b_3$
- (C) $-x + 2y 5z = b_1$, $2x 4y + 10z = b_2$ and $x 2y + 5z = b_3$
- (D) $x + 2y + 5z = b_1$, $2x + 3z = b_2$ and $x + 4y 5z = b_3$
- **19.** Let P be a matrix of order 3×3 such that all the entries in P are from the set $\{-1, 0, 1\}$. Then, the maximum possible value of the determinant of P is _____ [JEE(Advanced)-2018, 3(0)]

ANSWER KEY

EXERCISE (0-1)

EXERCISE (O-2)

EXERCISE (S-1)

3.
$$x = \frac{3}{2}, y = 2$$

2. 8 **3.**
$$x = \frac{3}{2}, y = 2$$
 4. 5049 **5.** $V = \begin{bmatrix} 0 \\ \frac{1}{11} \end{bmatrix}$ **7.** 1

8.
$$f(a) = 1/4, a = 1/2$$

$$10. \begin{bmatrix} 1 & 0 \\ 4014 & 1 \end{bmatrix}$$

f(a) = 1/4, a = 1/2 10. $\begin{bmatrix} 1 & 0 \\ 4014 & 1 \end{bmatrix}$ 11. AB is neither symmetric nor skew symmetric

12.
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ -1 & 0 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 5 \\ 0 & 0 & -6 \\ 0 & 0 & 0 \end{bmatrix}; \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & -3 \\ 2 & -3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \\ -3 & 3 & 0 \end{bmatrix}$$
 13. (a) 4, (b) 8

16.
$$f = -(a + d)$$
; $g = ad - bc$

17. 7

EXERCISE (S-2)

$$\begin{array}{c|cccc}
\mathbf{2.} & \begin{bmatrix}
17 & 4 & -19 \\
-10 & 0 & 13 \\
-21 & -3 & 25
\end{bmatrix}$$

(i) 5, (ii) 18, (iii) 8, (iv) 5 **2.**
$$\begin{bmatrix} 17 & 4 & -19 \\ -10 & 0 & 13 \\ -21 & -3 & 25 \end{bmatrix}$$
 3. (a)
$$\begin{bmatrix} -4 & 7 & -7 \\ 3 & -5 & 5 \end{bmatrix}$$
; (b)
$$\frac{1}{19} \begin{bmatrix} 48 & -25 \\ -70 & 42 \end{bmatrix}$$

1 **6.**
$$x_1 = 1, x_2 = -1, x_3 = 1$$
 7. $3(49.3^{50} + 1)$ **8.** 2

7.
$$3(49.3^{50} + 1)$$

10. (i)
$$X = \begin{bmatrix} a & b \\ 2-2a & 1-2b \end{bmatrix}$$
 for $a, b \in R$; (ii) X does not exist;

(iii)
$$X = \begin{bmatrix} a & -3a \\ c & -3c \end{bmatrix}$$
 a, $c \in R$ and $3a + c \neq 0$; $3b + d \neq 0$

11.
$$x = 2$$
, $y = 1$, $z = -1$ **12.** (i) $a \ne -3$, $b \in R$; (ii) $a = -3$ and $b \ne 1/3$; (iii) $a = -3$, $b = 1/3$

13. (a)
$$X = \begin{bmatrix} -3 & -3 \\ \frac{5}{2} & 2 \end{bmatrix}$$
, (b) $X = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$, (c) no solution **14.** 225 **15.** -8

EXERCISE (JM)

- **1.** 4 **2.** 4 **3.** 3 **4.** 4 **5.** 1 **6.** 1 **7.** 2 **8.** 2 **9.** 2 **10.** 3
- **11.** 3 **12.** 2 **13.** 4 **14.** 4 **15.** 1 **16.** 3

EXERCISE (JA)

- 1. (a) A, (b) B,(c) B 2. (a) A, (b) 4; (c) (i) D, (ii) C, (iii) D 3. Bonus 4. A
- 5. 9 6. D 7. D 8. A,D 9. C,D 10. C,D 11. A,B
- 12. C,D 13. B,C 14. B 15. A,B 16. A 17. 1 18. A,D 19. 4