CHEMISTRY JEE-MAIN (August-Attempt) 31 August (Shift-1) Paper

SECTION - A

Q.1 The correct of reactivity of the given chlorides with acetate in acetic acid is :

$$(1) \xrightarrow{CH_3} CI \xrightarrow{CH_3} CI \xrightarrow{CH_3} CH_3$$

$$(2) \xrightarrow{CI} \xrightarrow{CH_3} CI \xrightarrow{CH_2CI} CH_3 \xrightarrow{CH_3} CI$$

$$(3) \xrightarrow{CH_3} CH_2CI \xrightarrow{CH_3} CI$$

$$(4) \xrightarrow{CH_2CI} CH_3 \xrightarrow{CH_3} CI$$

$$(4) \xrightarrow{CH_3} CI \xrightarrow{CH_3} CI$$

Sol. 2

Sol. As it is example of SN1.

So carbocation stability \uparrow , reaction rate \uparrow

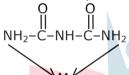
Q.2 Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): A simple distillation can be used to separate a mixture of propanol and propanone.

Reason (R): Two liquids with a difference of more than 20°C in their boiling points can be separated by simple distillations.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (2) (A) is false but (R) is true.
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- Sol.


Official Ans. by NTA (4)

Both assertion & reason are correct & (R) is the correct explanation of (A)

- Q.3 The denticity of an organic ligand, biuret is:
 - (1)6
- (2) 3
- (3)2
- (4) 4

Sol. 2

Official Ans. by NTA (1)

Biuret :- Bidentate ligand The denticity of organic ligand is 2.

ankers

Q.4 Given below are two statements:

Statement I: The process of producing syn-gas is called gasification of coal.

Statement II: The composition of syn-gas is $CO+CO_2+H_2$ (1:1:1).

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) Statements I is false but Statement II is trure.
- (2) Both Statement I and Statement II are true.
- (3) Both Statement I and Statement Ii are false.
- (4) Statement I is true but Statement II is false.
- Sol. 4

The process of producing syn-gas from coal is called gasification of coal.

Syn-gas having composition of CO & H2 in 1:1

Q.5 Which one of the following compounds contains β -C₁-C₄ glycosidic linkage?

(1) Lactose

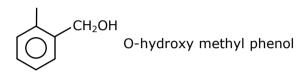
(2) Sucrose

(3) Maltose

(4) Amylose

Sol. 1

Official Ans. by NTA (1)


In Lactose it is β C₁ – C₄ glycosidic linkage.

In Maltose, Amylose α C₁ – C₄ glycosidic linkage is present

- Q.6 Monomer of Novolac is:
 - (1) 1,3-Butadiene and styrene.
- (2) Phenol and melamine.
- (3) o-Hydroxymethylphenol.
- (4) 3-Hydroxybutanoic acid.

Official Ans. by NTA (3)

Monomer of Novolac is

Q.7 Given below are two statement : one labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Aluminium is extracted from bauxite by the electrolysis of moltan mixture of Al_2O_3 with cryolite.

Reason (R): The oxidation state of Al in cryolite is +3.

In the light of the above statements, choose the most appropriate answer from the option given below.

- (1) (A) is false but (R) is true
- (2) Both (A) (R) are correct and (R) is the correct explanation of (A).
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (4) (A) is true but (R) is false.

Sol. 3

Official Ans. by NTA (4)

- (A) Aluminium is reactive metal so Aluminium is extracted by electrolysis of Alumina with molten mixture of Cryolite
- (B) Cryolite, Na₃AlF₆

Here Al is in +3 O.S.

So Answer is 4

Q.8 The major product formed in the following reactions is :

$$\begin{array}{c|c} CH_3 \\ \hline CH_3 - C - CH - CH_3 \\ \hline CH_3 - OH \end{array} \xrightarrow{conc. \ H_2SO_4} \text{Major Product}$$

$$\begin{array}{c|c}
CH_{3} \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & |$$

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Sol. 2

CH₃
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 C

Q.9 The structure of product C, formed by the following sequence of reactions is : $CH_{3}COOH + SOCI \rightarrow A \xrightarrow{Benzene} B \xrightarrow{KCN} C$

$$(1) \begin{array}{c} CH_2-CH_2CN \\ NC \\ CH_3 \end{array}$$

$$(2) \begin{array}{c} CH_3 \\ CH_3 \end{array}$$

$$(3) \begin{array}{c} CH_3 \\ CH_3 \end{array}$$

Sol. 3 Official Ans. by NTA (1)

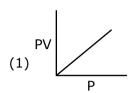
$$CH_3-C-OH+SOCl_2 \rightarrow CH_3-C-Cl \longrightarrow 0$$
(A)
(B)

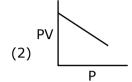
$$\begin{array}{c} CH_3 \\ \downarrow \\ C-CH_3 \\ \downarrow \\ OH \\ +OH^- \end{array}$$

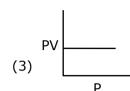
- Q.10 Which one of the following 0.10 M aqueous solutions will exhibit the largest freezing point depression ?
 - (1) glucose
- (2) hydrazine
- (3) KHSO₄
- (4) glycine

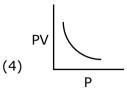
Official Ans. by NTA (4)

- : Van't Hoff factor is highest for KHSO4
- \therefore colligative property (ΔT_f) will be highest for KHSO₄


- Q.11 In the structure of the dichromate ion, there is a :
 - (1) non-linear unsymmetrical Cr-O-Cr bond.
 - (2) linear symmetrical Cr-O-Cr bond.
 - (3) linear unsymmetrical Cr-O-Cr bond.
 - (4) non-linear symmetrical Cr-O-Cr bond.


Sol. 1


Official Ans. by NTA (2)


dichromate ion contain non-linear symmetrical Cr-O-Cr Bond

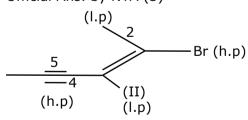
Q.12 Which one of the following is the correct PV vs P plot at constant temperature for an ideal gas ? (P and V and for pressure and volume of the gas respectively)

Sol.

Official Ans. by NTA (1)

PV = nRT (n,T constant)

PV = constant



Q.13 Choose the correct name for compound given below:

- (1) (4E)-5-Bromo-hex-4-en-2-yne
- (2) (2E)-2-Bromo-hex-4-en-2-yne
- (3) (4E)-5-Bromo-hex-2-en-2-yne
- (4) (2E)-2-Bromo-hex-2-en-4-yne
- Sol. 4

Official Ans. by NTA (3)

 $h.p \Rightarrow higherpriority$

 $l.p. \Rightarrow lower priority$

2E -2- bromo hex -2- en-4-yne

	(1) A > 15, B > 4	7	(2) A < 5, B >	17	
	(3) A > 25, B < 1	7	(4) $A > 50$, $B < 6$	< 27	
Sol.	2				
	Official Ans. by NTA (3)				
	BOD values of clean water (A) is less than 5 ppm				
	So A < 5				
	BOD values of polluted water (B is greater than 17 ppm				
	So B > 17				
	So Ans. is 3				
Q.15	Which one of the following lanthanides exhibits +2 oxidation state with diamagnetic nature ? (Given Z for Nd=60, Yb=70, La=57, Ce=58)				
	(1) La	(2) Ce	(3) Nd	(4) Yb	
Sol.	4				
	Official Ans. by NTA (2)				
	Ytterbium shows -	+2 oxidation state	with diamagnetic nat	ure	
Q.16	Given below are two statements : one is labelled as Assertion (A) and the other is labelled as				
	Reason (R).				
	Assertion (A): Metallic character decreases and non-metallic character increases on moving				
	from left to right in a period.				
	Reason (R): It is due to increase in ionization enthalpy and decrease in electron gain				
	enthalpy, when one moves from left to right in a period.				
	In the light of the above statements, choose the most appropriate answer from the options given below.				
	(1) Both (A) and (R) are correct but (R) is not the correct explanation of (A).				
	(2) Both (A) and (R) are correct and (R) is the correct explanation of (A).				
	(3) (A) is false but (R) is true.				
	(4) (A) is true but (R) is false.				
Sol.	4	,			
	Official Ans. by NTA (2)				
	From left to right in periodic table :-				
	Metallic character decreases				
	Non-metallic character increases				
	\Rightarrow It is due to increase in ionization enthalpy and increase in electron gain enthalpy.				

Q.14 BOD values (in ppm) for clean water (A) and polluted water (B) are expected respectively as :

Q.17 Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Treatment of bromine water propene vields 1-bromopropan-2-ol.

Reason (R): Attack of water on bromonium ion follows Markovnikov rule and results in 1-bromopropan-2-ol.

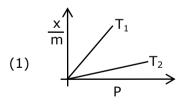
In the light of the above statements, choose the most appropriate answer from the options given below.

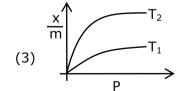
- (1) Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- (2) (A) is false but (R) is true.
- (3) (A) is true but (R) is false.
- (4) Both (A) and (R) are true and (R) is the correct explanation of (A).
- Sol. 4

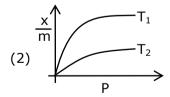
Official Ans. by NTA (3)

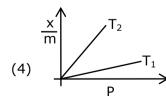
$$CH_3-CH=CH_2 \xrightarrow{Br_2} CH_3-CH-CH_2 \xrightarrow{H_2O} CH_3-CH-CH_2Br$$
 H_2O
 H_3
 H_3
 H_3
 H_3
 H_4
 $H_$

Its IUPAC name 1-bromopropan-2-ol

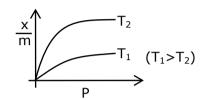

A and R are true and (R) is the correct explanation of (A)


Q.18 Select the graph that correctly describes the adsorption isotherms at two temperature T_1 and T_2 $(T_1 > T_2)$ for a gas :


(x – mass of the gas adsorbed)


m- mass of adsorbent

P - pressure



$$\frac{x}{m} \alpha P^{1/n} \left(0 < \frac{1}{n} < 1 \right)$$

On Increasing temperature $\frac{x}{m}$ decreases.

: adsorption is generally exothermic

Q.19 The major component/ingredient of Portland Cement is:

(1) tricalcium aluminate

(2) tricalcium silicate

(3) dicalcium silicate

(4) dicalcium aluminate

Sol. 2

Official Ans. by NTA (2)

Major component of portland cement is "Tricalcium silicate (51% , 3CaO.SiO $_2$)

Q.20 The major products A and B in the following set of reactions are :

$$\mathbf{A} \leftarrow \frac{\text{LiAIH}_4}{\text{H}_3\text{O}^+} \rightarrow \mathbf{B}$$

(1)
$$A = \bigvee_{CHO}^{OH}$$
 , $B = \bigvee_{CO_2H}^{OH}$

(2)
$$\mathbf{A} = \bigvee_{\mathsf{NH}_2}^{\mathsf{OH}} \mathbf{B} = \bigvee_{\mathsf{CHO}}^{\mathsf{OH}} \mathbf{B}$$

(3)
$$\mathbf{A} = \mathbf{OH}$$
 , $\mathbf{B} = \mathbf{OH}$

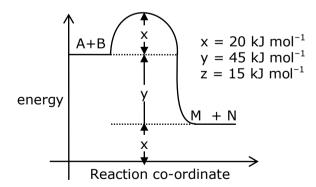
(4)
$$\mathbf{A} = \bigvee_{\text{NH}_2}^{\text{OH}} \mathbf{B} = \bigvee_{\text{COOH}}^{\text{COOH}}$$

Official Ans. by NTA (3)

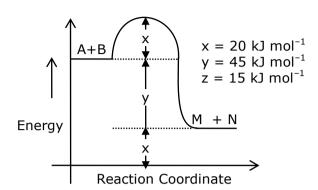
$$\begin{array}{c|c} OH & \xrightarrow{\text{LiAIH}_4} & OH & \xrightarrow{\text{H}_3O^+} & OH \\ \hline CH_2-NH_2 & H_3O^+ & \hline \\ C=N & & C-OH \\ \hline & & & \\ & &$$

Section B

- Q.1 Consider the sulphides HgS,PbS, CuS, Sb_2S_3 , As_2S_3 and CdS. Numer of these sulphides solube in 50% HNO₃ is _____.
- Sol. 4


Official Ans. by NTA (4)

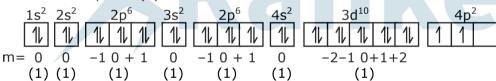
Pbs, CuS, As_2S_3 , CdS are soluble in 50% HNO₃ HgS, Sb_2S_3 are insoluble in 50% HNO₃ So Answer is 4.


4. The total number

Q.2 According to the following figure, the magnitude of the enthalpy change of the reation A+B \rightarrow M + N in kJ mol⁻¹

is equal to _____. (Integer answer)

Official Ans. by NTA (45)


$$\Delta H = E_{a_f}^{} - E_{a_b}^{}$$

$$= 20 - 65$$

$$|\Delta H| = 45 \text{ KJ/mol}$$

- Q.3 Ge (Z = 32) in its ground state electronic configuration has x completely filled orbitals with $m_1 = 0$. The value of x is
- Sol. 7

Official Ans. by NTA (7)

Completely filled orbital with $m\ell = 0$ are

So Answer is 7

Q.4 The total number of regents from those given below, that can convert nitrobenzene into aniline is ______. (Integer answer)

V.
$$H_2 - Pd$$

Official Ans. by NTA (5) $NO_2 \qquad NH_2$ Reagents used can be

- (i) Sn + HCl
- (ii) Fe + HCl
- (iii) Zn + HCl
- (iv) $H_2 Pd$
- (v) H₂ (Raney Ni)
- Q.5 The molarity of the solution prepared by dissolving 6.3 g of oxalic acid ($H_2C_2O_4$ $2H_2O$) in 250 mL of water in mol L^{-1} is $\times \times 10^{-2}$. The value of x is _____. (Nearest integer)

[Atomic mass: H: 1.0,C: 12.0,O: 16.0]

Sol. 20

Official Ans. by NTA (20)

$$[H_2C_2O_4 2H_2O] = \frac{\text{weight } / M_w}{V(L)}$$

$$\Rightarrow x \times 10^{-2} = \frac{6.3 / 126}{250 / 1000}$$

$$x = 20$$

Q.6 For a first order reaction the ratio of the time for 75% completion of a reaction to the time for 50% completion is ______(integer answer)

Sol. 2

Official Ans. by NTA (2)

$$k = \frac{2.303}{t} log \frac{a}{a - x}$$

$$\frac{2.303}{t_{50\%}} \log \frac{100}{100 - 50} = \frac{2.303}{t_{50\%}} \log \frac{100}{100 - 75}$$

$$t_{75\%}^{}=2t_{50\%}^{}$$

Q.7 The number of hydrogen bonded water molecule(s) associated with stoichiometry $CuSO_4\ 5H_2O$ is ______

Sol. 3 Official Ans. by NTA (1)

Q.8 The number of halogen/(s) forming halic (V) acid is______

Sol. 3

Official Ans. by NTA (3)

The number of halogen forming halic (V) acid

HCIO₃

HBrO₃

HIO₃

So Answer is 3

Q.9 A₃B₂ is a sparingly soluble salt of molar mass M(g mol⁻¹) and solution x gL⁻¹. The solution product satisfies $K_{sp} = a \left(\frac{x}{M} \right)^5$. The value of a is ______.(Integer answer)

Sol. 108

Official Ans. by NTA (108)

$$A_3B_2 \rightleftharpoons 3A_{(aq)}^{+2} + 2B_{(aq)}^{-3}$$

$$K_{sp} = (3s)^3 (2s)^2$$

$$K_{sp} = 108 S5 \& s = (X/M)$$

$$K_{sp} = 108 \left(\frac{x}{m}\right)^5$$

given
$$K_{sp} = a \left(\frac{x}{m}\right)^{s}$$

comparing a = 108

Q.10 Consider the following cell reaction

$$Cd_{(s)} + Hg_2SO_{4(s)} + \frac{9}{5}H_2O_{(l)} \rightleftharpoons CdSO_4\frac{9}{5}H_2O_{(s)} + 2Hg_{(l)}$$

The value of E_{cell}^0 is 4.315 V at 25°C. If $\Delta H^0 = -825.2$ kJ mol⁻¹, the standard entropy change ΔS^0 in J K⁻¹ is_____(Nearest integer) [Given: Faraday constant = 96487 C mol⁻¹)

Sol. 25

Official Ans. by NTA (25)

$$\Delta G^0 = -nFE^0 = \Delta H^0 - T\Delta S^0$$

$$= \frac{\Delta^{0} + nFE^{0}}{T}$$

$$=\frac{(-825.2\times10^3)+(2\times96487\times4.315)}{220}$$

$$=\frac{-825.2\times10^3+832.682\times10^3}{308}$$

$$=\frac{7.483\times10^3}{298}=25.11\ \text{JK}^{-1}\text{mol}^{-1}$$

∴ Nearest integer answer is 25