

RGP – RANKERS GUARANTEED PROGRAM

(PHYSICS, CHEMISTRY, MATH & MAT)

Time: 1 Hour

Studying in class 10th & Moving to 11th (MATH)

1. General Instructions:

(Paper Code: 1101)

- *This test paper consists of 60 questions in 4 sections (A, B, C, D)* <u>Marking Scheme:</u>
 - > Full marks: + 2 if answered correctly.
 - > Zero marks: 0 if not attempted or incorrect.

2. RGP College Grant Criteria:

- ✓ Students must score a minimum of 70% positive marks in RGP.
- ✓ Student must get under AIR 5,000 in JEE/NEET Examination.

3. Cash Reward Criteria:

- ✓ Students must score a minimum of 70% positive marks in their respective papers.
- ✓ Exciting Cash Rewards for RGP Toppers
 - 1st Topper ₹ 21,000/-
 - 2nd Topper ₹ 11,000/-
 - 3rd 5th Topper ₹ 5,100/-
 - 6th 10th Topper ₹ 2,100/-
 - Students Scoring Rank from 11th 20th will get Exciting Rewards.

4. Scholarship Criteria in Rankers Offline Classroom Program:

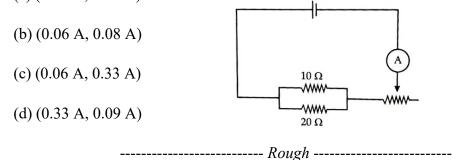
- (100% FEE WAIVER 1ST TOPPER) and must getting above 70% marks.
- ✓ 80% Fee Waiver Student Scoring 80% and above.
- ✓ 60% Fee Waiver Student Scoring 70% to 79.999%.
- ✓ 50% Fee Waiver Student Scoring 60% to 69.999%.
- ✓ 40% Fee Waiver Student Scoring 50% to 59.999%.
- ✓ 20% Fee Waiver Student Scoring 30 % to 49.999%
- ✓ 10% Fee Waiver All the Aspirants Appearing in RGP.

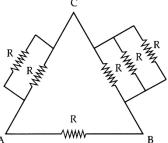
Student's Name: - School Name: - Class: - Mob. No. Student's Signature: - Invigilator's Signature: -

Rankers Offline Centre – Hukulganj Road | Pandeypur Varanasi - Call 9621270696| www.myrankers.com

Set

Marks: 120


Physics (Section – A)


- Six identical resistors connected between points A, B and C as shown in diagram. The equivalent resistance would be maximum between.
 (a) A and B
 - (b) B and C
 - (c) A and C

(d) Option (a), (b) and (c) are correct.

2. 2-point A and B are at electric potentials 10 V and 100 V respectively. A charge q is taken from A to B and 18 joule of work is done. The value of q is
(a) 2 Coulomb
(b) 0.2 Coulomb
(c) 20 Coulomb
(d) 0.02 Coulomb

- 3. Light travels through a glass slab of thickness t and having refractive index n. If c is the velocity of light in vacuum, then the time taken by light to travel this thickness of glass is
 - (a) $\frac{t}{nc}$ (b) $\frac{nt}{c}$ (c) $\frac{n^2t}{c}$ (d) $\frac{t}{n^2c}$
- 4. The resistance of rheostat shown in the figure is $0 30 \Omega$. Neglecting the resistance of ammeter and connecting wire, the minimum and maximum currents through the ammeter will be (a) (0.08 A, 0.33 A) 2.2 V

5.	An object of height 2.0 cm is placed on the principal axis of a concave mirror at a distance of 12 cm from the pole. If the image is inverted, real and 5 cm in height then location of the image and focal length of the mirror respectively are				
	(a) $(-30 \text{ cm}, +8.6 \text{ cm})$		(b) (-30 cm, -8.6 cm)	
	(c) $(+30 \text{ cm}, +8.6 \text{ cm})$		(d) $(+30 \text{ cm}, -8.6 \text{ cm})$		
				,	
6.	A non-ideal voltmete would be the value if	r of resistance 10,000 the same voltmeter is c	Ω connected across 40 connected across 6000		
	(a) 3.326 V	(b) 4.326 V	(c) 3.238 V	(d) 4.838 V	
7.	A person cannot clear power	ly see objects at a dista	ance more than 40 cm.	He is advised to use lens of	
	(a) -2.5 D	(b) 2.5 D	(c) -1.5 D	(d) 1.5 D	
8.	An observer moves to his image moves towa (a) 2 m/s	• •	e mirror at a speed of 4 (c) 8 m/s	m/s. The speed with which (d) Image will stay at rest	
9.	A concave mirror of focal length 15 cm forms an image. The position of the object when the image is virtual and linear magnification is 2 is				
	(a) 22.5 cm	(b) 7.5 cm	() .	(d) 45 cm	
10.	An object is placed at point A in front of a convex lens of focal length f . Its real, inverted and magnified image is formed behind the lens. When the object is brought closer to the lens and placed at a point B, a virtual and erect image, but with exactly the same magnification (in magnitude) as before is formed in front of the convex lens. Let F be the focus of the lens in front of it. Which of the following relations is correct? (a) $AF = FB$ (b) $AB = f$ (c) $AF - BF = f$ (d) $AB = 2f$				
		Roug	<i>sh</i>		
			-		

11. Nethra, who is a back-bencher, discovers one day in the class that she is unable to discern the details on the blackboard very well. When she visits an optician, he prescribes glasses for her. Which of the following statement(s) is/are false?

I. She suffers from myopia where the far point is nearer than the blackboard.

II. A concave lens with a suitable power can help correct her vision.

III. Her eye is defective and is forming images in front of the retina.

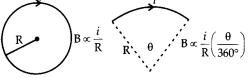
IV. A concave lens or a convex lens may be used to correct her vision.

(a) Only I (b) I, II and III (c) I, II and IV (d) Only IV

12. Figures shows three electrical appliances connected to 220 V ac mains. What is the amperage (current rating) of the fuse that should be used in the circuit?

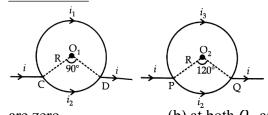
(a) 1.0 A	r@rr-	
(b) 2.0 A	220 V Bulb 0 70 W 1200 V	W
(c) 5.0 A	$AC \bigoplus \begin{array}{c c} 110 \\ 220 \\ 220 \\ 220 \\ 220 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 1$	
(d) 10.0 A	220 V	

13. A positively charged plate and negatively charged plate are kept parallel to each other at a distance of 10 cm. An electron is released near the negative plate. Looking from the negative plate towards the positive plate, the magnetic field produced by the moving electron will be


 (a) clockwise
 (b) anti – clockwise

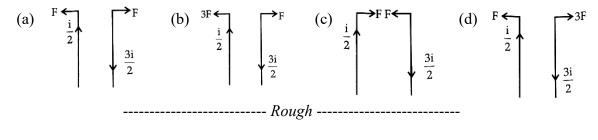
(c) positive to negative plate

(b) anti – clockwise(d) negative to positive plate


----- Rough -----

14. Magnetic field at the centre of a circular coil of radius R carrying current *i* is $B \propto \frac{i}{R}$ and its direction is given by right-hand thumb rule. Magnetic field at the centre of circular arc subtending an angle θ (in degree) is $B \propto \frac{i}{R} \left(\frac{\theta}{360^\circ}\right)$ and its direction can be found using right hand rule.

Considering two circular coils made of uniform conductors as shown in figure 3 and 4. In figure 3 points C and D are diametrically opposite to each other, and in figure $4 \angle PO_2Q = 120^\circ$.


Then magnetic fields

- (a) at both O₁ and O₂ are zero.
 (c) is zero at O₁ but non zero at O₂
- (b) at both O_1 and O_2 are non zero. (d) is non – zero at O_1 but zero at O_2
- 15. Two long current-carrying parallel wires are placed as shown.

Which of the following figures will represent the magnitude and direction of the forces exerted on the wires?

Chemistry (Section – B)

16.	Denatured alcohol is a	mixture of		
	(a) CH ₃ OH and HCHO)	(b) CH ₃ OH and CH ₃ COOH	
	(c) C_2H_5OH and CH_3OH	ΟH	(d) C ₂ H ₅ OH and CH ₃ COOH	
17.	For welding a mixture	of oxygen and	is burnt	
	(a) Benzene	(b) Butane	(c) Methane	(d) Ethyne
18.	Which one of the follo	wing oxides is i	insoluble in water?	

(b) CuO

(a) Na_2O

19. The values of stoichiometric coefficients m, x, y and z in the following reaction after balancing are, respectively:

(c) K_2O

(d) CaO

 $\begin{array}{c} m(NH_4)_2 Cr_2 O_7 \xrightarrow{\Delta} x Cr_2 O_3 + yN_2 + zH_2 O\\ (a) 2, 1, 1, 2 \\ \end{array} (b) 2, 2, 2, 4 \\ (c) 1, 1, 1, 4 \\ (d) 2, 2, 1, 2 \end{array}$

20. You are provided with aqueous solution of three salts A, B and C. 2 -3 drops of blue litmus solution, red litmus solution and phenolphthalein were added to each of these solutions in separate each of these solutions in separate experiments. The change in colour of different indicators were recorded in the following table:

Sample	With blue litmus solution	With red litmus solution	With phenolphinalein
Α	No change	Turns blue	Turns pink
В	No change	No change	No change
С	Turns red	No change	No change

On the basis of above observations, identify A, B and C from the following options: (a) A = NaCl, B = CH₃COONa, C = FeCl₃ (b) A = CH₃COONa, B = NaCl, C = FeCl₃ (c) A = FeCl₃, B = NaCl, C = CH₃COONa (d) A = FeCl₃, B = CH₃COONa, C = NaCl

----- *Rough* -----

(6)

21. IUPAC name of the following compound will be:

27. Which of the following set of reactions will NOT occur? I. MgSO₄(aq) + Fe(s) \rightarrow FeSO₄(aq) + Mg(s) II. CuSO₄(aq) + Fe(s) \rightarrow FeSO₄(aq) + Cu(s) III. MgSO₄(aq) + Cu(s) \rightarrow CuSO₄(aq) + Mg(s) IV. CuSO₄(aq) + Zn(s) \rightarrow ZnSO₄(aq) + Cu(s) (a) I and III (b) II and IV (c) I, II and III (d) II, III and IV

28. The following observations are given for four metals:
I. Metal H does not react with dilute HCl
II. Metal K reacts with warm water.
III. Metal L does not react with water but displaces metal H from its aqueous salt solution.
IV. Metal M reacts with cold water.

Choose the correct decreasing order of reactivity of these metals amongst the following: (a) M > L > H > K (b) K > M > H > L (c) M > K > L > H (d) L > H > K > M

29. Match chemical reactions given in the List-I with the type of chemical reactions given in List-II and select the correct answer using the options given below:

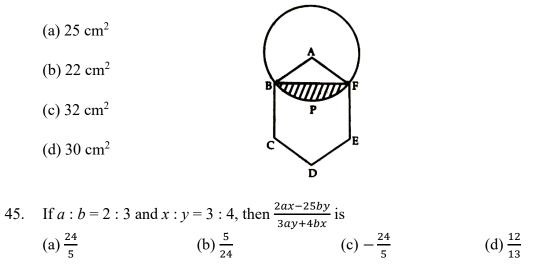
	List – I		List – II
	(Chemical reactions)		(Types of chemical reactions)
(A)	Formation of NH_3 from N_2 and H_2	I.	Decomposition
(B)	Calcination of zinc carbonate	II.	Double displacement
(C)	Reaction of aqueous BaCl ₂ solution	III.	Combination
	with dilute H ₂ SO ₄		
(D)	Rancidity of oils	IV.	Redox
		V.	Displacement
(a) A - I, B - V, C - III, D - IV		(b)	A - III, B - IV, C - V, D - I
(c) A	- IV, B $-$ III, C $-$ V, D $-$ I	(d)	A - III, B - I, C - II, D - IV

30. In the balanced chemical equation:

(a lead nitrate + b aluminium chloride \rightarrow c aluminium nitrate + d lead chloride) Which of the following alternative is correct? (a) a = 1 b = 2 c = 2 d = 1 (b) a = 4 b = 3 c = 3 d = 4

(a) $a = 1, b = 2, c = 2, d = 1$	(b) $a = 4, b = 3, c = 3, d = 4$
(c) $a = 2, b = 3, c = 2, d = 3$	(d) $a = 3, b = 2, c = 2, d = 3$

----- Rough -----


MATH (Section – D)

Given that $\frac{1}{7} = 0.\overline{142857}$, which is a repeating decimal having six different digits. If x is the sum of such first three positive integers n such that $\frac{1}{n} = 0.\overline{abcdef}$, where a, b, c, d, e, and f are different digits, then the value of x is				
(a) 20	(b) 21	(c) 41	(d) 42	
Which of the followin <i>n</i> ?	ng digits is ruled out in	the units place of 12'	^{<i>n</i>} +1 for every positive integer	
(a) 1	(b) 3	(c) 5	(d) 7	
$x^2 - 2x + k$, the rem	ainder comes out to be	a x + a, then the valu	e of a is	
(a) -1	(b) -5	(c) I	(d) 5	
The value of <i>k</i> , so tha common, are	t the equations $2x^2$ +	$kx - 5 = 0$ and $x^2 - $	3x - 4 = 0 have one root in	
(a) $3, \frac{27}{2}$	(b) 9, $\frac{27}{4}$	(c) -3, $\frac{-27}{4}$	(d) $-3, \frac{4}{27}$	
(c) negative	() I		nd sometimes positive	
A box contains four cards numbered as 1,2,3 and 4 and another box contains four cards numbered as 1,4,9 and 16. On card is drawn at random from each box. What is the probability of getting the product of the two numbers so obtained more than 16?				
(a) $\frac{5}{8}$	(b) $\frac{1}{2}$	(c) $\frac{3}{8}$	(d) $\frac{1}{4}$	
	Rou	igh		
	sum of such first three different digits, then to (a) 20 Which of the followin <i>n</i> ? (a) 1 If the polynomial x^4 $x^2 - 2x + k$, the rem (a) -1 The value of <i>k</i> , so that common, are (a) 3, $\frac{27}{2}$ The value of $\cos x^0$ - (a) 0 (c) negative A box contains four numbered as 1,4,9 an of getting the product (a) $\frac{5}{8}$	sum of such first three positive integers <i>n</i> such different digits, then the value of <i>x</i> is (a) 20 (b) 21 Which of the following digits is ruled out in <i>n</i> ? (a) 1 (b) 3 If the polynomial $x^4 - 6x^3 + 16x^2 - 25x$ $x^2 - 2x + k$, the remainder comes out to be (a) -1 (b) -5 The value of <i>k</i> , so that the equations $2x^2 + common$, are (a) $3, \frac{27}{2}$ (b) $9, \frac{27}{4}$ The value of $cos x^0 - sin x^0 (0 \le x < 45))$ (a) 0 (b) p (c) negative (d) so A box contains four cards numbered as 1,4,9 and 16. On card is drawn of getting the product of the two numbers so (a) $\frac{5}{8}$ (b) $\frac{1}{2}$	sum of such first three positive integers <i>n</i> such that $\frac{1}{n} = 0$. $abcdep$ different digits, then the value of <i>x</i> is (a) 20 (b) 21 (c) 41 Which of the following digits is ruled out in the units place of 12 ^{<i>n</i>} (a) 1 (b) 3 (c) 5 If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by an $x^2 - 2x + k$, the remainder comes out to be $x + a$, then the value (a) -1 (b) -5 (c) 1 The value of <i>k</i> , so that the equations $2x^2 + kx - 5 = 0$ and $x^2 - common$, are (a) $3, \frac{27}{2}$ (b) $9, \frac{27}{4}$ (c) $-3, \frac{-27}{4}$ The value of $\cos x^0 - \sin x^0$ ($0 \le x < 45$) is (a) 0 (b) positive (c) negative (d) sometimes negative and another the product of the two numbers so obtained, more than of getting the product of the two numbers so obtained, more than	

37.	Let ℓ be the length of each equal side of an isosceles triangle. If the length of each equal side is double, keeping its height unchanged, then the difference of the squares of bases of the new triangle and the given triangle is				
	(a) 0	(b) $4\ell^2$	(c) $9\ell^2$	(d) $12\ell^2$	
38.	In $\triangle ABC$, AB = AC, P AQ. Then $\angle AQP$ is eq	< 1 1	C and AB respectively	such that $BC = BP = PQ =$	
	(a) $\frac{2\pi}{7}$	(b) $\frac{3\pi}{7}$	(c) $\frac{4\pi}{7}$	(d) $\frac{5\pi}{7}$	
39.	,	,	1	1 becomes a perfect square	
	(a) 3	(b) 4	(c) 5	(d) 6	
40.	If $sin^4x + sin^2x = 1$,	, then the value of <i>cos</i>	$x^{4}x + \cos^{2}x$ is		
	(a) $5 - 2\sqrt{5}$	(b) sin^2x	(c) tan^2x	(d) 1	
41.	The radii of two cyline of their volumes is	ders are in the ratio 2 :	3 and their heights are	in the ratio 5 : 3. The ratio	
	(a) 10 : 17	(b) 20 : 27	(c) 10 : 27	(d) 20 : 37	
42. A cone, a right circular cylinder and a hemisphere standing on equal base and The ratio of their volumes is				base and have same height.	
	(a) 1 : 2 : 3	(b) 1 : 3 : 2	(c) 2 : 3 : 1	(d) 2 : 1 : 3	

----- Rough ------

- 43. An equilateral triangle has its side of $3\sqrt{3}$ cm, then radius of its circum-circle is: (a) 3 cm (b) 4 cm (c) $2\sqrt{3}$ (d) 2 cm
- 44. In the given figure, the centre of the circle is A and ABCDEF is a regular hexagon of side 6 cm. The approximate area of segment BPF is. (Take $\pi = 3.14$)

----- Rough ------

MAT (Section – E)

46. Sunil is the son of Keshav, Simran, Keshav's sister, has a son Maruti and daughter Sita. Prem is the maternal uncle of Maruti. How is Sunil related to Maruti? (a) Cousin (b) Maternal uncle (c) Brother (d) Nephew

47. Which two months in a year have the same calendar? (a) June, October (b) April, November (d) October, December (c) April, July

48. Ashish leaves his house at 20 minutes to seven in the morning, reaches Kunal's house in 25 minutes, they finish their breakfast in another 15 minutes and leave for their office which takes another 35 minutes. At what time do they leave Kunal's house to reach their office? (a) 7.40 a.m. (b) 7.20 a.m. (c) 7.45 a.m. (d) 8.15 a.m.

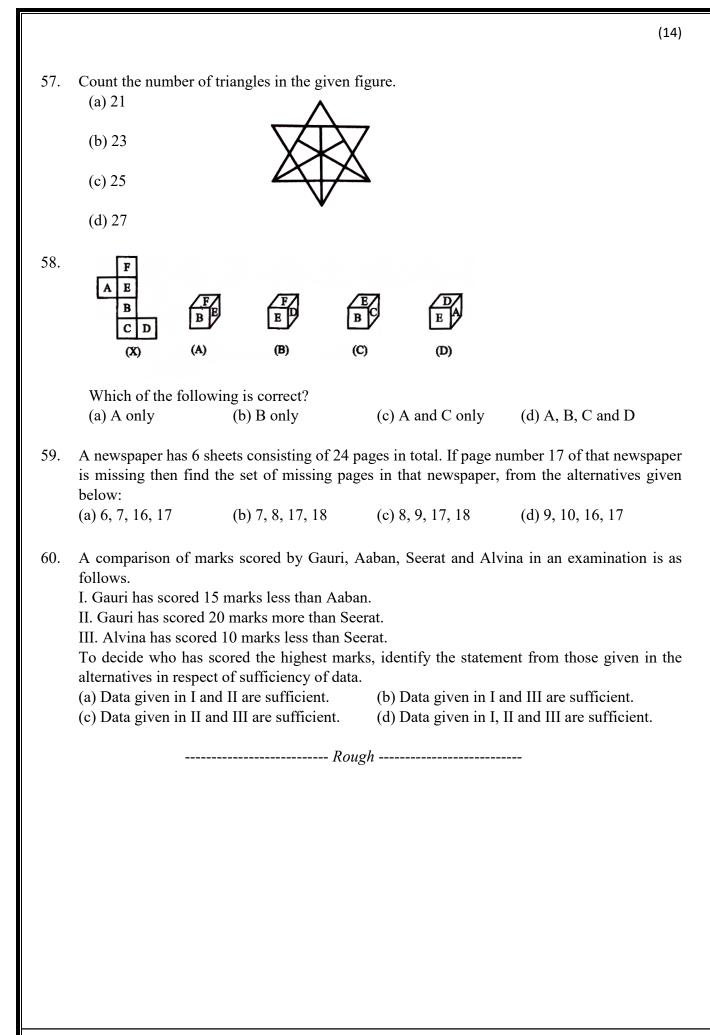
49. If in a certain code 'INTELLIGENCE' is written as 'ETNIGILLECNE', then how can 'MATHEMATICAL' be written in the same code? (a) AMHTMETACILA (b) TAMMEHITALAC (c) HTAMTAMELACI (d) LACITAMEHTAM

50. A boy starts from home in early morning and walks straight for 8 km facing the Sun. Then, he takes a right turn and walks for 3 km. Then, he turns right again and walks for 2 km and then turns left and walks for 1 km. Then, he turns right, travels 1 km and then turns right and travels for 4 km straight. How far is he from the starting point? (a) 5 km

(b) 6 km (c) 2 km (d) 4 km

----- Rough ------

- 51. If $+ = \times, = \div, \times = +, \div = -$, then which is the correct equation out of the following? (a) $18 + 6 - 4 \times 2 \div 3 = 26$ (b) $18 \div 6 + 4 - 2 \div 3 = 22$
 - (c) $18 6 \times 7 \div 2 + 8 = 63$ (b) $18 \div 6 + 4 2 \div 3 = 22$ (d) $18 \times 6 - 4 + 7 \times 8 = 47$
- 52. Find the missing number (a) 92


(a) 92	2	3	8
(b) 128	4	5	10
(c) 200	6	7	12
、 /	32	50	?

- (d) 30
- 53. 3, 5, 35, 10, 12, 35, _, _ (a) 19, 35 (b) 17, 19 (c) 19, 24 (d) 22, 35
- 54. 7, 8, 18,57, ?, 1165 (a) 174 (b) 232 (c) 224 (d) 228
- 55. What comes in place of question mark.

56. What come next in problem figure **PROBLEM FIGURES ANSWER FIGURES** $= ? \Delta = ?$ $\Delta = ? | \Delta = ? | \Delta = ? | \times \Delta$? ? X DIX X (X C 2 3 B С D 1 ----- Rough ------

