1. General Instructions:

(Paper Code: 1201)

* This test paper consists of 30 question in 3 section (A, B, C) Marking Scheme:
\checkmark Full marks: + 4 if answered correctly.
\checkmark Zero marks: 0 if not attempted or incorrect.

2. RGP College Grant Criteria:

\checkmark Students must score a minimum of $\mathbf{7 0 \%}$ positive marks in RGP.
\checkmark Student must get under AIR 5,000 in JEE/NEET Examination.
3. Cash Reward Criteria:
\checkmark Students must score a minimum of $\mathbf{7 0 \%}$ positive marks in their respective papers.
\checkmark Exciting Cash Rewards for RGP Toppers

- $1^{\text {st }}$ Topper - ₹ 21,000/-
- $2^{\text {nd }}$ Topper - ₹ $11,000 /-$
- $3^{\text {rd }}-5^{\text {th }}$ Topper - ₹ 5,100/-
- $6^{\text {th }}-10^{\text {th }}$ Topper $-₹ 2,100 /-$

Students Scoring Rank from $11^{\text {th }}-\mathbf{2 0}^{\text {th }}$ will get Exciting Rewards.

4. Scholarship Criteria in Rankers Offline Classroom Program:

(100\% FEE WAIVER - $1^{S T}$ TOPPER) and must getting above 70\% marks.
$\checkmark \mathbf{8 0 \%}$ Fee Waiver - Student Scoring 80\% and above.
$\checkmark \quad \mathbf{6 0 \%}$ Fee Waiver - Student Scoring 70\% to 79.999\%.
$\checkmark \mathbf{5 0 \%}$ Fee Waiver - Student Scoring 60\% to 69.999\%.
$\checkmark \quad \mathbf{4 0 \%}$ Fee Waiver - Student Scoring 50\% to 59.999\%.
$\checkmark \quad \mathbf{2 0 \%}$ Fee Waiver - Student Scoring 30% to 49.999\%
$\checkmark \quad \mathbf{1 0 \%}$ Fee Waiver - All the Aspirants Appearing in RGP.

Student's Name: \qquad
School Name: \qquad
Class: - \qquad Mob. No. \qquad
\qquad
\qquad

Physics (Section - A)

1. Train A and train B are running on parallel tracks in opposite directions with speeds $36 \mathrm{~km} / \mathrm{hour}$ and $72 \mathrm{~km} /$ hour, respectively. A person is walking in train A in the direction opposite to its motion with a speed of $1.8 \mathrm{~km} /$ hour. Speed (in ms^{-1}) of this person as observed from train B will be close to: (take the distance between the tracks as negligible)
(A) $30.5 \mathrm{~ms}^{-1}$
(B) $29.5 \mathrm{~ms}^{-1}$
(C) $31.5 \mathrm{~ms}^{-1}$
(D) $28.5 \mathrm{~ms}^{-1}$
2. Shown in the figure is rigid and uniform one-meter-long rod AB held in horizontal position by two strings tied to its ends and attached to the ceiling. The rod is of mass ' m ' and has another weight of mass 2 m hung at a distance of 75 cm from A . The tension in the string at A is:

(A) 0.75 mg
(B) 1 mg
(C) 0.5 mg
(D) 2 mg
3. A thin circular plate of mass M and radius r has its density varying as $\rho(r)=\rho_{0} r$ with ρ_{0} as constant and r is the distance from its center. The moment of Inertia of the circular plate about an axis perpendicular to the plate and passing through its edge is $I=a \mathrm{MR}^{2}$. The value of the coefficients a is:
(A) $\frac{1}{2}$
(B) $\frac{3}{5}$
(C) $\frac{8}{5}$
(D) $\frac{3}{2}$
4. A particle is oscillating according to the equation $\mathrm{X}=7 \cos 0.5 \pi t$, where ' t ' is in second. The point moves from the position of equilibrium to maximum displacement in time:
(A) 4.0 second
(B) 2.0 second
(C) 1.0 second
(D) 0.5 second
5. A block of mass m is taken from A to B slowly under the action of a constant force F. Work done by this force is:

(A) FR
(B) $\frac{\pi}{2} \mathrm{FR}$
(B) $\frac{\mathrm{FR}}{\sqrt{2}}$
(D) $\frac{\mathrm{FR}}{4}$
6. A U-tube having uniform cross-section but unequal arm length $l_{1}=100 \mathrm{~cm}$ and $l_{2}=50 \mathrm{~cm}$ has same liquid of density ρ_{1} filled in it upto a height $h=30 \mathrm{~cm}$ as shown in figure. Another liquied of density $\rho_{2}=2 \rho_{1}$ is poured in arm A. Both liquids are immiscible. The length of the second liquid is \qquad (in cm) which should be poured in A so that second overtone of A is in unison with fundamental tone of B . (Neglect end correction)

(A) 1.5
(B) 3
(C) 6
(D) 12
7. The masses of 10 kg and 20 kg , respectively, are connected by massless spring as shown in the figure. A force of 200 N acts on the 20 kg mass. At the instant shown, the 10 kg mass has acceleration of $12 \mathrm{~m} / \mathrm{s}^{2}$. What is the acceleration of 20 kg mass? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(A) $12 \mathrm{~m} / \mathrm{s}^{2}$
(B) $4 \mathrm{~m} / \mathrm{s}^{2}$
(C) $10 \mathrm{~m} / \mathrm{s}^{2}$
(D) zero
8. An ideal gas is taken through series of changes ABCA. The amount of work involved in the cycle is:

(A) $12 \mathrm{P}_{1} \mathrm{~V}_{1}$
(B) $6 \mathrm{P}_{1} \mathrm{~V}_{1}$
(C) $3 \mathrm{P}_{1} \mathrm{~V}_{1}$
(D) $\mathrm{P}_{1} \mathrm{~V}_{1}$
9. The greatest speed of transverse waves through a steel wire of radius 1 mm is \qquad $\times 10^{2} \mathrm{~m}$. The breaking stress of steel is $6.0 \times 10^{8} \mathrm{Nm}^{-2}$. Density of steel $=7800 \mathrm{~kg} \mathrm{~m}^{-3}$.
(A) 2.78
(B) 1.78
(C) 3.78
(D) 4.78
10. The specific heat of a substance is given by $C=a+b T$. The amount of heat required to raise the temperature of mkg of the material from T_{0} to $2 \mathrm{~T}_{0}$
(A) $\mathrm{m}\left[\mathrm{aT}_{0}+\frac{3}{2} \mathrm{bT}_{0}{ }^{2}\right]$
(B) $\mathrm{m}\left[\mathrm{aT}+\mathrm{bT}_{0}{ }^{2}\right]$
(C) $\mathrm{m}\left[\mathrm{aT}_{0}+\frac{\mathrm{b}}{2} \mathrm{~T}_{0}{ }^{2}\right]$
(D) $m\left[\mathrm{aT}_{0}+\frac{2}{3} \mathrm{bT}_{0}{ }^{2}\right]$

Chemistry (Section - B)

11. The figure that is not a direct manifestation of the quantum nature of atom is
(A)

(B)
Increasing wavelength

(C)

(D)

12. The Gibb's energy change (in J) for the given reaction at $\left[\mathrm{Cu}^{2+}\right]=\left[\mathrm{Sn}^{2+}\right]=1 \mathrm{M}$ and 298 K is:
$\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Sn}(\mathrm{s}) \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
$\left[\mathrm{E}^{\circ} \mathrm{Sn}^{2+} / \mathrm{Sn}=-0.16 \mathrm{~V}, \mathrm{E}^{\circ} \mathrm{Cu}^{2+} / \mathrm{Cu}=0.34 \mathrm{~V}\right.$ Take $\left.\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}\right]$
(A) 96500
(B) 97500
(C) 95500
(D) 98500
13. The internal energy (in J) when 90 g of water under goes complete evaporation at $100^{\circ} \mathrm{C}$ is (Given $\Delta \mathrm{H}_{\text {vap }}$ for water at $373 \mathrm{~K}=41 \mathrm{~kJ} / \mathrm{mol} \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
(A) 189494
(B) 179494
(C) 189472
(D) 189500
14. The number of chiral carbons present in the molecule given below is

(A) 6
(B) 5
(C) 7
(D) 8
15. If AB_{5} molecule is a polar molecule, a possible geometry of AB_{5} is:
(A) Square pyramidal
(B) Rectangular planar
(C) Square planar
(D) Tetrahedral
16. The correct order of hydration enthapies of alkali metal ions is:
(A) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}$
(B) $\mathrm{Na}^{+}>\mathrm{Li}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(C) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(D) $\mathrm{Na}^{+}>\mathrm{Li}^{+}>\mathrm{K}^{+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}$
17. For silver $\mathrm{C}_{\mathrm{P}}\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)=23+0.01 \mathrm{~T}$. If the temperature (T) of 3 moles of silver is raised from 300 K to 1000 K at 1 atm , the value of $\Delta \mathrm{H}$ will be close to:
(A) 63 kJ
(B) 16 kJ
(C) 21 kJ
(D) 13 kJ
18. If solubility product of $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ is denoted by $\mathrm{K}_{\text {sp }}$ and its molar solubility is denoted by S , then which of the following relation between S and $\mathrm{K}_{\text {sp }}$ is correct?
(A) $S=\left(\frac{K_{s p}}{144}\right)^{\frac{1}{6}}$
(B) $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{6912}\right)^{\frac{1}{7}}$
(C) $\mathrm{S}=\left(\frac{\mathrm{K}_{\text {sp }}}{929}\right)^{\frac{1}{9}}$
(D) $S=\left(\frac{K_{\text {sp }}}{216}\right)^{\frac{1}{7}}$
19. The quantum number of four electrons are given below:
I. $n=4, l=2, m_{1}=-2, m_{s}=-\frac{1}{2}$
II. $n=3, l=2, m_{1}=1, m_{s}=+\frac{1}{2}$
III. $n=4, l=1, m_{1}=0, m_{s}=+\frac{1}{2}$
IV. $n=3, l=1, m_{1}=1, m_{s}=-\frac{1}{2}$

The correct order of their increasing energies will be:
(A) IV $<$ III $<$ II $<$ I
(B) I $<$ II $<$ III $<$ IV
(C) IV $<$ II $<$ III $<$ I
(D) I $<$ III $<$ II $<$ IV
20. The IUPAC name of the following compound is:

(A) 4,4-dimethyl-3-hydroxybutanoic acid
(B) 2-Methyl-5-hydroxypentane-5-oic acid
(C) 3-Hydroxy-4-methyl pentanoic acid
(D) 4-methyl-3-hydroxypentanoic acid

Math (Section - C)

21. If the quadratic equation $4 x^{2}-2 x-m=0$ and $4 p(q-r) x^{2}-2 q(r-p) x+r(p-q)=0$ have a common root such that second equation has equal roots then the value of m will be:
(A) 0
(B) 1
(C) 2
(D) 3
22. Given that x, y, z are positive reals such that $x y z=32$. The minimum value of $x^{2}+4 x y+4 y^{2}+2 z^{2}$ is equal to:
(A) 64
(B) 256
(C) 96
(D) 216
23. Evaluate: $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)(n+3) \ldots \ldots .(n+k)}$
(A) $\frac{1}{(k-1)(k-1)!}$
(B) $\frac{1}{k \cdot k!}$
(C) $\frac{1}{(k-1) k!}$
(D) $\frac{1}{k!}$
24. The value of the expression $\log _{2}\left(1+\frac{1}{2} \sum_{\mathrm{k}=1}^{11} \mathrm{C}_{\mathrm{k}}\right)$:
(A) 11
(B) 12
(C) 13
(D) 14
25. Sum of all values of x satisfying the equation

$$
25^{\left(2 x-x^{2}+1\right)}+9^{\left(2 x-x^{2}+1\right)}=34\left(15^{\left(2 x-x^{2}\right)}\right) \text { is: }
$$

(A) 1
(B) 2
(C) 3
(D) 4
26. The number of 3-digit numbers containing the digit 7 exactly once:
(A) 225
(B) 220
(C) 200
(D) 180
27. The value of $\cos 12^{\circ} \cos 24^{\circ} \cos 36^{\circ} \cos 48^{\circ} \cos 60^{\circ} \cos 72^{\circ} \cos 84^{\circ}$ is:
(A) $\frac{1}{64}$
(B) $\frac{1}{128}$
(C) $\frac{1}{256}$
(D) $\frac{1}{512}$
28. The equation of the line parallel to the line $3 x+4 y=0$ and touching the circle $x^{2}+y^{2}=9$ in the first quadrant is:
(A) $3 x+4 y=15$
(B) $3 x+4 y=45$
(C) $3 x+4 y=9$
(D) $3 x+4 y=12$
29. The director circle of the parabola $(y-2)^{2}=16(x+7)$ touches the circle $(x-1)^{2}+(y+1)^{2}=r^{2}$, then r is equal to:
(A) 10
(B) 11
(C) 12
(D) None of these
30. If $\frac{x^{2}-|x|-2}{2|x|-x^{2}-2}>2$ then $x \in$
(A) $(-1,1)$
(B) $\left(\frac{-2}{3}, \frac{-2}{3}\right)$
(C) $\left(-1, \frac{-2}{3}\right) \cup\left(\frac{2}{3}, 1\right)$
(D) $\left(-\infty, \frac{-2}{3}\right) \cup\left(\frac{2}{3}, \infty\right)$

Rough

