JEE Main 2023 (1st Attempted) (Shift - 01 Chemistry Paper)

TEST PAPER WITH SOLUTION

CHEMISTRY
 SECTION-A
 \qquad
 (2) $4 f^{4}$
 (4) $4 f^{4} 6 s^{2}$

31. $\mathrm{Nd}^{2+}=$
(1) $4 f^{2} 6 s^{2}$
(3) $4 f^{3}$

Official Ans. by NTA (2)
Allen Ans. (2)
Sol $\quad \operatorname{Nd}(60)=[\mathrm{Xe}] 4 \mathrm{f}^{4} 5 \mathrm{~d}^{0} 6 \mathrm{~s}^{2}$
$\mathrm{Nd}^{2+}=[\mathrm{Xe}] 4 \mathrm{f}^{4} 5 \mathrm{~d}^{0} 5 \mathrm{~s}^{0}$
32. The methods NOT involved in concentration of ore are
(A) Liquation
(B) Leaching
(C) Electrolysis
(D) Hydraulic washing
(E) Froth floatation

Choose the correct answer from the options given below :
(1) B, D and C only
(2) C, D and E only
(3) A and C only
(4) B, D and E only

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. Methods involved in concentration of one are
(i) Hydraulic Washing
(ii) Froth Flotation
(iii) Magnetic Separation
(iv) Leaching
33. Consider the following reaction

Propanal + Methanal $=\xrightarrow[\substack{\text { (i) dil. } \mathrm{NaOH} \\ \text { (iil) } \\ \text { (ivacN } \mathrm{NaCN}}]{\text { (iv } \mathrm{H}_{3} \mathrm{O}^{+}} \underset{\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}\right)}{\text { Product B }}$
The correct statement for product B is. It is
(1) optically active and adds one mole of bromine
(2) racemic mixture and is neutral
(3) racemic mixture and gives a gas with saturated
NaHCO_{3} solution
(4) optically active alcohol and is neutrall

Official Ans. by NTA (3)
Allen Ans. (3)

Sol. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHO}+\mathrm{HCHO} \xrightarrow[\Delta]{\mathrm{OH}^{-}}$

(\pm
Carboxylic acid will give CO_{2} gas, with NaHCO_{3} solution
34. The correct order of basicity of oxides of vanadium is
(1) $\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{5}$
(2) $\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{5}>\mathrm{V}_{2} \mathrm{O}_{4}$
(3) $\mathrm{V}_{2} \mathrm{O}_{5}>\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{3}$
(4) $\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{5}$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. With increase in \% of oxygen acidic nature of oxide of an element increase and basic nature decreases
35. When Cu^{2+} ion is treated with KI , a white precipitate, X appears in solution. The solution is titrated with sodium thiosulphate, the compound Y is formed. X and Y respectively are
(1) $X=\mathrm{Cu}_{2} \mathrm{I}_{2}$
$\mathrm{Y}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{5}$
(2) $\mathrm{X}=\mathrm{Cu}_{2} \mathrm{I}_{2}$
$\mathrm{Y}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
(3) $\mathrm{X}=\mathrm{CuI}_{2}$
$\mathrm{Y}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{3}$
(4) $\mathrm{X}=\mathrm{CuI}_{2}$

$$
\mathrm{Y}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}
$$

Official Ans. by NTA (2)
Allen Ans. (2)
Sol.

I^{-}is strong R.A it reduces Cu^{2+} to Cu^{+}
$2 \mathrm{CuI}_{2} \longrightarrow \underset{\text { (White) ' } \mathrm{X}^{\prime}}{\mathrm{Cu}_{2} \mathrm{I}_{2}} \downarrow+\mathrm{I}_{2}$
$\mathrm{KI}+\mathrm{I}_{2} \longrightarrow \mathrm{~K}^{+} \mathrm{I}_{3}^{-}$(Brown solution)
$\mathrm{I}_{3}^{-} \rightleftharpoons \mathrm{I}_{2}+\mathrm{I}^{-}$
$\mathrm{KI}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{KI}+\underset{(\mathrm{Y})}{\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}}$
36.

(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Allen Ans. (4)
Sol.

37. Cobalt chloride when dissolved in water forms pink colored complex X which has octahedral geometry. This solution on treating with cone HCl forms deep blue complex, Y which has a Z geometry. X, Y and Z , respectively, are
(1) $\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{Y}=\left[\mathrm{CoCl}_{4}\right]^{2-}, \mathrm{Z}=$ Tetrahedral
(2) $\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{2+}, \mathrm{Y}=\left[\mathrm{CoCl}_{6}\right]^{3-}, \mathrm{Z}=$ Octahedral
(3) $\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}, \mathrm{Y}=\left[\mathrm{CoCl}_{6}\right]^{3-}, \mathrm{Z}=$ Octahedral
(4) $\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}, \mathrm{Y}=\left[\mathrm{CoCl}_{4}\right]^{2-}, \mathrm{Z}=$ Tetrahedral

Official Ans. by NTA (1)
Allen Ans. (1)
Sol.

$$
\begin{gathered}
\mathrm{CoCl}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2} \\
\text { Pink }(\mathrm{X}) \\
\text { octahedral } \\
\downarrow+\mathrm{HCl} \text { (conc.) } \\
{\left[\mathrm{CoCl}_{4}\right]^{2-}}
\end{gathered}
$$

(Y)Blue solution
(Z)Tetrahedral
38. Identify X, Y and Z in the following reaction. (Equation not balanced)
$\mathrm{Cl} \dot{\stackrel{-}{\mathrm{O}}}+\mathrm{NO}_{2} \rightarrow \underline{\mathrm{X}} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underline{\mathrm{Y}}+\underline{\mathrm{Z}}$
(1) $\mathrm{X}=\mathrm{ClONO}_{2}, \mathrm{Y}=\mathrm{HOCl}, \mathrm{Z}=\mathrm{NO}_{2}$
(2) $\mathrm{X}=\mathrm{ClNO}_{2}, \mathrm{Y}=\mathrm{HCl}, \mathrm{Z}=\mathrm{HNO}_{3}$
(3) $\mathrm{X}=\mathrm{ClONO}_{2}, \mathrm{Y}=\mathrm{HOCl}, \mathrm{Z}=\mathrm{HNO}_{3}$
(4) $\mathrm{X}=\mathrm{ClNO}_{3}, \mathrm{Y}=\mathrm{Cl}_{2}, \mathrm{Z}=\mathrm{NO}_{2}$

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. $\mathrm{ClO}+\mathrm{NO}_{2} \longrightarrow \underset{(\mathrm{X})}{\mathrm{ClONO}}{ }_{2} \xrightarrow[(\mathrm{Y})]{+\mathrm{H}_{2} \mathrm{O}} \underset{(\mathrm{Z})}{\mathrm{HOCl}}+\underset{\mathrm{H}_{3}}{\mathrm{HNO}_{3}}$
39. The correct order of melting point of dichlorobenzenes is
(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Allen Ans. (4)
Sol.

448

M.P a Packing efficiency

40. A protein ' X ' with molecular weight of $70,000 \mathrm{u}$, on hydrolysis gives amino acids. One of these amino acid is
(1)

(2)

(3)

(4)

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. Only in option (2) α-Amino acid is given all the other options are not α-Amino acids.
41. Which transition in the hydrogen spectrum would have the same wavelength as the Balmer type transition from $\mathrm{n}=4$ to $\mathrm{n}=2$ of He^{+}spectrum
(1) $n=2$ to $n=1$
(2) $n=1$ to $n=3$
(3) $n=1$ to $n=2$
(4) $n=3$ to $n=4$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. He^{+}ion :
$\frac{1}{\lambda(\mathrm{H})}=\mathrm{R}(1)^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
$\frac{1}{\lambda\left(\mathrm{He}^{+}\right)}=\mathrm{R}(2)^{2}\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]$
Given $\lambda(\mathrm{H})=\lambda\left(\mathrm{He}^{+}\right)$
$\mathrm{R}(1)^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]=\mathrm{R}(4)\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]$
$\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}=\frac{1}{1^{2}}-\frac{1}{2^{2}}$
On comparing $n_{1}=1 \& n_{2}=2$
Ans. 1
42. Match items of column I and II

Column I (Mixture of compounds)	Column II (Separation Technique)
A. $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	i. Crystallization

Correct match is :
(1) A-(iii), B-(iv), C-(ii), D-(i)
(2) A-(i), B-(iii), C-(ii), D-(iv)
(3) A-(ii), B-(iii), C-(iv), D-(i)
(4) A-(ii), B-(iv), C-(i), D-(iii)

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. A. $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow$ ii, $\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{H}_{2} \mathrm{O}$ (density) so they can be separated by differential solvent extraction.
B.

Due to H -bonding in
 it can be separated
 by column chromatography.
C. Kerosene / Naphthalene \rightarrow iv. Fractional distillation.

Due to different B.P. of kerosene and Naphthalene it can be separated by fractional distillation.
D. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} / \mathrm{NaCl} \rightarrow$ i. Crystallization.

NaCl (ionic compound) can be crystallized.
43. The correct increasing order of the ionic radii is
(1) $\mathrm{Cl}^{-}<\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{S}^{2-}$
(2) $\mathrm{K}^{+}<\mathrm{S}^{2-}<\mathrm{Ca}^{2+}<\mathrm{Cl}^{-}$
(3) $\mathrm{S}^{2-}<\mathrm{Cl}^{-}<\mathrm{Ca}^{2+}<\mathrm{K}^{+}$
(4) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. In isoelectronic species size $\propto \frac{1}{\mathrm{Z}}$

$$
\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}: \text { Size }
$$

Z: $20 \quad 19 \quad 17 \quad 18$
44. $\quad \mathrm{H}_{2} \mathrm{O}_{2}$ acts as a reducing agent in
(1) $2 \mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(2) $2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{Na}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$

Official Ans. by NTA (1)

Allen Ans. (1)

Sol.

45. Which of the following artificial sweeteners has the highest sweetness value in comparison to cane sugar?
(1) Aspartame
(2) Sucralose
(3) Alitame
(4) Saccharin

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. Sweetness value order wrt cane sugar
Alitame $>$ Sucralose $>$ Saccharin $>$ Aspartame
46. Match List I with List II

List I	List II
A. XeF_{4}	I.See - saw
B. SF_{4}	II. Square planar
C. NH_{4}^{+}	III. Bent T - shaped
D. BrF_{3}	IV. Tetrahedral

Choose the correct answer from the options given below :
(1) A-IV, B-III, C-II, D-I
(2) A-II, B-I, C-III, D-IV
(3) A-IV, B-I, C-II, D-III
(4) A-II, B-I, C-IV, D-III

Official Ans. by NTA (4)
Allen Ans. (4)
Sol.
(A)

Square planer
(B) SF_{4}

See-Saw
(C) NH_{4}^{+}

Tetrahedral
(D) $\mathrm{Br} \mathrm{F}_{3}$

Bent T- Shaped
47. Choose the correct set of reagents for the following conversion
trans $\left(\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right) \rightarrow \mathrm{cis}\left(\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right)$
(1) Br_{2}, alc $\mathrm{KOH}, \mathrm{NaNH}_{2}, \mathrm{Na}\left(\mathrm{Liq} \mathrm{NH}_{3}\right)$
(2) Br_{2}, alc $\mathrm{KOH}, \mathrm{NaNH}_{2}, \mathrm{H}_{2}$ Lindlar Catalyst
(3) $\mathrm{Br}_{2}, \mathrm{aq} \mathrm{KOH}, \mathrm{NaNH}_{2}, \mathrm{H}_{2}$ Lindlar Catalyst
(4) Br_{2}, aq $\mathrm{KOH}, \mathrm{NaNH}_{2}, \mathrm{Na}\left(\mathrm{LiqNH}_{3}\right)$

Official Ans. by NTA (2)
Allen Ans. (2)
Sol.

(1) Alc. KOH
(2) NaNH_{2}

48. Adding surfactants in non polar solvent, the micelles structure will look like

polar non-polar
(Surfactant structure)
head tail
(a) Non Polar Solvent

(b)

(c)

(d)

(1) b
(2) c
(3) a
(4) d

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. Non-Polar tail towards non-polar solvent
Ans. 3
49. An organic compound 'A' with empirical formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ gives sooty flame on burning. Its reaction with bromine solution in low polarity solvent results in high yield of B . B is
(1)

(2)

(3)

(4)

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Aromatic compounds burns with sooty flame

50. Which one of the following statements is correct for electrolysis of brine solution?
(1) Cl_{2} is formed at cathode
(2) O_{2} is formed at cathode
(3) H_{2} is formed at anode
(4) OH^{-}is formed at cathode

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Electrolysis of brine solution
NaCl (aq.) $\longrightarrow \mathrm{Na}_{\text {(aq) }}^{+}+\mathrm{Cl}_{\text {(aq) }}^{+}$

$2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \longrightarrow \underset{\text { Minor }}{\mathrm{O}_{2(\mathrm{~g})}}+4 \mathrm{H}_{(\mathrm{aq})}^{+}+4 \mathrm{e}^{-}$
At Cathode : $2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2(\mathrm{~g})} \uparrow+2 \mathrm{OH}_{(\text {aq })}^{-}$
$2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{NaOH}$

SECTION-B

51. The logarithm of equilibrium constant for the reaction $\mathrm{Pd}^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{PdCl}_{4}^{2-} \quad$ is \qquad
(Nearest integer)
Given: $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}$
$\mathrm{Pd}_{(\mathrm{aq})}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pd}(\mathrm{s}) \quad \mathrm{E}^{\mathrm{o}}=0.83 \mathrm{~V}$
$\mathrm{PdCl}_{4}^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pd}(\mathrm{s})+4 \mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{E}^{\mathrm{o}}=0.65 \mathrm{~V}$
Official Ans. by NTA (6)
Allen Ans. (6)
Sol. $\Delta G^{o}=-R T \ell n K$
$-\mathrm{nFE} \mathrm{cell}_{\mathrm{o}}^{\mathrm{o}}=-\mathrm{RT} \times 2.303\left(\log _{10} \mathrm{~K}\right)$
$\frac{\mathrm{E}_{\mathrm{Cell}}^{\mathrm{o}}}{0.06} \times \mathrm{n}=\log \mathrm{K}$
Pd^{+2} (aq.) $+22 \mathrm{e}^{-} \rightleftharpoons \operatorname{Pd}(\mathrm{s}), \mathrm{E}_{\text {cat }, \text { red }^{\mathrm{n}}}=0.83$
$\mathrm{Pd}(\mathrm{s})+4 \mathrm{Cl}^{-}(\mathrm{aq}.) \rightleftharpoons \mathrm{PdCl}_{4}^{2-},(\mathrm{aq})+2 \mathrm{e}^{-}, \mathrm{E}_{\text {Anode.osidid }}^{\mathrm{o}}=0.65$
Net Reaction $\rightarrow \mathrm{Pd}^{2+}$ (aq.) $+4 \mathrm{Cl}^{-}$(aq.) $\rightleftharpoons \mathrm{PdCl}_{4}{ }^{2-}$ (aq.)
$\mathrm{E}_{\text {cell }}^{\mathrm{o}}=\mathrm{E}_{\text {cat }, \text { red }}^{\mathrm{o}}-\mathrm{E}_{\text {Anode, oxid }}^{\mathrm{n}}$
$\mathrm{E}_{\text {cell }}^{\mathrm{o}}=0.83-0.65$
$\mathrm{E}_{\text {cell }}^{0}=0.18$
Also $\mathrm{n}=2$
Using equation (1), (2) \& (3)
$\log \mathrm{K}=6$
52. $\mathrm{A} \rightarrow \mathrm{B}$

The rate constants of the above reaction at 200 K and 300 K are $0.03 \mathrm{~min}^{-1}$ and $0.05 \mathrm{~min}^{-1}$ respectively. The activation energy for the reaction is \qquad J (Nearest integer)
(Given: In $10=2.3$
$\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\log 5=0.70$
$\log 3=0.48$
$\log 2=0.30$
Official Ans. by NTA (2520)
Allen Ans. (2520)
Sol.
$\log \frac{\mathrm{K}_{300}}{\mathrm{~K}_{200}}=\frac{\mathrm{E}_{\mathrm{a}}}{2.3 \times 8.314}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$
$\log \frac{0.05}{0.03}=\frac{\mathrm{Ea}}{2.305 \times 8.314} \times\left[\frac{1}{200}-\frac{1}{300}\right]$
$\mathrm{E}_{\mathrm{a}}=2519.88 \mathrm{~J} \Rightarrow \mathrm{E}_{\mathrm{a}}=2520 \mathrm{~J}$
53. The enthalpy change for the conversion of $\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})$ to $\mathrm{Cl}^{-}(\mathrm{aq})$ is (-) \qquad
$\mathrm{kJ} \mathrm{mol}^{-1}$ (Nearest integer)
Given : $\Delta_{\text {dis }} \mathrm{H}_{\mathrm{Cl}_{2(\mathrm{~g})}}^{\mathrm{o}}=240 \mathrm{kJmol}^{-1}$.
$\Delta_{\mathrm{eg}} \mathrm{H}_{\mathrm{Cl}_{(\mathrm{g})}}^{\mathrm{o}}=-350 \mathrm{kJmol}^{-1}$,
$\Delta_{\text {hyd }} \mathrm{H}_{\mathrm{Cl}_{(\mathrm{g})}^{-}}^{\circ}=-380 \mathrm{kJmol}^{-1}$
Official Ans. by NTA (610)
Allen Ans. (610)
Sol. $\quad \frac{1}{2} \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{Cl}_{(\mathrm{g})}^{-} \rightarrow \mathrm{Cl}_{\text {(aq.) }}^{-}$
$\Delta \mathrm{H}^{\mathrm{o}}=\frac{1}{2} \times 240+(-350)+(-380)$
$=-610$ ans.
54. On complete combustion, 0.492 g of an organic compound gave 0.792 g of CO_{2}.
The \% of carbon in the organic compound is \qquad
(Nearest integer)
Official Ans. by NTA (44)

Allen Ans. (44)

Sol. weight of C in $0.792 \mathrm{gm} \mathrm{CO}_{2}$

$$
=\frac{12}{44} \times 0.792=0.216
$$

$\%$ of C in compound $=\frac{0.216}{0.492} \times 100$

$$
=43.90 \%
$$

Ans: 44
55. At $27^{\circ} \mathrm{C}$, a solution containing 2.5 g of solute in 250.0 mL of solution exerts an osmotic pressure of 400 Pa . The molar mass of the solute is \qquad g mol^{-1} (Nearest integer)
(Given : $\mathrm{R}=0.083 \mathrm{~L}^{\text {bar K }}{ }^{-1} \mathrm{~mol}^{-1}$)
Official Ans. by NTA (62250)
Allen Ans. (62250)
Sol. : $\pi=$ CRT
$\frac{400 \mathrm{~Pa}}{10^{5}}=\frac{\frac{2.5 \mathrm{~g}}{\mathrm{M}_{\mathrm{o}}}}{250 / 1000 \mathrm{~L}} \times 0.83 \frac{\mathrm{~L}-\mathrm{bar}}{\mathrm{K} . \mathrm{mol}} \times 300 \mathrm{~K}$
$M_{o}=62250$
56. Zinc reacts with hydrochloric acid to give hydrogen and zinc chloride. The volume of hydrogen gas produced at STP from the reaction of 11.5 g of zinc with excess HCl is \qquad L (Nearest integer)
(Given : Molar mass of Zn is $65.4 \mathrm{~g} \mathrm{~mol}^{-1}$ and Molar volume of H_{2} at $\mathrm{STP}=22.7 \mathrm{~L}$)
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\quad \mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \uparrow$
Moles of Zn used $=\frac{11.5}{65.4}=$ Moles of H_{2} evolved Volume of $\mathrm{H}_{2}=\frac{11.5}{65.4} \times 22.7 \mathrm{~L}=3.99 \mathrm{~L}$
Ans: 4
57. How many of the transformation given below would result in aromatic amines?
(1)

(2)

(3)

(4)

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. Product in the given reactions are as follow-

2. No reactions will be observed as in Gabriel phthalimide synthesis
 is poor substrate for SN^{2}

4.

Aromatic amines will he formed in $1,3 \& 4$ Ans: 3
58. For reaction: $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
$K_{P}=2 \times 10^{12}$ at $27^{\circ} \mathrm{C}$ and 1 atm pressure. The K_{c} for the same reaction is \qquad $\times 10^{13}$. (Nearest integer)
(Given $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\quad \mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{3(\mathrm{~g})}$
$\mathrm{K}_{\mathrm{P}}=2 \times 10^{12}$ at 300 K
$\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}} \times(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
$2 \times 10^{12}=\mathrm{K}_{\mathrm{c}} \times(0.082 \times 300)^{-1 / 2}$
$\mathrm{K}_{\mathrm{C}}=9.92 \times 10^{12}$
$K_{C}=0.992 \times 10^{13}$
Ans. 1
59. The oxidation sate of phosphorus in hypophosphoric acid is + \qquad _
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$

O.S. of P is +4
60. The total pressure of a mixture of non-reacting gases $\mathrm{X}(0.6 \mathrm{~g})$ and $\mathrm{Y}(0.45 \mathrm{~g})$ in a vessel is 740 mm of Hg . The partial pressure of the gas X is
\qquad mm of Hg. (Nearest Integer)
(Given : molar mass $\mathrm{X}=20$ and $\mathrm{Y}=45 \mathrm{~g} \mathrm{~mol}^{-1}$)
Official Ans. by NTA (555)
Allen Ans. (555)
Sol. $\quad P_{X}=\chi_{X} P_{T}$
$=\frac{\frac{0.6}{20}}{\frac{0.6}{20}+\frac{0.45}{45}} \times 740$
$\mathrm{P}_{\mathrm{X}}=555 \mathrm{~mm} \mathrm{Hg}$

