

JEE Main (2024)

MEMORY BASED PAPER SOLUTION

30 JAN 2024 (S-01)

CHEMISTRY

2		1	
1		×	١
l			
	·		

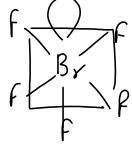
	Column-I		Column-II
(a)	24Cr+2	(i)	3d ⁷
(b)	25Mn+1	(ii)	3d ²
(c)	23V+3	(iii)	3d ⁴
(d)	27 Co +2	(iv)	3d ⁵ , 4s ¹

Select the correct matching

$$C_{\nu}^{+2} = 3d$$
 $M_{h}^{+1} = 4s^{1}3d^{5}$
 $V_{h}^{+3} = 3d^{2}$
 $C_{b}^{+2} = 3d^{7}$

GET SCHOLARSHIP

	List-l		List-II
(P)	H ₂ O	(i)	Bent
(Q)	BrF ₅	(ii)	See-Saw
(R)	SF ₄	(iii)	T-shape
(S)	CIF ₃	(iv)	Square pyramidal
		(v)	Linear


Select the correct matching

- , **//** P-(i), Q-(iv), R-(ii), S-(iii)
 - (3) P-(v), Q-(i), R-(iii), S-(iv)

ByF5 ⇒

Bent

(2) P-(iv), Q-(v), R-(iii), S-(i)

(4) P-(i), Q-(v), R-(iv), S-(iii)

CLF3

GET SCHOLARSHIP FOR NEW ADMISSION GOOGLE FORM

Sce-Saw

Q. Statement-I: Reaction of a compound on treatment with dil. H₂SO₄ produces a gas which on passing through lead acetate filter paper turns paper black. It is confirmatory test for S⁻² acid radical.

Statement-II: Lead sulphite is formed

- (1) Statement I and Statement II are correct.
- Statement I is correct and Statement II is incorrect
 - (3) Statement I is incorrect and Statement II is correct
 - (4) Statement I and Statement II are incorrect

Nas + 4,504 -- 45

For a first order reaction

$$A \longrightarrow P$$

concentration of A at 10 min. and 20 min is 0.04 M and 0.03 M respectively calculate t_{1/2} in minute.

(Given: $\log 2 = 0.3$, $\log 3 = 0.48$)

$$\frac{t_{1/2}}{k} = \frac{0.693}{k}$$

$$K = \frac{2.303}{t} \log \frac{A0}{At}$$

$$\frac{0.693}{t_{1/2}} = \frac{2.303}{1.0} \log \frac{A0}{[0.04]}$$

$$\frac{6.693}{t_{1/2}} = \frac{2.303}{2.0} \log \frac{A0}{[0.04]}$$

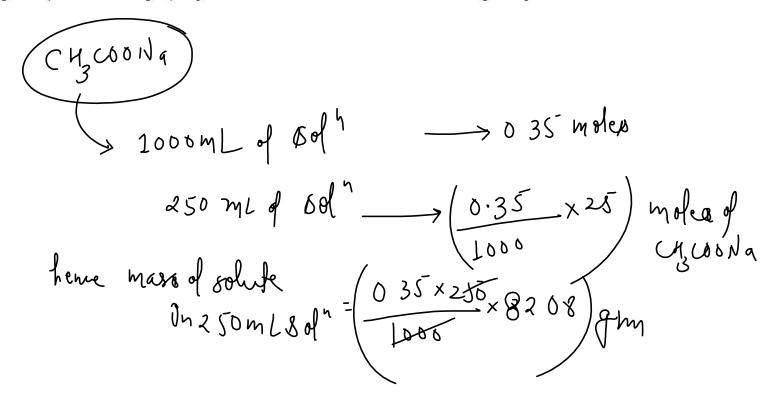
$$\frac{2503}{10} \ln \frac{A0}{0.04} = \frac{2303}{25} \ln \frac{A0}{0.03}$$

$$\frac{A0}{0.04} = \frac{A0}{0.04}$$

$$\frac{A0}{0.04} = \frac{A0}{0.04}$$

$$\frac{A0}{0.04$$

$$\frac{0.693}{41/2} = \frac{2303}{10} \log \frac{0.04}{403}$$


$$\frac{0.693 \times 10}{2.303} = \frac{4}{3} \log \frac{4}{3}$$

$$\frac{0.693 \times 10}{2.303} = \frac{1}{3} \log \frac{4}{3}$$

$$\frac{0.693 \times 10}{2.303 \times (2 \times 0.3016 \times 48)}$$

$$\frac{0.693 \times 10}{2.303 \times (2 \times 0.3016 \times 48)}$$

Q. 250 mL solution of CH₃COONa of molarity 0.35 M is prepared. What is mass of CH₃COONa required in gram (nearest integer) ? [Molar mass of CH₃COONa = 82.08 g/mol]

Q. The number of atom in silver plate having area 0.05 cm^2 and thickness 0.05 cm is _____ × 10^{19} . [Given density of Ag = 7.9 gram/cm³ and atomic mass of Ag = 108]

Area = 0 05 cm²

$$t = 005$$
 cm
 $\sqrt{0} = 4$ rea x thy che new
 $= (005 \times 005)$ cm³
denotity = $\frac{mass}{velue}$

Mass = Vol x denoity
=
$$(0.05)^2 \times 7.9$$

moles of $Ag = (0.05)^2 \times 7.9$
Tot-no of atom = $(0.05)^2 \times 7.9 \times N_A$

Given K_{sp} of Mg(OH)₂ is 10⁻¹¹ and [Mg⁺²] is 0.1 M, then find pH at which precipitation will start? Q.

Shubulity =
$$[con(^{n})f] [con g]$$

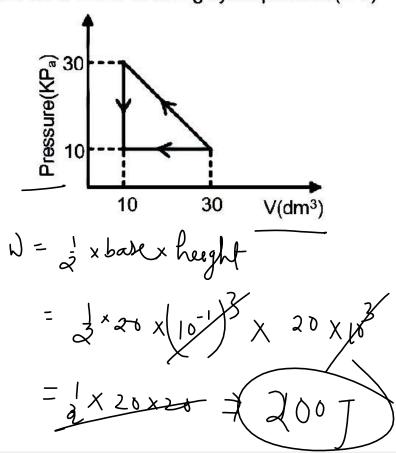
 Prd
 $(on^{n}) = 10^{-5}$
 $(on^{n}) = 10^{-5}$

$$[oh^{-}] = 10^{-5}$$

$$-lg[oh^{-}] = poh = -lg[o^{-5}]$$

$$poh = 5 lg[o^{-7}]$$

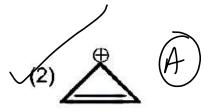
$$\frac{poh}{ph} = 5$$

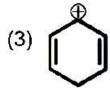

$$ph = 9$$

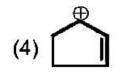
RANKERS OFFLINE CLASSES VARANASI

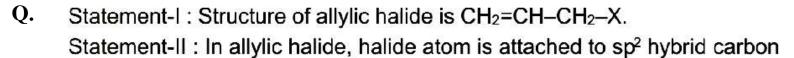
GET SCHOLARSHIP

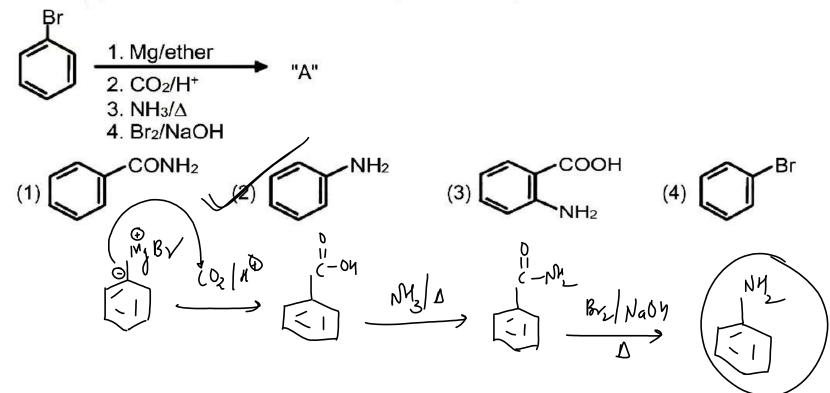
Q. Find work done in the following cyclic process (in J)

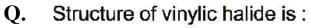

Q. Correct structure of 4-Methyl-pent-2-enal is.




Q. Which of the following is most stable.

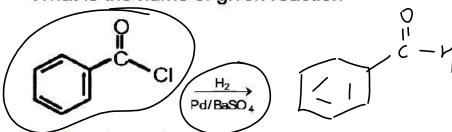






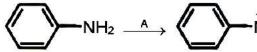
- (1) Both Statement-I & Statement-II are correct.
- (2) Both Statement-I & Statement-II are incorrect.
- (3) Statement-I is correct whereas Statement-II is incorrect.
- (4) Both Statement-I and Statement-II are incorrect.

Q. The final product "A" formed in the following reaction sequence;



$$\sqrt{1)}$$

Q. What is the name of given reaction

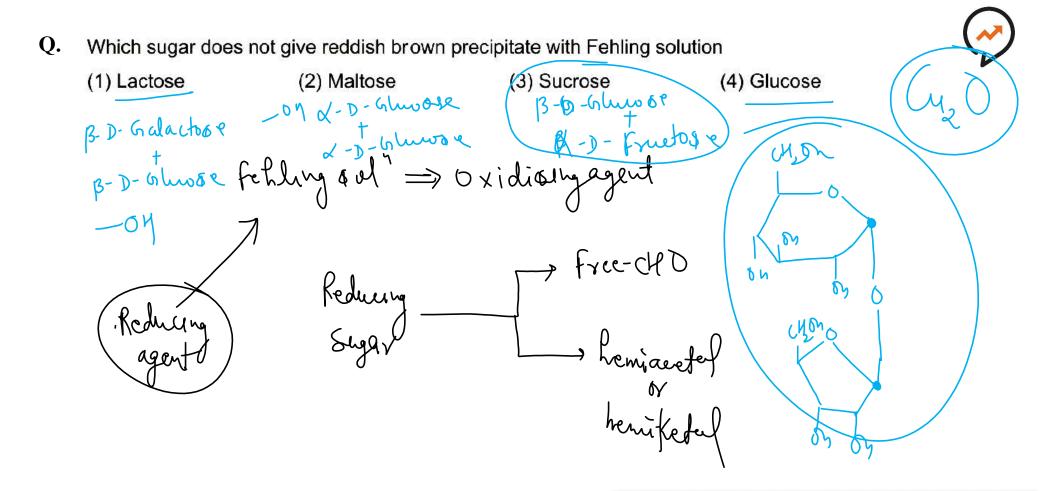

(1) Etard reaction

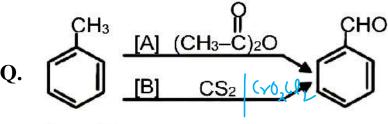
(3) Wolf kishner reduction

(2) Stephen's reduction

Rosenmund reaction

B → Scarlet red, A and B are respectively


- NaNO₂/HCI (0-5°C);


(2) A - NaNO₂/HCl (0-5°C);

(3) A - NaNO₂/HCl (0-5°C);

MNO2

(4) $A - HNO_3$;

A and B are

$$A = CrO_3$$
; B = CrO_2Cl_2

(2)
$$A = CrO_2Cl_2$$
; $B = CrO_2Cl_2$

(3)
$$A = CrO_3$$
; $B = CrO_3$

(4)
$$A = CrO_2Cl_2$$
; $B = CrO_3$

Etard reachon >

 $Q \leftarrow CH_3 - C \equiv CH \xrightarrow{\text{Na}} X \xrightarrow{\text{Y}} CH_3 - C \equiv C - CH_2 - CH_3$

Correct set of X and Y is:

(1)
$$X = 2$$
-Butene; $Y = C_2H_5Br$

$$(2)X = CH_3 - C = C^-; Y = C_2H_5 - Br$$

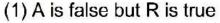
(3)
$$X = C_2H_5Br$$
; $Y = CH_3-C=C^-$

(4)
$$X = CH_3-C \equiv C^-$$
; $Y = CH_3-CH_2-CH_2-Br$

 $CH_3 - C \equiv C = N_a^{(+)} + \frac{1}{2}H_3^{1}$

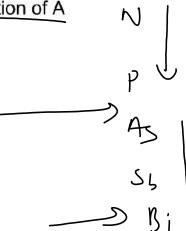
» C4-C=C+C4-U3

Q. Calculate R_f value, if solute travelled by 3.5 cm and solvent travelled by 0.5 cm.



GET SCHOLARSHIP FOR NEW ADMISSION

Assertion: There is considerable increase in covalent radius from N to P but not so from As to Bi.

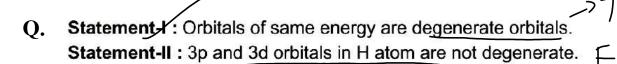

Reason: Covalent and ionic radii in particular oxidation state increase down the group.

(2) Both A and R are true and R is the correct explanation of A

8 Both A and R are true but R is not the correct explanation of A

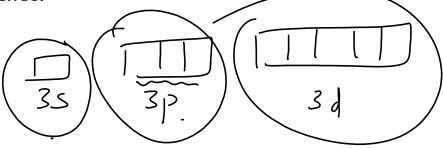
(4) A is true but R is false

- On mixing benzene and naphthalene freezing point: Q.
 - (1) Decreases

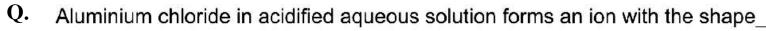

(2) Increases

(3) Firstly decreases then increases

Remains unchanged

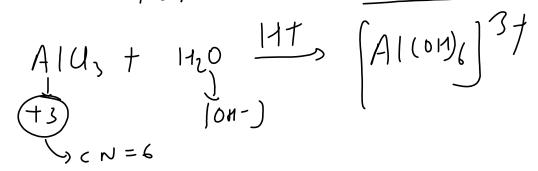


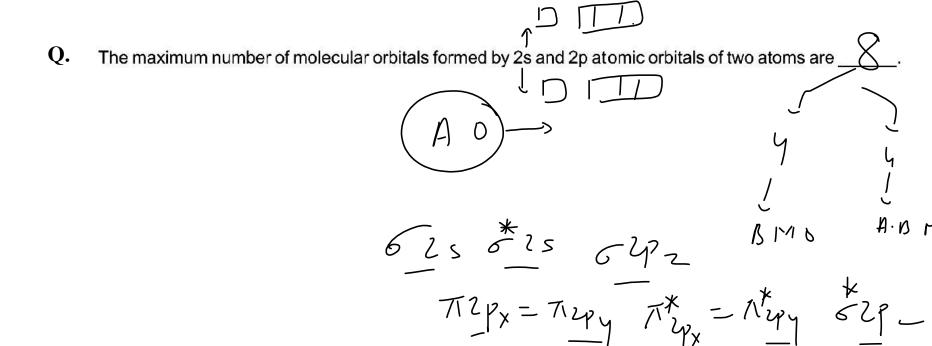
- (1) Statement I and Statement II are correct.
- (2) Statement I is correct and Statement II is incorrect
- (3) Statement I is incorrect and Statement II is correct
- (4) Statement I and Statement II are incorrect

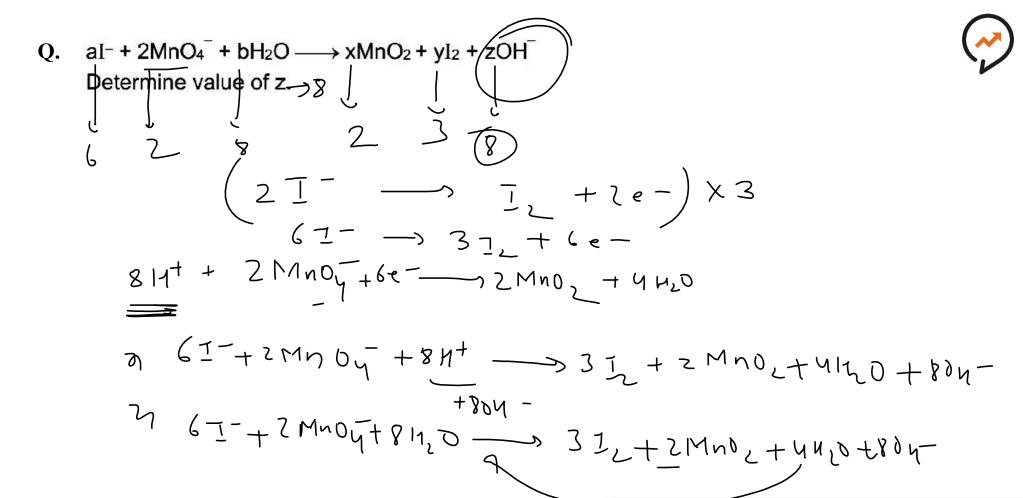

$$Single e^{-5ystn}$$

$$3s = 3p = 3d$$

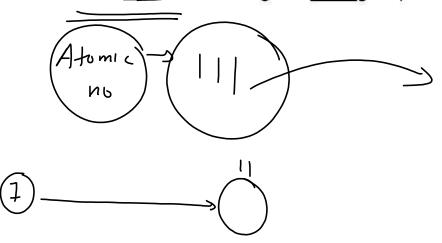
Which of the following set of ions is diamagnetic?




$$\sqrt{(q = (x_e) 5 d^{-0} 6 s^{-2})}$$



- (4) Trigonal bipyramidal —> (5)



GET SCHOLARSHIP FOR NEW ADMISSION FILL THE GOOGLE FORM

Q. The element with IUPAC name 'unununnium' belongs to ____group of the periodic table.

