

JEE Main 2024 (Shift - 01 Chemistry Paper)

<u>29.01.2024</u>

CHEMISTRY

TEST PAPER WITH SOLUTION

61. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R: Assertion A: The first ionisation enthalpy decreases across a period.

SECTION-A

Reason R: The increasing nuclear charge outweighs the shielding across the period.

In the light of the above statements, choose the most appropriate from the options given below:

- (1) Both A and R are true and R is the correct explanation of A
- (2) A is true but R is false
- (3) A is false but R is true
- (4) Both A and R are true but R is NOT the correct explanation of A

Ans. (3)

- **Sol.** First ionisation energy **increases** along the period. Along the period Z increases which outweighs the shielding effect
- 62. Match List I with List II

	LIST-I	LIST-II		
	(Substances)	(Element Present)		
	A.Ziegler catalyst	I.Rhodium		
	B.Blood Pigment	II. Cobalt		
	C.Wilkinson catalyst	III.Iron		
	D.Vitamin B ₁₂	IV.Titanium		
	Choose the correct answer from the options given			
	below:			
	(1) A-II, B-IV, C-I, D-III			
	(2) A-II, B-III, C-IV, D-I			
	(3) A-III, B-II, C-IV, D-I			
	(4) A-IV, B-III, C-I, D-II			
Ans.	(4)			
Sol.	Ziegler catalyst \rightarrow Titanium			
	Blood pigment \rightarrow Iron			
	Wilkinson catalyst \rightarrow Rhodium			

Vitamin $B_{12} \rightarrow Cobalt$

63. In chromyl chloride test for confirmation of Cl⁻ ion, a yellow solution is obtained. Acidification of the solution and addition of amyl alcohol and 10% H₂O₂ turns organic layer blue indicating formation of chromium pentoxide. The oxidation state of chromium in that is

$$\begin{array}{ccc} (1)+6 & (2)+5 \\ (3)+10 & (4)+3 \end{array}$$

Ans. (1)

Sol.
$$Cl^- + K_2Cr_2O_7 + H_2SO_4 \rightarrow CrO_2Cl_2 \xrightarrow{\text{Basic medium}} CrO_4^{2-} + Cl^-$$

$$\underbrace{\operatorname{CrO}_{4}^{2-}}_{\text{yellow solution}} \xrightarrow{1.\operatorname{Acidification}\\ 2.\operatorname{Amyl alcohol}\\ 3.10\% \operatorname{H}_{2}\operatorname{O}_{2}} \xrightarrow{\operatorname{CrO}_{5}}_{\text{blue compound}}$$

- **64.** The difference in energy between the actual structure and the lowest energy resonance structure for the given compound is
 - (1) electromeric energy
 - (2) resonance energy
 - (3) ionization energy
 - (4) hyperconjugation energy
- Ans. (2)
- **Sol.** The difference in energy between the actual structure and the lowest energy resonance structure for the given compound is known as resonance energy.
- **65.** Given below are two statements :

Statement I : The electronegativity of group 14 elements from Si to Pb gradually decreases.

Statement II : Group 14 contains non-metallic, metallic, as well as metalloid elements.

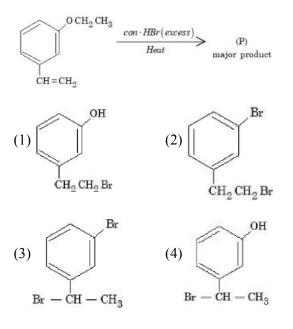
In the light of the above statements, choose the most appropriate from the options given below :

- (1) Statement I is false but Statement II is true
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

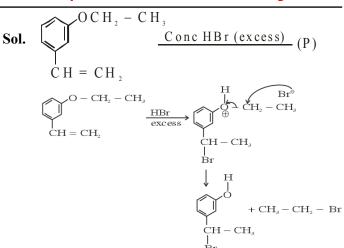
Ans. (1)

Sol.	Gr-14	EN
	С	2.5
	Si	1.8
	Ge	1.8
	Sn	1.8
	Pb	1.9

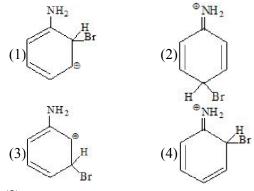
The electronegativity values for elements from Si to Pb are almost same. So Statement I is false.


66. The correct set of four quantum numbers for the valence electron of rubidium atom (Z = 37) is:

(1) 5, 0, 0,
$$+\frac{1}{2}$$
 (2) 5, 0, 1, $+\frac{1}{2}$
(3) 5, 1, 0, $+\frac{1}{2}$ (4) 5, 1, 1, $+\frac{1}{2}$


Ans. (1)

Sol. $Rb = [Kr]5s^{1}$ n = 5 l = 0 m = 0 $s = +\frac{1}{2} \text{ or } -\frac{1}{2}$


67. The major product(P) in the following reaction is

Ans. (4)

68. The arenium ion which is not involved in the bromination of Aniline is .

Ans. (3)

Sol. Since $-NH_2$ group is o/p directing hence arenium ion will not be formed by attack at meta position i.e.

Hence Answer is (3)

69. Appearance of blood red colour, on treatment of the sodium fusion extract of an organic compound with FeSO₄ in presence of concentrated H₂SO₄ indicates the presence of element/s

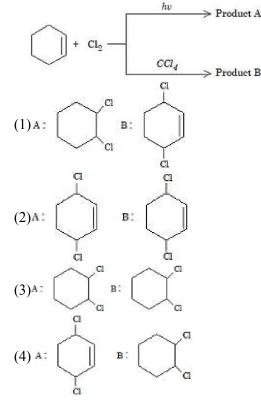
Ans. (3)

Sol. $\operatorname{Fe}^{2+} \xrightarrow{\operatorname{H}^{+}} \operatorname{Fe}^{+3} \xrightarrow{}$

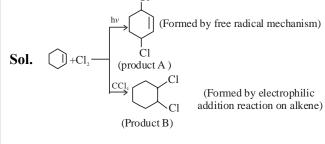
 $Fe^{+3} \xrightarrow{-SCN} Fe(SCN)_3$ (blood red colour)

Appearance of blood red colour indicates presence of both nitrogen and sulphur.

70. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R : Assertion A : Aryl halides cannot be prepared by replacement of hydroxyl group of phenol by halogen atom.

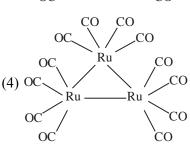

Reason R : Phenols react with halogen acids violently. In the light of the above statements, choose the most appropriate from the options given below:

- (1) Both A and R are true but R is NOT the correct explanation of A
- (2) A is false but R is true
- (3) A is true but R is false
- (4) Both A and R are true and R is the correct explanation of A
- Ans. (3)
- **Sol.** Assertion (A): Given statement is correct because in phenol hydroxyl group cannot be replaced by halogen atom.


Reason (R) :
$$OH$$

Given reason is false

Hence Assertion (A) is correct but Reason (R) is false 71. Identify product A and product B :



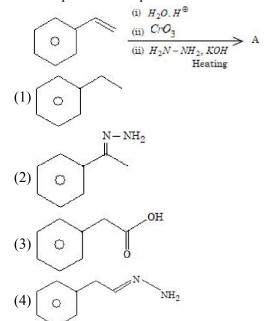
- Hence correct Ans. (4)
- 72. Identify the incorrect pair from the following :
 - (1) Fluorspar-BF₃
 - (2) Cryolite-Na₃AlF₆
 - (3) Fluoroapatite-3Ca₃(PO₄)₂.CaF₂
 - (4) Carnallite-KCl.MgCl₂.6H₂O

Ans. (1)

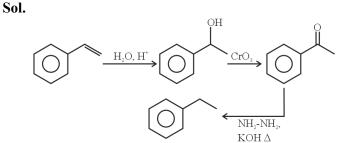
- **Sol.** (1) Fluorspar is CaF_2
- **73.** The interaction between π bond and lone pair of electrons present on an adjacent atom is responsible for
 - (1) Hyperconjugation
 - (2) Inductive effect
 - (3) Electromeric effect
 - (4) Resonance effect
- Ans. (4)
- Sol. It is a type of conjugation responsible for resonance.
- 74. KMnO₄ decomposes on heating at 513K to form O_2 along with
 - (1) $MnO_2 \& K_2O_2$
 - (2) K_2 MnO₄ & Mn
 - (3) Mn & KO₂
 - (4) K_2MnO_4 & MnO_2
- Ans. (4)
- Sol. $KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$

In which one of the following metal carbonyls, CO 75. forms a bridge between metal atoms? $(1) [Co_2(CO)_8]$ $(2) [Mn_2(CO)_{10}]$ $(3) [Os_3(CO)_{12}]$ (4) $[Ru_3(CO)_{12}]$ Ans. (1) \mathbf{O} CO **Sol.** (1) OC CO CO 00 CO OC (2)OC-Mn - CO Mn CO 00 со OC .CO CO .CO (3) OC CO CO

76. Type of amino acids obtained by hydrolysis of proteins is :


(1)β	$(2)\alpha$
(3)δ	(4)γ

Ans. (2)


Sol. Proteins are natural polymers composed of α -amino acids which are connected by peptide linkages.

Hence proteins upon acidic hydrolysis produce α -amino acids.

77. The final product A formed in the following multistep reaction sequence is

Ans. (1)

- **78.** Which of the following is **not** correct? (1) ΔG is negative for a spontaneous reaction
 - (2) ΔG is positive for a spontaneous reaction
 - (3) ΔG is zero for a reversible reaction
 - (4) ΔG is positive for a non-spontaneous reaction
- Ans. (2)

Sol. $(\Delta G)_{P,T} = (+)$ ve for non-spontaneous process

79. Chlorine undergoes disproportionation in alkaline medium as shown below :
a Cl₂(g) + b OH⁻(aq) → c ClO⁻(aq) + d Cl⁻(aq) + e H₂O(*l*)
The values of a, b, c and d in a balanced redox reaction are respectively :
(1) 1, 2, 1 and 1
(2) 2, 2, 1 and 3
(3) 3, 4, 4 and 2
(4) 2, 4, 1 and 3

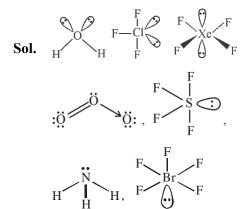
Sol.

$$\overset{+e^{-}}{\xrightarrow{}} \overset{-1}{\xrightarrow{}} \overset{+1}{\xrightarrow{}} \overset{+1}{\xrightarrow{}} \overset{-1}{\xrightarrow{}} \overset{+1}{\xrightarrow{}} \overset{-1}{\xrightarrow{}} \overset{+1}{\xrightarrow{}} \overset{-1}{\xrightarrow{}} \overset{-1}{\xrightarrow{}} \overset{+1}{\xrightarrow{}} \overset{-1}{\xrightarrow{}} \overset{-1$$

80. In alkaline medium. MnO_4^- oxidises I⁻ to

(1) IO_4^- (2) IO^-

(3)
$$I_2$$
 (4) IO_3^-


Ans. (4)

Sol. $2MnO_4^- + H_2O + I^- \xrightarrow{alkaline medium} 2MnO_2 + 2OH^- + IO_3^-$

SECTION-B

Number of compounds with one lone pair of electrons on central atom amongst following is _

Ans. (4)

82. The mass of zinc produced by the electrolysis of zinc sulphate solution with a steady current of 0.015 A for 15 minutes is 10^{-4} g.

(Atomic mass of zinc = 65.4 amu)

Sol.
$$Zn^{+2} + 2e^{-} \longrightarrow Zn$$

 $W = Z \times i \times t$
 $= \frac{65.4}{2 \times 96500} \times 0.015 \times 15 \times 60$
 $= 45 \cdot 75 \times 10^{-4} \text{ gm}$

83. For a reaction taking place in three steps at same temperature, overall rate constant $K = \frac{K_1 K_2}{K_3}$. If Ea₁, Ea₂ and Ea₃ are 40, 50 and 60 kJ/mol respectively, the overall Ea is ____kJ/mol.

Ans. (30)

Sol.
$$K = \frac{K_1 \cdot K_2}{K_3} = \frac{A_1 \cdot A_2}{A_3} \cdot e^{-\frac{(E_{a_1} + E_{a_2} - E_{a_3})}{RT}}$$

 $A \cdot e^{-E_a/RT} = \frac{A_1 A_2}{A_3} \cdot e^{-\frac{(E_{a_1} + E_{a_2} - E_{a_3})}{RT}}$

 $E_a = E_{a_1} + E_{a_2} - E_{a_3} = 40 + 50 - 60 = 30 \text{ kJ} / \text{mole.}$

84. For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, $K_p = 0.492$ atm at 300K. K_c for the reaction at same temperature is $\times 10^{-2}$. (Given : R = 0.082 L atm mol⁻¹ K⁻¹)

Ans. (2)

Sol.
$$K_P = K_C \cdot (RT)^{\Delta n_g}$$

 $\Delta n_g = 1$
 $\Rightarrow K_c = \frac{K_P}{RT} = \frac{0.492}{0.082 \times 300} = 2 \times 10^{-2}$

85. A solution of H_2SO_4 is 31.4% H_2SO_4 by mass and has a density of 1.25g/mL.The molarity of the H_2SO_4 solution is _____M (nearest integer) [Given molar mass of $H_2SO_4 = 98g \text{ mol}^{-1}$]

Sol.
$$M = \frac{n_{solute}}{V} \times 1000$$
$$= \frac{\left(\frac{31.4}{98}\right)}{\left(\frac{100}{1.25}\right)} \times 1000$$
$$= 4.005 \approx 4$$

86. The osmotic pressure of a dilute solution is 7×10^5 Pa at 273K. Osmotic pressure of the same solution at 283K is $\times 10^4$ Nm⁻².

Ans. (72.56) or (73)
Sol.
$$\pi = CRT$$

 $\Rightarrow \frac{\pi_1}{\pi_2} = \frac{T_1}{T_2}$
 $\Rightarrow \pi_2 = \frac{\pi_1 T_2}{T_1} = \frac{7 \times 10^5 \times 283}{273}$
 $= 72.56 \times 10^4 \text{ Nm}^{-2}$

87. Number of compounds among the following which contain sulphur as heteroatom is____.

Furan, Thiophene, Pyridine, Pyrrole, Cysteine, Tyrosine

Ans. (2)

Sol. (Sol. SH Shipphene H₂N OH Cysteine

88. The number of species from the following which are paramagnetic and with bond order equal to one is_____.

$$H_2, He_2^+, O_2^+, N_2^{2-}, O_2^{2-}, F_2, Ne_2^+, B_2$$

Ans. (1)

Sol.	Magnet	Bond order	
	H_2	Diamagnetic	1
	He_2^+	Paramagnetic	0.5
	O_2^+	Paramagnetic	2.5
	N_{2}^{2-}	Paramagnetic	2
	O_2^{2-}	Diamagnetic	1
	F_2	Diamagnetic	1
	Ne_2^+	Paramagnetic	0.5
	B_2	Paramagnetic	1

89. From the compounds given below, number of compounds which give positive Fehling's test is _____.
Benzaldehyde, Acetaldehyde, Acetone, Acetophenone, Methanal, 4-nitrobenzaldehyde,

Acetophenone, Methanal, 4-nitrobenzaldehyde, cyclohexane carbaldehyde.

Ans. (3)

Sol. Acetaldehyde (CH_3CHO) , Methanal(HCHO), and

cyclohexane carbaldehyde

90.
$$\underset{H}{\overset{CH_3}{\longrightarrow}} C = C \underset{CH_1}{\overset{(i)}{\longleftarrow}} \underset{(ii) Zn/H_2O}{\overset{(ii)}{\longleftarrow}} (P)$$

Consider the given reaction. The total number of oxygen atoms present per molecule of the product (P) is____.

Ans. (1)

Sol.
$$\overset{CH_3}{\underset{H}{\longrightarrow}} C = C \overset{H}{\underset{CH_1}{\longleftarrow}} \overset{(i) O_3}{\underset{(ii) Zn/H_2O}{\longrightarrow}} 2 \overset{CH_3}{\underset{H}{\longrightarrow}} C = O$$

Hence total number of oxygen atom present per

molecule
$$H$$
 C=O is 1.