MATHEMATICS

SECTION-A

61. The statement $\mathrm{B} \Rightarrow((\sim \mathrm{A}) \vee \mathrm{B})$ is equivalent to :
(1) $\mathrm{B} \Rightarrow(\mathrm{A} \Rightarrow \mathrm{B})$
(2) $\mathrm{A} \Rightarrow(\mathrm{A} \Leftrightarrow \mathrm{B})$
(3) $\mathrm{A} \Rightarrow((\sim \mathrm{A}) \Rightarrow \mathrm{B})$
(4) $B \Rightarrow((\sim A) \Rightarrow B)$

Official Ans. by NTA (2)
Allen Ans. (1 or 3 or 4)
Sol.

A	B	$\sim \mathrm{A}$	$\sim \mathrm{A} \vee \mathrm{B}$	$\mathrm{B} \Rightarrow((\sim \mathrm{A}) \vee \mathrm{B})$
T	T	F	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

$\mathrm{A} \Rightarrow \mathrm{B}$	$\sim \mathrm{A} \Rightarrow \mathrm{B}$	$\mathrm{B} \Rightarrow$ $(\mathrm{A} \Rightarrow \mathrm{B})$	$\mathrm{A} \Rightarrow$ $((\sim \mathrm{A}) \Rightarrow \mathrm{B})$	$\mathrm{B} \Rightarrow$ $((\sim \mathrm{A}) \Rightarrow \mathrm{B})$
T	T	T	T	T
F	T	T	T	T
T	T	T	T	T
T	F	T	T	T

62. Shortest distance between the lines $\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5}$ and $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}$ is
(1) $2 \sqrt{3}$
(2) $4 \sqrt{3}$
(3) $3 \sqrt{3}$
(4) $5 \sqrt{3}$

Official Ans. by NTA (2)
Allen Ans. (2)

TEST PAPER WITH SOLUTION
Sol. $\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5} \quad \vec{a}=\hat{i}-8 \hat{j}+4 \hat{k}$
$\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3} \quad \vec{b}=\hat{i}+2 \hat{j}+6 \hat{k}$
$\overrightarrow{\mathrm{p}}=2 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}, \overrightarrow{\mathrm{q}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & -7 & 5 \\ 2 & 1 & -3\end{array}\right|$
$=\hat{i}(16)-\hat{\mathrm{j}}(-16)+\hat{\mathrm{k}}(16)$
$=16(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
$d=\left|\frac{(a-b) \cdot(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|}\right|=\left|\frac{(-10 \hat{j}-2 \hat{k}) \cdot 16(\hat{i}+\hat{j}+\hat{k})}{16 \sqrt{3}}\right|$
$=\left|\frac{-12}{\sqrt{3}}\right|=4 \sqrt{3}$
63. If $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=7 \hat{\mathrm{i}}-3 \hat{\mathrm{k}}+4 \hat{\mathrm{k}}$, $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{0}$ and $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=0$ then $\overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{c}}$ is equal to:
(1) 34
(2) 12
(3) 36
(4) 30

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}}=0$
$\Rightarrow(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}) \times \overrightarrow{\mathrm{b}}=0$
$\Rightarrow \overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}=\lambda \overrightarrow{\mathrm{b}}$
$\Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{c}}+\lambda \overrightarrow{\mathrm{b}}$
And given that $\vec{r} \cdot \vec{a}=0$
$\Rightarrow(\vec{c}+\lambda \vec{b}) \cdot \vec{a}=0$
$\Rightarrow \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}=0$
$\Rightarrow \lambda=\frac{-\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}}{\dot{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}}$
Now $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{c}}=(\overrightarrow{\mathrm{c}}+\lambda \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{c}}$

$$
\begin{aligned}
& =\left(\overrightarrow{\mathrm{c}}-\frac{\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}}{\overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{a}}}\right) \cdot \overrightarrow{\mathrm{c}} \\
& =|\overrightarrow{\mathrm{c}}|-\left(\frac{\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}}{\overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{a}}}\right)(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \\
& =74-\left[\frac{15}{3}\right] 8 \\
& =74-40=34
\end{aligned}
$$

64. Let $S=\left\{w_{1}, w_{2}, \ldots.\right\}$ be the sample space associated to a random experiment. Let $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}}\right)=\frac{\mathrm{P}\left(\mathrm{w}_{\mathrm{n}-1}\right)}{2}, n \geq 2$. Let $\mathrm{A}=\{2 \mathrm{k}+3 \ell ; \mathrm{k}, \ell \in \mathbb{N}\}$ and $\mathrm{B}=\left\{\mathrm{w}_{\mathrm{n}} ; \mathrm{n} \in \mathrm{A}\right\}$. Then $P(B)$ is equal to
(1) $\frac{3}{32}$
(2) $\frac{3}{64}$
(3) $\frac{1}{16}$
(4) $\frac{1}{32}$

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. Let $\mathrm{P}\left(\mathrm{w}_{1}\right)=\lambda$ then $\mathrm{P}\left(\mathrm{w}_{2}\right)=\frac{\lambda}{2} \ldots \mathrm{P}\left(\mathrm{w}_{\mathrm{n}}\right)=\frac{\lambda}{2^{\mathrm{n}-1}}$
As $\sum_{\mathrm{k}=1}^{\infty} \mathrm{P}\left(\mathrm{w}_{\mathrm{k}}\right)=1 \Rightarrow \frac{\lambda}{1-\frac{1}{2}}=1 \Rightarrow \lambda=\frac{1}{2}$
So, $P\left(w_{n}\right)=\frac{1}{2^{n}}$
$\mathrm{A}=\{2 \mathrm{k}+3 \ell ; \mathrm{k}, \ell \in \mathbb{N}\}=\{5,7,8,9,10 \ldots .$.
$B=\left\{w_{n}: n \in A\right\}$
$B=\left\{\mathrm{w}_{5}, \mathrm{w}_{7}, \mathrm{w}_{8}, \mathrm{w}_{9}, \mathrm{w}_{10}, \mathrm{w}_{11}, \ldots.\right\}$
$\mathrm{A}=\mathrm{N}-\{1,2,3,4,6\}$
$\therefore \mathrm{P}(\mathrm{B})=1-\left[\mathrm{P}\left(\mathrm{w}_{1}\right)+\mathrm{P}\left(\mathrm{w}_{2}\right)+\mathrm{P}\left(\mathrm{w}_{3}\right)+\mathrm{P}\left(\mathrm{w}_{4}\right)+\mathrm{P}\left(\mathrm{w}_{6}\right)\right]$
$=1-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{64}\right]$
$=1-\frac{32+16+8+4+1}{64}=\frac{3}{64}$
65. The value of the integral $\int_{1}^{2}\left(\frac{t^{4}+1}{t^{6}+1}\right) d t$ is :
(1) $\tan ^{-1} \frac{1}{2}+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}$
(2) $\tan ^{-1} 2-\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}$
(3) $\tan ^{-1} 2+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}$
(4) $\tan ^{-1} \frac{1}{2}-\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}$

Official Ans. by NTA (3)
Allen Ans. (3)

Sol. $I=\int_{1}^{2}\left(\frac{t^{4}+1}{t^{6}+1}\right) d t$
$=\int_{1}^{2} \frac{\left(t^{4}+1-t^{2}\right)+t^{2}}{\left(t^{2}+1\right)\left(t^{4}-t^{2}+1\right)} d t$
$=\int_{1}^{2}\left(\frac{1}{t^{2}+1}+\frac{t^{2}}{t^{6}+1}\right) d t$
$=\int_{1}^{2}\left(\frac{1}{t^{2}+1}+\frac{1}{3} \frac{3 t^{2}}{\left(t^{3}\right)^{2}+1}\right) d t$
$=\tan ^{-1}(\mathrm{t})+\left.\frac{1}{3} \tan ^{-1}\left(\mathrm{t}^{3}\right)\right|_{1} ^{2}$
$=\left(\tan ^{-1}(2)-\tan ^{-1}(1)\right)+\frac{1}{3}\left(\tan ^{-1}\left(2^{3}\right)-\tan ^{-1}\left(1^{3}\right)\right)$
$=\tan ^{-1}(2)+\frac{1}{3} \tan ^{-1}(8)-\frac{\pi}{3}$
66. Let K be the sum of the coefficients of the odd powers of x in the expansion of $(1+\mathrm{x})^{99}$. Let a be the middle term in the expansion of $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$. If $\frac{{ }^{200} \mathrm{C}_{99} \mathrm{~K}}{\mathrm{a}}=\frac{2^{\ell} \mathrm{m}}{\mathrm{n}}$, where m and n are odd numbers, then the ordered pair (\square, n) is equal to :
(1) $(50,51)$
(2) $(51,99)$
(3) $(50,101)$
(4) $(51,101)$

Official Ans. by NTA (3)
Allen Ans. (3)

Sol. In the expansion of

$$
\begin{aligned}
& (1+\mathrm{x})^{99}=\mathrm{C}_{0}+\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \mathrm{x}^{2}+\ldots .+\mathrm{C}_{99} \mathrm{x}^{99} \\
& \mathrm{~K}=\mathrm{C}_{1}+\mathrm{C}_{3}+\ldots .+\mathrm{C}_{99}=2^{98}
\end{aligned}
$$

$$
\mathrm{a} \Rightarrow \text { Middle in the expansion of }\left(2+\frac{1}{\sqrt{2}}\right)^{200}
$$

$$
\begin{aligned}
\mathrm{T}_{\frac{200}{2}+1} & ={ }^{200} \mathrm{C}_{100}(2)^{100}\left(\frac{1}{\sqrt{2}}\right)^{100} \\
& ={ }^{200} \mathrm{C}_{100} \cdot 2^{50}
\end{aligned}
$$

So, $\frac{{ }^{200} \mathrm{C}_{99} \times 2^{98}}{{ }^{200} \mathrm{C}_{100} \times 2^{50}}=\frac{100}{101} \times 2^{48}$
So, $\frac{25}{101} \times 2^{50}=\frac{\mathrm{m}}{\mathrm{n}} 2^{e}$
$\therefore \mathrm{m}, \mathrm{n}$ are odd so
(\square, n) become $(50,101)$ Ans.
67. Let f and g be twice differentiable functions on R such that
$\mathrm{f}^{\prime \prime}(\mathrm{x})=\mathrm{g}^{\prime \prime}(\mathrm{x})+6 \mathrm{x}$
$\mathrm{f}^{\prime}(1)=4 \mathrm{~g}^{\prime}(1)-3=9$
$\mathrm{f}(2)=3 \mathrm{~g}(2)=12$
Then which of the following is NOT true?
(1) $g(-2)-f(-2)=20$
(2) If $-1<\mathrm{x}<2$, then $|\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})|<8$
(3) $\left|\mathrm{f}^{\prime}(\mathrm{x})-\mathrm{g}^{\prime}(\mathrm{x})\right|<6 \Rightarrow-1<\mathrm{x}<1 \mid$
(4) There exists $x_{0} \in\left(1, \frac{3}{2}\right)$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\quad f^{\prime \prime}(x)=g^{\prime \prime}(x)+6 x$

$$
\begin{align*}
& \mathrm{f}^{\prime}(1)=4 \mathrm{~g}^{\prime}(1)-3=9 \tag{2}\\
& \mathrm{f}(2)=3 \mathrm{~g}(2)=12
\end{align*}
$$

By integrating (1)

$$
f^{\prime}(x)=g^{\prime}(x)+6 \frac{x^{2}}{2}+C
$$

At $\mathrm{x}=1$,

$$
\mathrm{f}^{\prime}(1)=\mathrm{g}^{\prime}(1)+3+\mathrm{C}
$$

$\Rightarrow 9=4+3+C \Rightarrow C=3$
$\therefore \quad \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})+3 \mathrm{x}^{2}+3$
Again by integrating,
$f(x)=g(x)+\frac{3 x^{3}}{3}+3 x+D$
At $x=2$,
$f(2)=g(2)+8+3(2)+D$
$\Rightarrow 12=4+8+6+\mathrm{D} \Rightarrow \mathrm{D}=-6$
So, $f(x)=g(x)+x^{3}+3 x-6$
$\Rightarrow \mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}-6$
At $x=-2$,
$\Rightarrow \mathrm{g}(-2)-\mathrm{f}(-2)=20 \quad$ (Option (1) is true)
Now, for $-1<\mathrm{x}, 2$
$h(x)=f(x)-g(x)=x^{3}+3 x-6$
$\Rightarrow \mathrm{h}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+3$
$\Rightarrow \mathrm{h}(\mathrm{x})^{\uparrow}$
So, $\mathrm{h}(-1)<\mathrm{h}(\mathrm{x})<\mathrm{h}(2)$
$\Rightarrow-10<\mathrm{h}(\mathrm{x})<8$
$\Rightarrow|\mathrm{h}(\mathrm{x})|<10 \quad$ (option (2) is NOT true)
Now, $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=3 x^{2}+3$
If $\left|h^{\prime}(x)\right|<6 \Rightarrow\left|3 x^{2}+3\right|<6$
$\Rightarrow 3 \mathrm{x}^{2}+3<6$
$\Rightarrow \mathrm{x}^{2}<1$
$\Rightarrow-1<\mathrm{x}<1 \quad$ (option (3) is True)
If $\mathrm{x} \in(-1,1)\left|\mathrm{f}^{\prime}(\mathrm{x})-\mathrm{g}^{\prime}(\mathrm{x})\right|<6$
option (3) is true and now to solve
$\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}^{3}+3 \mathrm{x}-6=0$
$h(x)=x^{3}+3 x-6$
here, $\mathrm{h}(1)=-$ ve and $\mathrm{h}\left(\frac{3}{2}\right)=+$ ve
So there exists $\mathrm{x}_{0} \in\left(1, \frac{3}{2}\right)$ such that $\mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{g}\left(\mathrm{x}_{0}\right)$
(option (4) is true)
68. The set of all values of $t \in \mathbb{R}$, for which the matrix $\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-t} \sin t\end{array}\right]$
invertible, is
(1) $\left\{(2 \mathrm{k}+1) \frac{\pi}{2}, \mathrm{k} \in \mathbb{Z}\right\}$
(2) $\left\{\mathrm{k} \pi+\frac{\pi}{4}, \mathrm{k} \in \mathbb{Z}\right\}$
(3) $\{\mathrm{k} \pi, \mathrm{k} \in \mathbb{Z}\}$
(4) \mathbb{R}

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. If its invertible, then determinant value $\neq 0$
So ,
$\left|\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-t} \sin t\end{array}\right| \neq 0$
$\Rightarrow e^{t} \cdot e^{-t} \cdot e^{-t}\left|\begin{array}{ccc}1 & \sin t-2 \cos t & -2 \sin t-\cos t \\ 1 & 2 \sin t+\cos t & \sin t-2 \cos t \\ 1 & \cos t & \sin t\end{array}\right| \neq 0$
Applying, $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$ then $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$
We get
$\mathrm{e}^{-t}\left|\begin{array}{ccc}0 & -\sin t-\cos t & -3 \sin t+\cos t \\ 0 & 2 \sin t & -2 \cos t \\ 1 & \cos t & \sin t\end{array}\right| \neq 0$
By expanding we have,
$e^{-t} \times 1\left(2 \sin t \cos t+6 \cos ^{2} t+6 \sin ^{2} t-2 \sin t \cos t\right) \neq 0$
$\Rightarrow \mathrm{e}^{-\mathrm{t}} \times 6 \neq 0$
for $\forall \mathrm{t} \in \mathbb{R}$
69. The area of the region
$A=\left\{(x, y):|\cos x-\sin x| \leq y \leq \sin x, 0 \leq x \leq \frac{\pi}{2}\right\}$
(1) $1-\frac{3}{\sqrt{2}}+\frac{4}{\sqrt{5}}$
(2) $\sqrt{5}+2 \sqrt{2}-4.5$
(3) $\frac{3}{\sqrt{5}}-\frac{3}{\sqrt{2}}+1$
(4) $\sqrt{5}-2 \sqrt{2}+1$

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. $|\cos x-\sin x| \leq y \leq \sin x$
Intersection point of $\cos x-\sin x=\sin x$
$\Rightarrow \quad \tan \mathrm{x}=\frac{1}{2}$
Let $\psi=\tan ^{-1} \frac{1}{2}$
So, $\tan \psi=\frac{1}{2}, \sin \psi=\frac{1}{\sqrt{5}}, \cos \psi=\frac{2}{\sqrt{5}}$

$$
\begin{aligned}
& \text { Area }=\int_{\psi}^{\pi / 2}(\sin x-|\cos x-\sin x|) d x \\
& =\int_{\psi}^{\pi / 4}(\sin x-(\cos x-\sin x)) d x \\
& +\int_{\pi / 4}^{\pi / 2}(\sin x-(\sin x-\cos x)) d x \\
& =\int_{\psi}^{\pi / 4}(2 \sin x-\cos x) d x+\int_{\pi / 4}^{\pi / 2} \cos x d x \\
& =[-2 \cos x-\sin x]_{\psi}^{\pi / 4}+[\sin x]_{\pi / 4}^{\pi / 2} \\
& =-\sqrt{2}-\frac{1}{\sqrt{2}}+2 \cos \psi+\sin \psi+\left(1-\frac{1}{\sqrt{2}}\right) \\
& =-\sqrt{2}-\frac{1}{\sqrt{2}}+2\left(\frac{2}{\sqrt{5}}\right)+\left(\frac{1}{\sqrt{5}}\right)+1-\frac{1}{\sqrt{2}} \\
& =\sqrt{5}-2 \sqrt{2}+1
\end{aligned}
$$

70. The set of all values of λ for which the equation $\cos ^{2} 2 x-2 \sin ^{4} x-2 \cos ^{2} x=\lambda$
(1) $[-2,-1]$
(2) $\left[-2,-\frac{3}{2}\right]$
(3) $\left[-1,-\frac{1}{2}\right]$
(4) $\left[-\frac{3}{2},-1\right]$

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. $\quad \lambda=\cos ^{2} 2 x-2 \sin ^{4} x-2 \cos ^{2} x$
convert all in to $\cos x$.

$$
\begin{aligned}
\lambda= & \left(2 \cos ^{2} x-1\right)^{2}-2\left(1-\cos ^{2} x\right)^{2}-2 \cos ^{2} x \\
= & 4 \cos ^{4} x-4 \cos ^{2} x+1-2\left(1-2 \cos ^{2} x+\cos ^{4} x\right)- \\
& 2 \cos ^{2} x \\
= & 2 \cos ^{4} x-2 \cos ^{2} x+1-2 \\
= & 2 \cos ^{4} x-2 \cos ^{2} x-1 \\
= & 2\left[\cos ^{4} x-\cos ^{2} x-\frac{1}{2}\right] \\
= & 2\left[\left(\cos ^{2} x-\frac{1}{2}\right)^{2}-\frac{3}{4}\right]
\end{aligned}
$$

$$
\lambda_{\max }=2\left[\frac{1}{4}-\frac{3}{4}\right]=2 \times\left(-\frac{2}{4}\right)=-1(\max \text { Value })
$$

$$
\lambda_{\min }=2\left[0-\frac{3}{4}\right]=-\frac{3}{2}(\text { MinimumValue })
$$

So, Range $=\left[-\frac{3}{2},-1\right]$
71. The letters of the word OUGHT are written in all possible ways and these words are arranged as in a dictionary, in a series. Then the serial number of the word TOUGH is :
(1) 89
(2) 84
(3) 86
(4) 79

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Lets arrange the letters of OUGHT in alphabetical order.

$$
\mathrm{G}, \mathrm{H}, \mathrm{O}, \mathrm{~T}, \mathrm{U}
$$

Words starting with
$\mathrm{G}---\rightarrow 4$!
$\mathrm{H}----\rightarrow 4$!
$\mathrm{O}----\rightarrow 4$!
T G $---\rightarrow 3$!
T H $---\rightarrow 3$!
T O G $--\rightarrow 2$!
T O H $--\rightarrow 2$!
T O U G H $\rightarrow 1$!

Total $=89$
72. The plane $2 x-y+z=4$ intersects the line segment joining the points $A(a,-2,4)$ and $\mathrm{B}(2, \mathrm{~b},-3)$ at the point C in the ratio $2: 1$ and the distance of the point C from the origin is $\sqrt{5}$. If $\mathrm{ab}<0$ and P is the point $(\mathrm{a}-\mathrm{b}, \mathrm{b}, 2 \mathrm{~b}-\mathrm{a})$ then CP^{2} is equal to :
(1) $\frac{17}{3}$
(2) $\frac{16}{3}$
(3) $\frac{73}{3}$
(4) $\frac{97}{3}$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\mathrm{A}(\mathrm{a},-2,4), \mathrm{B}(2, \mathrm{~b},-3)$
$\mathrm{AC}: \mathrm{CB}=2: 1$
$\Rightarrow \mathrm{C} \equiv\left(\frac{\mathrm{a}+4}{3}, \frac{2 \mathrm{~b}-2}{3}, \frac{-2}{3}\right)$
C lies on $2 x-y+2=4$
$\Rightarrow \frac{2 a+8}{3}-\frac{2 b-2}{3}-\frac{2}{3}=4$
$\Rightarrow \mathrm{a}-\mathrm{b}=2 .$.
Also $\mathrm{OC}=\sqrt{5}$
$\Rightarrow\left(\frac{a+4}{3}\right)^{2}+\left(\frac{2 b-2}{3}\right)^{2}+\frac{4}{9}=5$
Solving, (1) and (2)

$$
\begin{aligned}
& (b+6)^{2}+(2 b-2)^{2}=41 \\
\Rightarrow & 5 b^{2}+4 b-1=0 \\
\Rightarrow & b=-1 \text { or } \frac{1}{5} \\
\Rightarrow & a=1 \text { or } \frac{11}{5}
\end{aligned}
$$

But $\mathrm{ab}<0 \Rightarrow(\mathrm{a}, \mathrm{b})=(1,-1)$
$\mathrm{C} \equiv\left(\frac{5}{3}, \frac{-4}{3}, \frac{-2}{3}\right), \mathrm{P} \equiv(2,-1,-3)$
$\mathrm{CP}^{2}=\frac{1}{9}+\frac{1}{9}+\frac{49}{9}=\frac{51}{9}=\frac{17}{3}$
73. Let $\vec{a}=4 \hat{i}+3 \hat{j}$ and $\vec{b}=3 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\overrightarrow{\mathrm{c}}$ is a vector such that $\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+25=0, \overrightarrow{\mathrm{c}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=4$ and projection of \vec{c} on \vec{a} is 1 , then the projection of \vec{c} on \vec{b} equals:
(1) $\frac{5}{\sqrt{2}}$
(2) $\frac{1}{5}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\frac{3}{\sqrt{2}}$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\quad \vec{a} \times \vec{b}=15 \hat{i}-20 \hat{j}-25 \hat{k}$
Let $\quad \vec{c}=x \hat{i}+y \hat{j}+z \hat{k}$

$$
\begin{array}{ll}
\Rightarrow & 15 x-20 y-25 z+25=0 \\
\Rightarrow & 3 x-4 y-5 z=-5
\end{array}
$$

Also $\mathrm{x}+\mathrm{y}+\mathrm{z}=4$

$$
\begin{aligned}
& \text { and } \frac{\overrightarrow{\mathrm{c} \cdot \overrightarrow{\mathrm{a}}}}{|\overrightarrow{\mathrm{a}}|}=1 \Rightarrow 4 \mathrm{x}+3 \mathrm{y}=5 \\
& \quad \Rightarrow \quad \overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}
\end{aligned}
$$

Projection of \vec{c} or $\vec{b}=\frac{25}{5 \sqrt{2}}=\frac{5}{\sqrt{2}}$
74. If the lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z+3}{1}$ and $\frac{x-a}{2}=\frac{y+2}{3}=\frac{z-3}{1}$ intersects at the point P, then the distance of the point P from the plane $\mathrm{z}=\mathrm{a}$ is :
(1)16
(2) 28
(3) 10
(4) 22

Official Ans. by NTA (2)
Allen Ans. (2)

Sol. Point on $\mathrm{L}_{1} \equiv(\lambda+1,2 \lambda+2, \lambda-3)$
Point on $L_{2} \equiv(2 \mu+\mathrm{a}, 3 \mu-2, \mu+3)$

$$
\begin{array}{ll}
\lambda-3=\mu+3 & \Rightarrow \lambda=\mu+6 \\
2 \lambda+2=3 \mu-2 & \Rightarrow 2 \lambda=3 \mu-4 \tag{2}
\end{array}
$$

Solving, (1) and (2)

$$
\begin{array}{ll}
\Rightarrow & \lambda=22 \& \mu=16 \\
\Rightarrow & \mathrm{P} \equiv(23,46,19) \\
\Rightarrow & \mathrm{a}=-9
\end{array}
$$

Distance of P from $z=-9$ is 28
75. The value of the integral $\int_{1 / 2}^{2} \frac{\tan ^{-1} x}{x} d x$ is equal to
(1) $\pi \log _{e} 2$
(2) $\frac{1}{2} \log _{e} 2$
(3) $\frac{\pi}{4} \log _{\mathrm{e}} 2$
(4) $\frac{\pi}{2} \log _{\mathrm{e}} 2$

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\quad I=\int_{1 / 2}^{2} \frac{\tan ^{-1} x}{x} d x$
Put $\mathrm{x}=\frac{1}{\mathrm{t}} \quad \mathrm{dx}=-\frac{1}{\mathrm{t}^{2}} \mathrm{dt}$

$$
\begin{align*}
& I=-\int_{2}^{1 / 2} \frac{\tan ^{-1} \frac{1}{\mathrm{t}}}{\frac{1}{\mathrm{t}}} \cdot \frac{1}{\mathrm{t}^{2}} \mathrm{dt}=-\int_{2}^{1 / 2} \frac{\tan ^{-1} \frac{1}{\mathrm{t}}}{\mathrm{t}} \mathrm{dt} \\
& \mathrm{I}=\int_{1 / 2}^{2} \frac{\cot ^{-1} \mathrm{t}}{\mathrm{t}} \mathrm{dt}=\int_{1 / 2}^{2} \frac{\cot ^{-1} \mathrm{x}}{\mathrm{x}} \mathrm{dx} \ldots \ldots . \tag{ii}
\end{align*}
$$

Add both equation
$2 \mathrm{I}=\int_{1 / 2}^{2} \frac{\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}}{\mathrm{x}} \mathrm{dx}=\frac{\pi}{2} \int_{1 / 2}^{2} \frac{\mathrm{dx}}{\mathrm{x}}=\frac{\pi}{2}(\ln 2)_{1 / 2}^{2}$
$=\frac{\pi}{2}\left(\ln 2-\ln \frac{1}{2}\right)=\pi \ln 2$
$\mathrm{I}=\frac{\pi}{2} \ln 2$
76. If the tangent at a point P on the parabola $y^{2}=3 x$ is parallel to the line $x+2 y=1$ and the tangents at the points Q and R on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ are perpendicular to the line $x-y=2$, then the area of the triangle PQR is:
(1) $\frac{9}{\sqrt{5}}$
(2) $5 \sqrt{3}$
(3) $\frac{3}{2} \sqrt{5}$
(4) $3 \sqrt{5}$

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. $y^{2}=3 \mathrm{x}$
Tangent $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is parallel to $\mathrm{x}+2 \mathrm{y}=1$
Then slope at $\mathrm{P}=-\frac{1}{2}$
$2 y \frac{d y}{d x}=3$
$\Rightarrow \frac{d y}{d x}=\frac{3}{2 y}=-\frac{1}{2}$
$\Rightarrow y_{1}=-3$
Coordinates of $\mathrm{P}(3,-3)$
Similarly $Q\left(\frac{4}{\sqrt{3}}, \frac{1}{\sqrt{5}}\right), R\left(-\frac{4}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$
Area of $\triangle P Q R$

$$
\begin{aligned}
& =\frac{1}{2}\left|\begin{array}{ccc}
3 & -3 & 1 \\
\frac{4}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 1 \\
-\frac{4}{\sqrt{5}} & -\frac{1}{\sqrt{5}} & 1
\end{array}\right| \\
& =\frac{1}{2}\left[3\left(\frac{2}{\sqrt{5}}\right)+3\left(\frac{8}{\sqrt{5}}\right)+0\right]=\frac{30}{2 \sqrt{5}}=3 \sqrt{5}
\end{aligned}
$$

77. Let $y=y(x)$ be the solution of the differential equation $\quad x \log _{e} x \frac{d y}{d x}+y=x^{2} \log _{e} x,(x>1)$. If $y(2)=2$, then $y(e)$ is equal to
(1) $\frac{4+e^{2}}{4}$
(2) $\frac{1+\mathrm{e}^{2}}{4}$
(3) $\frac{2+\mathrm{e}^{2}}{2}$
(4) $\frac{1+\mathrm{e}^{2}}{2}$

Official Ans. by NTA (1)
Allen Ans. (1)

Sol. $x \log _{e} x \frac{d y}{d x}+y=x^{2} \log _{e} x,(x>1)$.
$\Rightarrow \frac{d y}{d x}+\frac{y}{x \ln x}=x$
Linear differential equation

$$
\text { I.F. }=\mathrm{e}^{\int \frac{1}{\mathrm{x} \ln \mathrm{x}} \mathrm{dx}}=|\ln \mathrm{x}|
$$

\therefore Solution of differential equation

$$
\begin{aligned}
y|\ln x|= & \int x|\ln x| d x \\
& =|\ln x| \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x \\
\Rightarrow y|\ln x|= & |\ln x|\left(\frac{x^{2}}{2}\right)-\frac{x^{2}}{4}+c
\end{aligned}
$$

For constant

$$
y(2)=2 \Rightarrow c=1
$$

So, $y(x)=\frac{x^{2}}{2}-\frac{x^{2}}{4|\ln x|}+\frac{1}{|\ln x|}$
Hence, $y(e)=\frac{\mathrm{e}^{2}}{2}-\frac{\mathrm{e}^{2}}{4}+1=1+\frac{\mathrm{e}^{2}}{4}$
78. The number of 3 digit numbers, that are divisible by either 3 or 4 but not divisible by 48 , is
(1) 472
(2) 432
(3) 507
(4) 400

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. Total 3 digit number $=900$
Divisible by $3=300 \quad\left(\operatorname{Using} \frac{900}{3}=300\right)$
Divisible by $4=225 \quad\left(\right.$ Using $\left.\frac{900}{4}=225\right)$
Divisible by $3 \& 4=108, \ldots$

$$
\left(\text { Using } \frac{900}{12}=75\right)
$$

Number divisible by either 3 or 4

$$
=300+2250-75=450
$$

We have to remove divisible by 48 ,
$144,192, \ldots . ., 18$ terms
Required number of numbers $=450-18=432$
79. Let R be a relation defined on \mathbb{N} as a R b is $2 a+3 b$ is a multiple of $5, a, b \in \mathbb{N}$. Then R is
(1) not reflexive
(2) transitive but not symmetric
(3) symmetric but not transitive
(4) an equivalence relation

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\quad \mathrm{a} \mathrm{a} \Rightarrow 5 \mathrm{a}$ is multiple it 5
So reflexive
$a R b \Rightarrow 2 a+3 b=5 \alpha$,
Now b R a

$$
\begin{aligned}
2 b+3 a & =2 b+\left(\frac{5 \alpha-3 b}{2}\right) \cdot 3 \\
& =\frac{15}{2} \alpha-\frac{5}{2} b=\frac{5}{2}(3 \alpha-b) \\
& =\frac{5}{2}(2 a+2 b-2 \alpha) \\
& =5(a+b-\alpha)
\end{aligned}
$$

Hence symmetric
$\mathrm{aRb} \quad \Rightarrow 2 a+3 b=5 \alpha$.
$\mathrm{bRc} \quad \Rightarrow 2 \mathrm{~b}+3 \mathrm{c}=5 \beta$
Now $\quad 2 a+5 b+3 c=5(\alpha+\beta)$
$\Rightarrow 2 \mathrm{a}+5 \mathrm{~b}+3 \mathrm{c}=5(\alpha+\beta)$
$\Rightarrow 2 \mathrm{a}+3 \mathrm{c}=5(\alpha+\beta-\mathrm{b})$
$\Rightarrow \mathrm{aRc}$
Hence relation is equivalence relation.
80. Consider a function $f: N \rightarrow \mathbb{R}$, satisfying
$f(1)+2 f(2)+3 f(3)+\ldots+x f(x)=x(x+1) f(x) ; x \geq 2$
with $f(1)=1$. Then $\frac{1}{f(2022)}+\frac{1}{f(2028)}$ is equal to
(1) 8200
(2) 8000
(3) 8400
(4) 8100

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. Given for $\mathrm{x} \geq 2$

$$
f(1)+2 f(2)+\ldots . .+x f(x)=x(x+1) f(x)
$$

replace x by $\mathrm{x}+1$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{x}(\mathrm{x}+1) \mathrm{f}(\mathrm{x})+(\mathrm{x}+1) \mathrm{f}(\mathrm{x}+1) \\
& =(\mathrm{x}+1)(\mathrm{x}+2) \mathrm{f}(\mathrm{x}+1) \\
& \Rightarrow \quad \frac{\mathrm{x}}{\mathrm{f}(\mathrm{x}+1)}+\frac{1}{\mathrm{f}(\mathrm{x})}=\frac{(\mathrm{x}+2)}{\mathrm{f}(\mathrm{x})} \\
& \Rightarrow \quad \mathrm{xf}(\mathrm{x})=(\mathrm{x}+1) \mathrm{f}(\mathrm{x}+1)=\frac{1}{2}, \mathrm{x} \geq 2 \\
& \mathrm{f}(2)=\frac{1}{4}, \mathrm{f}(3)=\frac{1}{6}
\end{aligned}
$$

Now $f(2022)=\frac{1}{4044}$

$$
f(2028)=\frac{1}{4056}
$$

So, $\frac{1}{\mathrm{f}(2022)}+\frac{1}{\mathrm{f}(2028)}=4044+4056=8100$

SECTION-B

81. The total number of 4-digit numbers whose greatest common divisor with 54 is 2 , is \qquad .

Official Ans. by NTA (3000)
Allen Ans. (3000)
Sol. N should be divisible by 2 but not by 3
$\mathrm{N}=($ Numbers divisible by 2$)-($ Numbers divisible by 6)
$\mathrm{N}=\frac{9000}{2}-\frac{9000}{6}=4500-1500=3000$
82. A triangle is formed by the tangents at the point $(2,2)$ on the curves $y^{2}=2 x$ and $x^{2}+y^{2}=4 x$, and the line $x+y+2=0$. If r is the radius of its circumcircle, then r^{2} is equal to \qquad .

Official Ans. by NTA (10)
Allen Ans. (10)

Sol. $\quad \mathrm{S}_{1}: \mathrm{y}^{2}=2 \mathrm{x} \quad \mathrm{S}_{2}: \mathrm{x}^{2}+\mathrm{y}^{2}=4 \mathrm{x}$
$\mathrm{P}(2,2)$ is common point on $\mathrm{S}_{1} \& \mathrm{~S}_{2}$
T_{1} is tangent to S_{1} at $\mathrm{P} \quad \Rightarrow \mathrm{T}_{1}: \mathrm{y} .2=\mathrm{x}+2$

$$
\Rightarrow \mathrm{T}_{1}: \mathrm{x}-2 \mathrm{y}+2=0
$$

T_{2} is tangent to S_{2} at $\mathrm{P} \quad \Rightarrow \mathrm{T}_{2}: \mathrm{x} .2+\mathrm{y} .2=2(\mathrm{x}+2)$

$$
\Rightarrow \mathrm{T}_{2}: \mathrm{y}=2
$$

$\& L_{3}: x+y+2=0$ is third line

$\mathrm{PQ}=\mathrm{a}=\sqrt{20}$
$\mathrm{QR}=\mathrm{b}=\sqrt{8}$
$\mathrm{RP}=\mathrm{c}=6$
$\operatorname{Area}(\Delta \mathrm{PQR})=\Delta=\frac{1}{2} \times 6 \times 2=6$
$\therefore r=\frac{a b c}{4 \Delta}=\frac{\sqrt{160}}{4}=\sqrt{10} \Rightarrow r^{2}=10$
83. A circle with centre $(2,3)$ and radius 4 intersects the line $x+y=3$ at the points P and Q. If the tangents at P and Q intersect at the point $S(\alpha, \beta)$, then $4 \alpha-7 \beta$ is equal to \qquad .

Official Ans. by NTA (11)
Allen Ans. (11)

Sol. The given line is polar or $\mathrm{P}(2, \beta)$ w.r.t. given circle

$$
x^{2}+y^{2}-4 x-6 y-3=0
$$

Chord or contact
$\alpha \mathrm{x}+\beta \mathrm{y}-2(\mathrm{x}+\alpha)-3(\mathrm{y}+\beta)-3=0$
$\Rightarrow(\alpha-2) \mathrm{x}+(\beta-3) \mathrm{y}-(2 \alpha+3 \beta+3)=0$
But the equation of chord of contact is given
as : $x+y-3=0$
comparing the coefficients
$\frac{\alpha-2}{1}=\frac{\beta-3}{1}=-\left(\frac{2 \alpha+3 \beta+3}{-3}\right)$
On solving $\alpha=-6$

$$
\beta=-5
$$

Now

$$
4 \alpha-7 \beta=11
$$

84. Let $\mathrm{a}_{1}=\mathrm{b}_{1}=1$ and $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+(\mathrm{n}-1), \mathrm{b}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}-1}+$ $\mathrm{a}_{\mathrm{n}-1}, \forall \mathrm{n} \geq 2$. If $\mathrm{S}=\sum_{\mathrm{n}=1}^{10} \frac{\mathrm{~b}_{\mathrm{n}}}{2^{\mathrm{n}}}$ and $\mathrm{T}=\sum_{\mathrm{n}=1}^{8} \frac{\mathrm{n}}{2^{\mathrm{n-1}}}$, then $2^{7}(2 S-T)$ is equal to \qquad .

Official Ans. by NTA (461)
Allen Ans. (461)
Sol. As, $S=\frac{b_{1}}{2}+\frac{b_{2}}{2^{2}}+\ldots \ldots . .+\frac{b_{9}}{2^{9}}+\frac{b_{10}}{2^{10}}$
$\Rightarrow \frac{\mathrm{S}}{2}=\quad \frac{\mathrm{b}_{1}}{2^{2}}+\frac{\mathrm{b}_{2}}{2^{3}}+\ldots \ldots . .+\frac{\mathrm{b}_{9}}{2^{10}}+\frac{\mathrm{b}_{10}}{2^{11}}$
subtracting
$\Rightarrow \frac{\mathrm{S}}{2}=\frac{\mathrm{b}_{1}}{2}+\left(\frac{\mathrm{a}_{1}}{2^{2}}+\frac{\mathrm{a}_{2}}{2^{3}} \ldots \ldots . .+\frac{\mathrm{a}_{9}}{2^{10}}\right)-\frac{\mathrm{b}_{10}}{2^{11}}$
$\Rightarrow \mathrm{S}=\mathrm{b}_{1}-\frac{\mathrm{b}_{10}}{2^{10}}+\left(\frac{\mathrm{a}_{1}}{2}+\frac{\mathrm{a}_{2}}{2^{2}} \ldots \ldots .+\frac{\mathrm{a}_{9}}{2^{9}}\right)$
$\Rightarrow \frac{\mathrm{S}}{2}=\frac{\mathrm{b}_{1}}{2}-\frac{\mathrm{b}_{10}}{2^{11}}+\left(\frac{\mathrm{a}_{1}}{2^{2}}+\frac{\mathrm{a}_{2}}{2^{3}} \ldots \ldots .+\frac{\mathrm{a}_{9}}{2^{10}}\right)$
subtracting
$\Rightarrow \frac{\mathrm{S}}{2}=\frac{\mathrm{b}_{1}}{2}-\frac{\mathrm{b}_{10}}{2^{11}}+\left(\frac{\mathrm{a}_{1}}{2}-\frac{\mathrm{a}_{9}}{2^{10}}\right)+\left(\frac{1}{2^{2}}+\frac{2}{2^{3}}+\ldots+\frac{8}{2^{9}}\right)$
$\Rightarrow \frac{\mathrm{S}}{2}=\frac{\mathrm{a}_{1}+\mathrm{b}_{1}}{2}-\frac{\left(\mathrm{b}_{10}+2 \mathrm{a}_{9}\right)}{2^{11}}+\frac{\mathrm{T}}{4}$
$\Rightarrow 2 \mathrm{~S}=2\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right)-\frac{\left(\mathrm{b}_{10}+2 \mathrm{a}_{9}\right)}{2^{9}}+\mathrm{T}$
$\Rightarrow 2^{7}(2 S-T)=2^{8}\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right)-\frac{\left(\mathrm{b}_{10}+2 \mathrm{a}_{9}\right)}{4}$
Given $\quad \mathrm{a}_{\mathrm{n}}-\mathrm{a}_{\mathrm{n}-1}=\mathrm{n}-1$,

$$
\begin{gathered}
\therefore \quad a_{2}-a_{1}=1 \\
a_{3}-a_{2}=2 \\
\vdots \\
\\
a_{9}-a_{8}=8
\end{gathered}
$$

$$
\begin{array}{ll}
& \mathrm{a}_{9}-\mathrm{a}_{1}=1+2+\ldots+8=36 \\
\Rightarrow \quad & \mathrm{a}_{9}=37\left(\mathrm{a}_{1}=1\right)
\end{array}
$$

Also, $\quad b_{n}-b_{n-1}=a_{n-1}$

$$
\begin{array}{ll}
\therefore & \mathrm{b}_{10}-\mathrm{b}_{1}=\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots .+\mathrm{a}_{9} \\
& =1+2+4+7+11+16+22+29+37 \\
\Rightarrow & \mathrm{~b}_{10}=130\left(\text { As b }_{1}=1\right) \\
\therefore & 2^{7}(2 \mathrm{~S}-\mathrm{T})=2^{8}(1+1)-(130+2 \times 37) \\
& 2^{9}-\frac{204}{4}=461
\end{array}
$$

85. If the equation of the normal to the curve $y=\frac{x-a}{(x+b)(x-2)}$ at the point $(1,-3)$ is $x-4 y=13$, then the value of $a+b$ is equal to \qquad .
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $y=\frac{x-a}{(x+b)(x-2)}$
At point ($1,-3$),

$$
\begin{equation*}
-3=\frac{1-9}{(1+b)(1-2)} \tag{1}
\end{equation*}
$$

$\Rightarrow 1-\mathrm{a}=3(1+\mathrm{b})$
Now, $y=\frac{x-a}{(x+b)(x-2)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(\mathrm{x}+\mathrm{b})(\mathrm{x}-2) \times(1)-(\mathrm{x}-\mathrm{a})(2 \mathrm{x}+\mathrm{b}-2)}{(\mathrm{x}+\mathrm{b})^{2}(\mathrm{x}-2)^{2}}$
At $(1,-3)$ slope of normal is $\frac{1}{4}$ hence $\frac{d y}{d x}=-4$,
So, $-4=\frac{(1+b)(-1)-(1-a) b}{(1+b)^{2}(-1)^{2}}$
Using equation (1)
$\Rightarrow-4=\frac{(1+\mathrm{b})(-1)-3(\mathrm{~b}+1) \mathrm{b}}{(1+\mathrm{b})^{2}}$
$\Rightarrow-4=\frac{(-1)-3 \mathrm{~b}}{(1+\mathrm{b})}(\mathrm{b} \neq-1)$
$\Rightarrow \mathrm{b}=-3$
So, $\mathrm{a}=7$
Hence, $a+b=7-3=4$
86. Let A be a symmetric matrix such that $|\mathrm{A}|=2$ and $\left[\begin{array}{ll}2 & 1 \\ 3 & \frac{3}{2}\end{array}\right] A=\left[\begin{array}{ll}1 & 2 \\ \alpha & \beta\end{array}\right]$. If the sum of the diagonal elements of A is s , then $\frac{\beta \mathrm{s}}{\alpha^{2}}$ is equal to \qquad .

Official Ans. by NTA (5)
Allen Ans. (5)
Sol. $\left[\begin{array}{ll}2 & 1 \\ 3 & \frac{3}{2}\end{array}\right]\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ \alpha & \beta\end{array}\right]$
Now $\mathrm{ac}-\mathrm{b}^{2}=2$ and $2 \mathrm{a}+\mathrm{b}=1$
and $2 \mathrm{~b}+\mathrm{c}=2$
solving all these above equations we get
$\frac{1-\mathrm{b}}{2} \times\left(\frac{2-2 \mathrm{~b}}{1}\right)-\mathrm{b}^{2}=2$
$\Rightarrow(1-\mathrm{b})^{2}-\mathrm{b}^{2}=2$
$\Rightarrow 1-2 \mathrm{~b}=2$
$\Rightarrow \mathrm{b}=-\frac{1}{2}$ and $\mathrm{a}=\frac{3}{4}$ and $\mathrm{c}=3$
Hence $\alpha=3 a+\frac{3 b}{2}=\frac{9}{4}-\frac{3}{4}=\frac{3}{2}$
and $\beta=3 b+\frac{3 c}{2}=-\frac{3}{2}+\frac{9}{2}=3$
also $\mathrm{s}=\mathrm{a}+\mathrm{c}=\frac{15}{4}$
$\therefore \frac{\beta \mathrm{s}}{\alpha^{2}}=\frac{3 \times 15}{4 \times \frac{9}{4}}=5$
87. Let $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}, k \in \mathbb{N}$, be two G.P.s with common ratio r_{1} and r_{2} respectively such that $\mathrm{a}_{1}=\mathrm{b}_{1}=4$ and $\mathrm{r}_{1}<\mathrm{r}_{2}$. Let $\mathrm{c}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}}+\mathrm{b}_{\mathrm{k}}, \mathrm{k} \in \mathbb{N}$.

If $\mathrm{c}_{2}=5$ and $\mathrm{c}_{3}=\frac{13}{4}$ then $\sum_{\mathrm{k}=1}^{\infty} \mathrm{c}_{\mathrm{k}}-\left(12 \mathrm{a}_{6}+8 \mathrm{~b}_{4}\right)$ is equal to \qquad .

Official Ans. by NTA (9)
Allen Ans. (9)
Sol. Given that

$$
\begin{aligned}
\quad \mathrm{c}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}}+\mathrm{b}_{\mathrm{k}} \text { and } & \mathrm{a}_{1}=\mathrm{b}_{1}=4 \\
\text { also } \mathrm{a}_{2}=4 \mathrm{r}_{1} & \mathrm{a}_{3}=4 \mathrm{r}_{1}^{2} \\
\mathrm{~b}_{2}=4 \mathrm{r}_{2} & \mathrm{~b}_{3}=4 \mathrm{r}_{2}^{2}
\end{aligned}
$$

Now $c_{2}=a_{2}+b_{2}=5$ and $c_{3}=a_{3}+b_{3}=\frac{13}{4}$
$\Rightarrow \mathrm{r}_{1}+\mathrm{r}_{2}=\frac{5}{4}$ and $\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}=\frac{13}{16}$

Hence $r_{1} r_{2}=\frac{3}{8}$ which gives $r_{1}=\frac{1}{2} \quad \& r_{2}=\frac{3}{4}$

$$
\begin{aligned}
\sum_{\mathrm{k}=1}^{\infty} \mathrm{c}_{\mathrm{k}}-\left(12 \mathrm{a}_{6}\right. & \left.+8 \mathrm{~b}_{4}\right) \\
& =\frac{4}{1-\mathrm{r}_{1}}+\frac{4}{1-\mathrm{r}_{2}}-\left(\frac{48}{32}+\frac{27}{2}\right) \\
= & 24-15=9
\end{aligned}
$$

88. Let $X=\{11,12,13, \ldots ., 40,41\}$ and $Y=\{61,62$, $63, \ldots ., 90,91\}$ be the two sets of observations. If \bar{x} and \bar{y} are their respective means and σ^{2} is the variance of all the observations in $\mathrm{X} \cup \mathrm{Y}$, then $\left|\overline{\mathrm{x}}+\overline{\mathrm{y}}-\sigma^{2}\right|$ is equal to \qquad -.

Official Ans. by NTA (603)

Allen Ans. (603)

Sol. $\bar{x}=\frac{\sum_{i=11}^{41} \mathrm{i}}{31}=\frac{11+41}{2}=26 \quad$ (31 elements)
$\bar{y}=\frac{\sum_{j=61}^{91} j}{31}=\frac{61+91}{2}=76 \quad(31$ elements)
Combined mean, $\mu=\frac{31 \times 26+31 \times 76}{31+31}$

$$
=\frac{26+76}{2}=51
$$

$\sigma^{2}=\frac{1}{62} \times\left(\sum_{i=1}^{31}\left(x_{i}-\mu\right)^{2}+\sum_{i=1}^{31}\left(y_{i}-\mu\right)^{2}\right)=705$

Since, $\mathrm{x}_{\mathrm{i}} \in \mathrm{X}$ are in A.P. with 31 elements \& common difference 1 , same is $y_{i} \in y$, when written in increasing order.

$$
\begin{aligned}
\therefore & \sum_{\mathrm{i}=1}^{31}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2}=\sum_{\mathrm{i}=1}^{31}\left(\mathrm{y}_{\mathrm{i}}-\mu\right)^{2} \\
& =10^{2}+11^{2}+\ldots . .+40^{2} \\
& =\frac{40 \times 41 \times 81}{6}-\frac{9 \times 10 \times 19}{6}=21855 \\
\therefore & \left|\overline{\mathrm{x}}+\overline{\mathrm{y}}-\sigma^{2}\right|=|26+76-705|=603
\end{aligned}
$$

89. Let $\alpha=8-14 \mathrm{i}, \mathrm{A}=\left\{\mathrm{z} \in \mathbb{C}: \frac{\alpha \mathrm{z}-\bar{\alpha} \overline{\mathrm{z}}}{\mathrm{z}^{2}-(\overline{\mathrm{z}})^{2}-112 \mathrm{i}}=1\right\}$ and $B=\{z \in \mathbb{C}:|z+3 i|=4\}$.

Then $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)$ is equal to \qquad -

Official Ans. by NTA (14)

Allen Ans. (14)

Sol. $\alpha=8-14 \mathrm{i}$
$z=x+i y$
$a z=(8 x+14 y)+i(-14 x+8 y)$
$\mathrm{z}+\overline{\mathrm{z}}=2 \mathrm{x} \quad \overline{\mathrm{z}-\overline{\mathrm{z}}=2 \mathrm{i} \mathrm{y}}$

Set A: $\frac{2 i(-14 x+8 y)}{i(4 x y-112)}=1$

$$
\begin{aligned}
& (x-4)(y+7)=0 \\
& x=4 \quad \text { or } \quad y=-7
\end{aligned}
$$

Set B: $x^{2}+(y+3)^{2}=16$
when $x=4 \quad y=-3$
when $y=-7 \quad x=0$
$\therefore A \cap B=\{4-3 i, 0-7 i\}$
So, $\quad \sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)=4-(-3)+(0-(-7))=14$
90. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{7}$ be the roots of the equation $x^{7}+$
$3 x^{5}-13 x^{3}-15 x=0$ and $\left|\alpha_{1}\right| \geq\left|\alpha_{2}\right| \geq \ldots \geq\left|\alpha_{7}\right|$.
Then $\alpha_{1} \alpha_{2}-\alpha_{3} \alpha_{4}+\alpha_{5} \alpha_{6}$ is equal to \qquad .

Official Ans. by NTA (9)

Allen Ans. (9)
Sol. Given equation can be rearranged as

$$
x\left(x^{6}+3 x^{4}-13 x^{2}-15\right)=0
$$

clearly $x=0$ is one of the root and other part can be observed by replacing $\mathrm{x}^{2}=\mathrm{t}$ from which we have $t^{3}+3 t^{2}-13 t-15=0$
$\Rightarrow \quad(\mathrm{t}-3)\left(\mathrm{t}^{2}+6 \mathrm{t}+5\right)=0$
So, $\quad t=3, t=-1, t=-5$
Now we are getting $x^{2}=3, x^{2}=-1, x^{2}=-5$
$\Rightarrow \quad x= \pm \sqrt{3}, \quad x= \pm i, x= \pm \sqrt{5} i$
From the given condition $\left|\alpha_{1}\right| \geq\left|\alpha_{2}\right| \geq \ldots \geq\left|\alpha_{7}\right|$
We can clearly say that $\quad\left|\alpha_{7}\right|=0$ and and

$$
\left|\alpha_{6}\right|=\sqrt{5}=\left|\alpha_{5}\right|
$$

and

$$
\left|\alpha_{4}\right|=\sqrt{3}=\left|\alpha_{3}\right| \text { and }\left|\alpha_{2}\right|=1=\left|\alpha_{1}\right|
$$

So we can have, $\alpha_{1}=\sqrt{5} i, \alpha_{2}=-\sqrt{5} i, \alpha_{3}=\sqrt{3} \mathrm{i}$, $\alpha_{4}=-\sqrt{3}, \alpha_{5}=\mathrm{i}, \alpha_{6}=-\mathrm{i}$

Hence
$\alpha_{1} \alpha_{2}-\alpha_{3} \alpha_{4}+\alpha_{5} \alpha_{6}$

$$
=1-(-3)+5=9
$$

