## MATHEMATICS

## SECTION-A

61. Let the function $f(x)=2 x^{3}+(2 p-7) x^{2}+3(2 p-9) x-6$ have a maxima for some value of $x<0$ and a minima for some value of $x>0$. Then, the set of all values of $p$ is
(1) $\left(\frac{9}{2}, \infty\right)$
(2) $\left(0, \frac{9}{2}\right)$
(3) $\left(-\infty, \frac{9}{2}\right)$
(4) $\left(-\frac{9}{2}, \frac{9}{2}\right)$

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. $f(x)=2 x^{3}+(2 p-7) x^{2}+3(2 p-9) x-6$
$f^{\prime}(\mathrm{x})=6 \mathrm{x}^{2}+2(2 \mathrm{p}-7) \mathrm{x}+3(2 \mathrm{p}-9)$
$f^{\prime}(0)<0$
$\therefore 3(2 p-9)<0$

$$
\begin{aligned}
& \mathrm{p}<\frac{9}{2} \\
& \mathrm{p} \in\left(-\infty, \frac{9}{2}\right)
\end{aligned}
$$

62. Let $z$ be $a$ complex number such that $\left|\frac{z-2 i}{z+i}\right|=2, z \neq-i$. Then $z$ lies on the circle of radius 2 and centre
(1) $(2,0)$
(2) $(0,0)$
(3) $(0,2)$
(4) $(0,-2)$

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $(\mathrm{z}-2 \mathrm{i})(\overline{\mathrm{z}}+2 \mathrm{i})=4(\mathrm{z}+\mathrm{i})(\overline{\mathrm{z}}-\mathrm{i})$
$z \bar{z}+4+2 i(z-\bar{z})=4(z \bar{z}+1+i(\bar{z}-z))$
$3 z \bar{z}-6 i(z-\bar{z})=0$
$x^{2}+y^{2}-2 i(2 i y)=0$
$x^{2}+y^{2}+4 y=0$

## TEST PAPER WITH SOLUTION

63. If the function
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}(1+|\cos \mathrm{x}|) \frac{\lambda}{|\cos \mathrm{x}|}, & 0<\mathrm{x}<\frac{\pi}{2} \\ \mu \quad, \mathrm{x}=\frac{\pi}{2} \quad \text { is continuous at }\end{array}\right.$

$$
\mathrm{e}^{\frac{\cot 6 \mathrm{x}}{\cot 4 \mathrm{x}}} \quad, \frac{\pi}{2}<\mathrm{x}<\pi
$$

$x=\frac{\pi}{2}$, then $9 \lambda+6 \log _{e} \mu+\mu^{6}-e^{6 \lambda}$ is equal to
(1) 11
(2) 8
(3) $2 e^{4}+8$
(4) 10

Official Ans. by NTA (4)
Allen Ans. BONUS
Sol. $\Rightarrow \lim _{x \rightarrow \frac{\pi^{+}}{2}} e^{\frac{\operatorname{cot6x}}{\cot 4 x}}=\lim _{x \rightarrow \frac{\pi^{+}}{2}} e^{\frac{\sin 4 x \cos 6 x}{\sin 6 x . \cos 4 x}}=e^{2 / 3}$
$\Rightarrow \lim _{x \rightarrow \frac{\pi^{-}}{2}}(1+|\cos x|)^{\left.\frac{\lambda}{\cos x} \right\rvert\,}=e^{\lambda}$
$\Rightarrow f(\pi / 2)=\mu$
For continuous function $\Rightarrow e^{2 / 3}=e^{\lambda}=\mu$
$\lambda=\frac{2}{3}, \mu=\mathrm{e}^{2 / 3}$
Now, $9 \lambda+6 \log _{e} \mu+\mu^{6}-\mathrm{e}^{6 \lambda}=10$
64. Let $f(x)=2 x^{n}+\lambda, \lambda \in \mathbb{R}, n \in \mathbb{N}$, and $f(4)=133$, $f(5)=255$. Then the sum of all the positive integer divisors of $(f(3)-f(2))$ is
(1) 61
(2) 60
(3) 58
(4) 59

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $f(\mathrm{x})=2 \mathrm{x}^{\mathrm{n}}+\lambda$
$f(4)=133$
$f(5)=255$
$133=2 \times 4^{\mathrm{n}}+\lambda$
$255=2 \times 5^{\mathrm{n}}+\lambda \quad$ (2)
(2) - (1)
$122=2\left(5^{\mathrm{n}}-4^{\mathrm{n}}\right)$
$\Rightarrow 5^{\mathrm{n}}-4^{\mathrm{n}}=61$
$\therefore \mathrm{n}=3 \& \lambda=5$
Now, $f(3)-f(2)=2\left(3^{3}-2^{3}\right)=38$
Number of Divisors is $1,2,19,38 ; \&$ their sum is 60
65. If the four points, whose position vectors are $3 \hat{i}-4 \hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}-\hat{k},-2 \hat{i}-\hat{j}+3 \hat{k} \quad$ and
$5 \hat{\mathrm{i}}-2 \alpha \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ are coplanar, then $\alpha$ is equal to
(1) $\frac{73}{17}$
(2) $-\frac{107}{17}$
(3) $-\frac{73}{17}$
(4) $\frac{107}{17}$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Let A : $(3,-4,2)$
C: $(-2,-1,3)$
B : $(1,2,-1)$
D : $(5,-2 \alpha, 4)$
A, B, C, D are coplanar points, then
$\Rightarrow\left|\begin{array}{ccc}1-3 & 2+4 & -1-2 \\ -2-3 & -1+4 & 3-2 \\ 5-3 & -2 \alpha+4 & 4-2\end{array}\right|=0$
$\Rightarrow \alpha=\frac{73}{17}$
66. Let $\mathrm{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}1 & -\mathrm{i} \\ 0 & 1\end{array}\right]$, where $\mathrm{i}=\sqrt{-1}$. If $\mathrm{M}=\mathrm{A}^{\mathrm{T}} \mathrm{BA}$, then the inverse of the matrix $\mathrm{AM}^{2023} \mathrm{~A}^{\mathrm{T}}$ is
(1) $\left[\begin{array}{cc}1 & -2023 i \\ 0 & 1\end{array}\right]$
(2) $\left[\begin{array}{ll}1 & 0 \\ -2023 i & 1\end{array}\right]$
(3) $\left[\begin{array}{ll}1 & 0 \\ 2023 \mathrm{i} & 1\end{array}\right]$
(4) $\left[\begin{array}{cc}1 & 2023 i \\ 0 & 1\end{array}\right]$

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. $\quad \mathrm{AA}^{\mathrm{T}}=\left[\begin{array}{ll}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\mathrm{B}^{2}=\left[\begin{array}{cc}1 & -\mathrm{i} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -\mathrm{i} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -2 \mathrm{i} \\ 0 & 1\end{array}\right]$
$B^{3}=\left[\begin{array}{cc}1 & -3 \mathrm{i} \\ 0 & 1\end{array}\right]$
$\mathrm{B}^{2023}=\left[\begin{array}{cc}1 & -2023 \mathrm{i} \\ 0 & 1\end{array}\right]$
$\mathrm{M}=\mathrm{A}^{\mathrm{T}} \mathrm{BA}$
$\mathrm{M}^{2}=\mathrm{M} \cdot \mathrm{M}=\mathrm{A}^{\mathrm{T}} \mathrm{BA} \mathrm{A}^{\mathrm{T}} \mathrm{BA}=\mathrm{A}^{\mathrm{T}} \mathrm{B}^{2} \mathrm{~A}$
$M^{3}=M^{2} . M=A^{T} B^{2} A A^{T} B A=A^{T} B^{3} A$
$\mathrm{M}^{2023}=$ $\qquad$ $A^{T} B^{2023} A$
$\mathrm{AM}^{2023} \mathrm{~A}^{\mathrm{T}}=\mathrm{AA}^{\mathrm{T}} \mathrm{B}^{2023} \mathrm{AA}^{\mathrm{T}}=\mathrm{B}^{2023}$
$=\left[\begin{array}{cc}1 & -2023 \mathrm{i} \\ 0 & 1\end{array}\right]$
Inverse of $\left(\mathrm{AM}^{2023} \mathrm{~A}^{\mathrm{T}}\right)$ is $\left[\begin{array}{cc}1 & 2023 \mathrm{i} \\ 0 & 1\end{array}\right]$
67. Let $\Delta, \nabla \in\{\wedge, \vee\}$ be such that $(p \rightarrow q) \Delta(p \nabla q)$ is a tautology. Then
(1) $\Delta=\wedge, \nabla=\vee$
(2) $\Delta=\vee, \nabla=\wedge$
(3) $\Delta=\vee, \nabla=\vee$
(4) $\Delta=\wedge, \nabla=\wedge$

Official Ans. by NTA (3)
Allen Ans. (3)

Sol. Given $(\mathrm{p} \rightarrow \mathrm{q}) \Delta(\mathrm{p} \nabla \mathrm{q})$
Option I $\Delta=\wedge, \nabla=\vee$

| p | q | $(\mathrm{p} \rightarrow \mathrm{q})$ | $(\mathrm{p} \vee \mathrm{q})$ | $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \vee \mathrm{q})$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T |
| T | F | F | T | F |
| F | T | T | T | T |
| F | F | T | F | F |

Option $2 \Delta=\vee, \nabla=\wedge$

| p | q | $(\mathrm{p} \rightarrow \mathrm{q})$ | $(\mathrm{p} \wedge \mathrm{q})$ | $(\mathrm{p} \rightarrow \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{q})$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T |
| T | F | F | F | F |
| F | T | T | F | T |
| F | F | T | F | T |

Option $3 \Delta=\vee, \nabla=\vee$

| p | q | $(\mathrm{p} \rightarrow \mathrm{q})$ | $(\mathrm{p} \vee \mathrm{q})$ | $(\mathrm{p} \rightarrow \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{q})$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T |
| T | F | F | T | T |
| F | T | T | T | T |
| F | F | T | F | T |

Hence, it is tautology.
Option $4 \Delta=\wedge, \nabla=\wedge$

| p | q | $(\mathrm{p} \rightarrow \mathrm{q})$ | $(\mathrm{p} \wedge \mathrm{q})$ | $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \wedge \mathrm{q})$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T |
| T | F | F | F | F |
| F | T | T | F | F |
| F | F | T | F | F |

68. The number of numbers, strictly between 5000 and 10000 can be formed using the digits $1,3,5,7,9$ without repetition, is
(1) 6
(2) 12
(3) 120
(4) 72

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Numbers between 5000 \& 10000
Using digits $1,3,5,7,9$


Total Numbers $=3 \times 4 \times 3 \times 2=72$
69. The
number of functions $f:\{1,2,3,4\} \rightarrow\{a \in \mathbb{Z}:|a| \leq 8\}$ satisfying $f(n)+$ $\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\{1,2,3\}$ is
(1) 3
(2) 4
(3) 1
(4) 2

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $f:\{1,2,3,4\} \rightarrow\{\mathrm{a} \in \mathbb{Z}:|\mathrm{a}| \leq 8\}$
$f(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\{1,2,3\}$
$f(\mathrm{n}+1)$ must be divisible by n
$f(4) \Rightarrow-6,-3,0,3,6$
$f(3) \Rightarrow-8,-6,-4,-2,0,2,4,6,8$
$f(2) \Rightarrow-8$, 8
$f(1) \Rightarrow-8$, 8
$\frac{\mathrm{f}(4)}{3}$ must be odd since $f(3)$ should be even therefore 2 solution possible.
$f(4)$
$f(3)$
$f(2)$
$f(1)$
$-3$
$\begin{array}{llll}3 & 0 & 1 & 0\end{array}$
70. The equations of two sides of a variable triangle are $\mathrm{x}=0$ and $\mathrm{y}=3$, and its third side is a tangent to the parabola $y^{2}=6 x$. The locus of its circumcentre is :
(1) $4 y^{2}-18 y-3 x-18=0$
(2) $4 y^{2}+18 y+3 x+18=0$
(3) $4 y^{2}-18 y+3 x+18=0$
(4) $4 y^{2}-18 y-3 x+18=0$

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. $y^{2}=6 x \quad \& y^{2}=4 a x$
$\Rightarrow 4 \mathrm{a}=6 \Rightarrow \mathrm{a}=\frac{3}{2}$

$y=m x+\frac{3}{2 m} ;(m \neq 0)$
$h=\frac{6 m-3}{4 m^{2}}, k=\frac{6 m+3}{4 m}$, Now eliminating $m$ and
we get
$\Rightarrow 3 \mathrm{~h}=2\left(-2 \mathrm{k}^{2}+9 \mathrm{k}-9\right)$
$\Rightarrow 4 \mathrm{y}^{2}-18 \mathrm{y}+3 \mathrm{x}+18=0$
71. Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $\mathrm{f}(\mathrm{x})=$ $\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x)+m-2\}$, for some $m$, such that the range of $f$ is $[0,2]$. Then the value of m is $\qquad$
(1) 5
(2) 3
(3) 2
(4) 4

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Since,
$-\sqrt{2} \leq \sin x-\cos x \leq \sqrt{2}$
$\therefore-2 \leq \sqrt{2}(\sin x-\cos x) \leq 2$
(Assume $\sqrt{2}(\sin x-\cos x)=k$ )

$$
\begin{equation*}
-2 \leq k \leq 2 \tag{i}
\end{equation*}
$$

$f(\mathrm{x})=\log _{\sqrt{\mathrm{m}}}(\mathrm{k}+\mathrm{m}-2)$
Given,

$$
\begin{align*}
& 0 \leq f(x) \leq 2 \\
& 0 \leq \log _{\sqrt{m}}(\mathrm{k}+\mathrm{m}-2) \leq 2 \\
& 1 \leq \mathrm{k}+\mathrm{m}-2 \leq \mathrm{m} \\
& -\mathrm{m}+3 \leq \mathrm{k} \leq 2 \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

From eq. (i) \& (ii), we get $-\mathrm{m}+3=-2$

$$
\Rightarrow m=5
$$

72. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be $3 \times 3$ matrices such that A is symmetric and B and C are skew-symmetric.
Consider the statements
(S1) $\mathrm{A}^{13} \mathrm{~B}^{26}-\mathrm{B}^{26} \mathrm{~A}^{13}$ is symmetric
(S2) $A^{26} \mathrm{C}^{13}-\mathrm{C}^{13} \mathrm{~A}^{26}$ is symmetric
Then,
(1) Only S2 is true
(2) Only S1 is true
(3) Both S 1 and S 2 are false
(4) Both S1 and S2 are true

Official Ans. by NTA (1)
Allen Ans. (1)

Sol. Given, $\mathrm{A}^{\mathrm{T}}=\mathrm{A}, \mathrm{B}^{\mathrm{T}}=-\mathrm{B}, \mathrm{C}^{\mathrm{T}}=-\mathrm{C}$
Let $\mathrm{M}=\mathrm{A}^{13} \mathrm{~B}^{26}-\mathrm{B}^{26} \mathrm{~A}^{13}$
Then, $M^{T}=\left(A^{13} B^{26}-B^{26} A^{13}\right)^{T}$
$=\left(\mathrm{A}^{13} \mathrm{~B}^{26}\right)^{\mathrm{T}}-\left(\mathrm{B}^{26} \mathrm{~A}^{13}\right)^{\mathrm{T}}$
$=\left(\mathrm{B}^{\mathrm{T}}\right)^{26}\left(\mathrm{~A}^{\mathrm{T}}\right)^{13}-\left(\mathrm{A}^{\mathrm{T}}\right)^{13}\left(\mathrm{~B}^{\mathrm{T}}\right)^{26}$
$=\mathrm{B}^{26} \mathrm{~A}^{13}-\mathrm{A}^{13} \mathrm{~B}^{26}=-\mathrm{M}$
Hence, M is skew symmetric
Let, $\mathrm{N}=\mathrm{A}^{26} \mathrm{C}^{13}-\mathrm{C}^{13} \mathrm{~A}^{26}$
then, $\mathrm{N}^{\mathrm{T}}=\left(\mathrm{A}^{26} \mathrm{C}^{13}\right)^{\mathrm{T}}-\left(\mathrm{C}^{13} \mathrm{~A}^{26}\right)^{\mathrm{T}}$
$=-(\mathrm{C})^{13}(\mathrm{~A})^{26}+\mathrm{A}^{26} \mathrm{C}^{13}=\mathrm{N}$
Hence, N is symmetric.
$\therefore$ Only S 2 is true.
73. Let $\mathrm{y}=\mathrm{y}(\mathrm{t})$ be a solution of the differential equation

$$
\frac{d y}{d t}+\alpha y=\gamma e^{-\beta t}
$$

Where, $\alpha>0, \beta>0$ and $\gamma>0$. Then $\operatorname{Lim}_{\mathrm{t} \rightarrow \infty} \mathrm{y}(\mathrm{t})$
(1) is 0
(2) does not exist
(3) is 1
(4) is -1

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\frac{d y}{d t}+\alpha y=\gamma e^{-\beta t}$
I.F. $=e^{\int \alpha \alpha t}=e^{\alpha t}$

Solution $\Rightarrow y \cdot e^{\alpha t}=\int \gamma e^{-\beta T} \cdot e^{\alpha t} d t$
$\Rightarrow \mathrm{ye}^{\alpha \mathrm{t}}=\gamma \frac{\mathrm{e}^{(\alpha-\beta) \mathrm{t}}}{(\alpha-\beta)}+\mathrm{c}$
$\Rightarrow y=\frac{\gamma}{e^{\beta t}(\alpha-\beta)}+\frac{c}{e^{\alpha t}}$
So, $\lim _{t \rightarrow \infty} y(t)=\frac{\gamma}{\infty}+\frac{c}{\infty}=0$
74. $\sum_{k=0}^{6}{ }^{51-\mathrm{k}} \mathrm{C}_{3}$ is equal to
(1) ${ }^{51} \mathrm{C}_{4}-{ }^{45} \mathrm{C}_{4}$
(2) ${ }^{51} \mathrm{C}_{3}-{ }^{45} \mathrm{C}_{3}$
(3) ${ }^{52} \mathrm{C}_{4}-{ }^{45} \mathrm{C}_{4}$
(4) ${ }^{52} \mathrm{C}_{3}{ }^{-45} \mathrm{C}_{3}$

Official Ans. by NTA (3)
Allen Ans. (3)

Sol. $\quad \sum_{k=0}^{6}{ }^{51-\mathrm{k}} \mathrm{C}_{3}$

$$
\begin{aligned}
&={ }^{51} \mathrm{C}_{3}+{ }^{50} \mathrm{C}_{3}+{ }^{49} \mathrm{C}_{3}+\ldots+{ }^{45} \mathrm{C}_{3} \\
&={ }^{45} \mathrm{C}_{3}+{ }^{46} \mathrm{C}_{3}+\ldots . .+{ }^{51} \mathrm{C}_{3} \\
&={ }^{45} \mathrm{C}_{4}+{ }^{45} \mathrm{C}_{3}+{ }^{46} \mathrm{C}_{3}+\ldots . .+{ }^{51} \mathrm{C}_{3}-{ }^{45} \mathrm{C}_{4} \\
&\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}={ }^{\mathrm{n+1}} \mathrm{C}_{\mathrm{r}}\right) \\
&={ }^{52} \mathrm{C}_{4}-{ }^{45} \mathrm{C}_{4}
\end{aligned}
$$

75. The shortest distance between the lines $x+1=2 y=-$ $12 z$ and $x=y+2=6 z-6$ is
(1) 2
(2) 3
(3) $\frac{5}{2}$
(4) $\frac{3}{2}$

## Official Ans. by NTA (1)

Allen Ans. (1)
Sol. $\quad \frac{\mathrm{x}+1}{1}=\frac{\mathrm{y}}{\frac{1}{2}}=\frac{\mathrm{z}}{\frac{-1}{12}}$ and $\frac{\mathrm{x}}{1}=\frac{\mathrm{y}+2}{1}=\frac{\mathrm{z}-1}{\frac{1}{6}}$
$\Rightarrow$ Shortest distance $=\frac{(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}) \cdot(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})}{|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|}$
S.D. $=(-\hat{i}+2 \hat{j}-\hat{k}) \cdot \frac{(\dot{p} \times \dot{q})}{|\vec{p} \times \vec{q}|}$
$\left\{\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}} \equiv\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & \frac{1}{2} & \frac{-1}{12} \\ 1 & 1 & \frac{1}{6}\end{array}\right|=\frac{1}{6} \hat{\mathrm{i}}-\frac{1}{4} \hat{\mathrm{j}}+\frac{1}{2} \hat{\mathrm{k}}\right.$ or $\left.2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}\right\}$
S.D. $=\frac{(-\hat{i}+2 \hat{j}-\hat{k}) \cdot(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})}{\sqrt{2^{2}+3^{2}+6^{2}}}=\left|\frac{-14}{7}\right|=2$
76. Let N be the sum of the numbers appeared when two fair dice are rolled and let the probability that $\mathrm{N}-2, \sqrt{3 \mathrm{~N}}, \mathrm{~N}+2$ are in geometric progression be $\frac{\mathrm{k}}{48}$. Then the value of k is
(1) 2
(2) 4
(3) 16
(4) 8

Official Ans. by NTA (2)

Allen Ans. (2)
Sol. $n(s)=36$
Given : $\mathrm{N}-2, \sqrt{3 \mathrm{~N}}, \mathrm{~N}+2$ are in G.P.
$3 \mathrm{~N}=(\mathrm{N}-2)(\mathrm{N}+2)$
$3 \mathrm{~N}=\mathrm{N}^{2}-4$
$\Rightarrow \mathrm{N}^{2}-3 \mathrm{~N}-4=0$
$(\mathrm{N}-4)(\mathrm{N}+1)=0 \Rightarrow \mathrm{~N}=4$ or $\mathrm{N}=-1$ rejected
$(\operatorname{Sum}=4) \equiv\{(1,3),(3,1),(2,2)\}$
$\mathrm{n}(\mathrm{A})=3$
$\mathrm{P}(\mathrm{A})=\frac{3}{36}=\frac{1}{12}=\frac{4}{48} \Rightarrow \mathrm{k}=4$
77. The integral $16 \int_{1}^{2} \frac{\mathrm{dx}}{\mathrm{x}^{3}\left(\mathrm{x}^{2}+2\right)^{2}}$ is equal to
(1) $\frac{11}{6}+\log _{e} 4$
(2) $\frac{11}{12}+\log _{e} 4$
(3) $\frac{11}{12}-\log _{e} 4$
(4) $\frac{11}{6}-\log _{e} 4$

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $I=16 \int_{1}^{2} \frac{d x}{x^{3}\left(x^{2}+2\right)^{2}}$
$=16 \int^{2} \frac{d x}{{ }^{1} x^{3} x^{4}\left(1+\frac{2}{x^{2}}\right)^{2}}$
Let, $1+\frac{2}{\mathrm{x}^{2}}=\mathrm{t} \Rightarrow \frac{-4}{\mathrm{x}^{3}} \mathrm{dx}=\mathrm{dt}$
$I=-4 \int_{3}^{\frac{3}{2}} \frac{d t}{\left(\frac{2}{t-1}\right)^{2} t^{2}}$
$I=-4 \int_{3}^{\frac{3}{2}}\left(\frac{t-1}{2}\right)^{2} \frac{d t}{t^{2}}$
$I=-\frac{4}{4} \int_{3}^{\frac{3}{2}}\left(1-\frac{2}{t}+\frac{1}{t^{2}}\right) d t$
$I=-1\left[t-2 \ln |t|-\frac{1}{t}\right]_{3}^{\frac{3}{2}}$
$\mathrm{I}=-1\left[\left(\frac{3}{2}-2 \ln \frac{3}{2}-\frac{2}{3}\right)-\left(3-2 \ln 3-\frac{1}{3}\right)\right]$
$I=-1\left[2 \ln 2-\frac{11}{6}\right]$
$\mathrm{I}=\frac{11}{6}-\ln 4$
78. Let $T$ and $C$ respectively be the transverse and conjugate axes of the hyperbola $16 x^{2}-$ $y^{2}+64 x+4 y+44=0$. Then the area of the region above the parabola $x^{2}=y+4$, below the transverse axis T and on the right of the conjugate axis C is:
(1) $4 \sqrt{6}+\frac{44}{3}$
(2) $4 \sqrt{6}+\frac{28}{3}$
(3) $4 \sqrt{6}-\frac{44}{3}$
(4) $4 \sqrt{6}-\frac{28}{3}$

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\quad 16\left(x^{2}+4 x\right)-\left(y^{2}-4 y\right)+44=0$
$16(x+2)^{2}-64-(y-2)^{2}+4+44=0$
$16(x+2)^{2}-(y-2)^{2}=16$
$\frac{(x+2)^{2}}{1}-\frac{(y-2)^{2}}{16}=1$

$A=\int_{-2}^{\sqrt{6}}\left(2-\left(x^{2}-4\right)\right) d x$
$A=\int_{-2}^{\sqrt{6}}\left(6-x^{2}\right) d x=\left(6 x-\frac{x^{3}}{3}\right)_{-2}^{\sqrt{6}}$
$A=\left(6 \sqrt{6}-\frac{6 \sqrt{6}}{3}\right)-\left(-12+\frac{8}{3}\right)$
$\mathrm{A}=\frac{12 \sqrt{6}}{3}+\frac{28}{3}$
$A=4 \sqrt{6}+\frac{28}{3}$
79. Let $\vec{a}=-\hat{i}-\hat{j}+\hat{k}, \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{i}-\hat{j}$. Then $\vec{a}-6 \vec{b}$ is equal to
(1) $3(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$
(2) $3(\hat{i}+\hat{j}+\hat{k})$
(3) $3(\hat{i}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
(4) $3(\hat{i}+\hat{j}-\hat{k})$

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\vec{a} \times \vec{b}=(\hat{i}-\hat{j})$
Taking cross product with $\vec{a}$

$$
\begin{aligned}
& \Rightarrow \quad \vec{a} \times(\vec{a} \times \vec{b})=\vec{a} \times(\hat{i}-\hat{j}) \\
& \Rightarrow \quad(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}=\hat{i}+\hat{j}+2 \hat{k} \\
& \Rightarrow \quad \vec{a}-3 \vec{b}=\hat{i}+\hat{j}+2 \hat{k} \\
& \Rightarrow \quad 2 \vec{a}-6 \vec{b}=2 \hat{i}+2 \hat{j}+4 \hat{k} \\
& \Rightarrow \quad \vec{a}-6 \vec{b}=3 \hat{i}+3 \hat{j}+3 \hat{k}
\end{aligned}
$$

80. The foot of perpendicular of the point $(2,0,5)$ on the line $\frac{x+1}{2}=\frac{y-1}{5}=\frac{z+1}{-1}$ is $(\alpha, \beta, \gamma)$. Then. Which of the following is NOT correct?
(1) $\frac{\alpha \beta}{\gamma}=\frac{4}{15}$
(2) $\frac{\alpha}{\beta}=-8$
(3) $\frac{\beta}{\gamma}=-5$
(4) $\frac{\gamma}{\alpha}=\frac{5}{8}$

Official Ans. by NTA (3)
Allen Ans. (3)

Sol. $L: \frac{x+1}{2}=\frac{y-1}{5}=\frac{z+1}{-1}=\lambda$ (let)


Let foot of perpendicular is
$\mathrm{P}(2 \lambda-1,5 \lambda+1,-\lambda-1)$
$\overrightarrow{\mathrm{PA}}=(3-2 \lambda) \hat{\mathrm{i}}-(5 \lambda+1) \hat{\mathrm{j}}+(6+\lambda) \hat{\mathrm{k}}$

Direction ratio of line $\Rightarrow \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-\hat{\mathrm{k}}$

Now, $\Rightarrow \overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{b}}=0$
$\Rightarrow 2(3-2 \lambda)-5(5 \lambda+1)-(6+\lambda)=0$
$\Rightarrow \lambda=\frac{-1}{6}$
$\mathrm{P}(2 \lambda-1,5 \lambda+1,-\lambda-1) \equiv \mathrm{P}(\alpha, \beta, \gamma)$
$\Rightarrow \alpha=2\left(-\frac{1}{6}\right)-1=-\frac{4}{3} \Rightarrow \alpha=-\frac{4}{3}$
$\Rightarrow \beta=5\left(-\frac{1}{6}\right)+1=\frac{1}{6} \Rightarrow \beta=\frac{1}{6}$
$\Rightarrow \gamma=-\lambda-1=\frac{1}{6}-1 \Rightarrow \gamma=-\frac{5}{6}$
$\therefore$ Check options

## SECTION-B

81. For the two positive numbers $a, b$, if $a, b$ and $\frac{1}{18}$ are in a geometric progression, while $\frac{1}{\mathrm{a}}, 10$ and $\frac{1}{\mathrm{~b}}$ are in an arithmetic progression, then, $16 a+12 b$ is equal to $\qquad$ .
Official Ans. by NTA 3

## Allen Ans. 3

Sol. $\quad \mathrm{a}, \mathrm{b}, \frac{1}{18} \rightarrow \mathrm{GP}$
$\frac{a}{18}=b^{2}$
$\frac{1}{\mathrm{a}}, 10, \frac{1}{\mathrm{~b}} \rightarrow \mathrm{AP}$
$\frac{1}{a}+\frac{1}{b}=20$
$\Rightarrow \mathrm{a}+\mathrm{b}=20 \mathrm{ab}$, from eq. (i); we get
$\Rightarrow 18 b^{2}+b=360 b^{3}$
$\Rightarrow 360 b^{2}-18 b-1=0 \quad\{\because b \neq 0\}$
$\Rightarrow \mathrm{b}=\frac{18 \pm \sqrt{324+1440}}{720}$
$\Rightarrow \mathrm{b}=\frac{18+\sqrt{1764}}{720} \quad\{\because \mathrm{~b}>0\}$
$\Rightarrow \mathrm{b}=\frac{1}{12}$
$\Rightarrow \mathrm{a}=18 \times \frac{1}{144}=\frac{1}{8}$
Now, $16 a+12 b=16 \times \frac{1}{8}+12 \times \frac{1}{12}=3$
82. Points $P(-3,2), Q(9,10)$ and $R(\alpha, 4)$ lie on a circle $C$ with PR as its diameter. The tangents to C at the points Q and R intersect at the point S . If S lies on the line $2 \mathrm{x}-\mathrm{ky}=1$, then k is equal to $\qquad$ .

Official Ans. by NTA 3
Allen Ans. 3
Sol. $\mathrm{m}_{\mathrm{PQ}} \cdot \mathrm{m}_{\mathrm{QR}}=-1$
$\Rightarrow \frac{10-2}{9+3} \times \frac{10-4}{9-\alpha}=-1 \Rightarrow \alpha=13$
$\mathrm{m}_{0 \mathrm{P}} \cdot \mathrm{m}_{\mathrm{QS}}=-1 \Rightarrow \mathrm{~m}_{\mathrm{QS}}=-\frac{4}{7}$


Equation of QS
$y-10=-\frac{4}{7}(x-9)$
$\Rightarrow 4 \mathrm{x}+7 \mathrm{y}=106$
$\mathrm{m}_{0 \mathrm{R}} \cdot \mathrm{m}_{\mathrm{RS}}=-1 \Rightarrow \mathrm{~m}_{\mathrm{RS}}=-8$
Equation of RS
$y-4=-8(x-13)$
$\Rightarrow 8 \mathrm{x}+\mathrm{y}=108$
Solving eq. (1) \& (2)
$\mathrm{x}_{1}=\frac{25}{2} \mathrm{y}_{1}=8$
$\mathrm{S}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies on $2 \mathrm{x}-\mathrm{ky}=1$
$25-8 \mathrm{k}=1$
$\Rightarrow 8 \mathrm{k}=24$
$\Rightarrow \mathrm{k}=3$
83. Let $\mathrm{a} \in \mathrm{R}$ and let $\alpha, \beta$ be the roots of the equation $x^{2}+60^{\frac{1}{4}} x+a=0$. If $\alpha^{4}+\beta^{4}=-30$, then the product of all possible values of $a$ is $\qquad$ .
Official Ans. by NTA 45
Allen Ans. 45
Sol. $\quad x^{2}+60^{\frac{1}{4}} x+a=0 \nearrow_{\searrow \beta}^{\alpha}$
$\alpha+\beta=-60^{\frac{1}{4}} \quad \& \quad \alpha \beta=a$
Given $\alpha^{4}+\beta^{4}=-30$
$\Rightarrow\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}=-30$
$\Rightarrow\left\{(\alpha+\beta)^{2}-2 \alpha \beta\right\}^{2}-2 \mathrm{a}^{2}=-30$
$\Rightarrow\left\{60^{\frac{1}{2}}-2 \mathrm{a}\right\}^{2}-2 \mathrm{a}^{2}=-30$
$\Rightarrow 60+4 \mathrm{a}^{2}-4 \mathrm{a} \times 60^{\frac{1}{2}}-2 \mathrm{a}^{2}=-30$
$\Rightarrow 2 \mathrm{a}^{2}-4.60^{\frac{1}{2}} \mathrm{a}+90=0$
Product $=\frac{90}{2}=45$
84. Suppose Anil's mother wants to give 5 whole fruits to Anil from a basket of 7 red apples, 5 white apples and 8 oranges. If in the selected 5 fruits, at least 2 orange, at least one red apple and at least one white apple must be given, then the number of ways, Anil's mother can offer 5 fruits to Anil is

Official Ans. by NTA 6860
Allen Ans. 6860
Sol. 7 Red apple(RA), 5 white apple(WA), 8 oranges (O) 5 fruits to be selected (Note:- fruits taken different) Possible selections :- (2O, 1RA, 2WA) or (2O, 2RA, 1WA) or (3O, 1RA, 1WA)
$\Rightarrow{ }^{8} \mathrm{C}_{2}{ }^{7} \mathrm{C}_{1}{ }^{5} \mathrm{C}_{2}+{ }^{8} \mathrm{C}_{2}{ }^{7} \mathrm{C}_{2}{ }^{5} \mathrm{C}_{1}+{ }^{8} \mathrm{C}_{3}{ }^{7} \mathrm{C}_{1}{ }^{5} \mathrm{C}_{1}$
$\Rightarrow 1960+2940+1960$
$\Rightarrow 6860$
85. If $m$ and $n$ respectively are the numbers of positive and negative value of $\theta$ in the interval $[-\pi, \pi]$ that satisfy the equation $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$, then mn is equal to $\qquad$ .
Official Ans. by NTA 25
Allen Ans. 25

Sol. $\quad \cos 2 \theta \cdot \cos \frac{\theta}{2}=\cos 3 \theta \cdot \cos \frac{9 \theta}{2}$
$\Rightarrow 2 \cos 2 \theta \cdot \cos \frac{\theta}{2}=2 \cos \frac{9 \theta}{2} \cdot \cos 3 \theta$
$\Rightarrow \cos \frac{5 \theta}{2}+\cos \frac{3 \theta}{2}=\cos \frac{15 \theta}{2}+\cos \frac{3 \theta}{2}$
$\Rightarrow \cos \frac{15 \theta}{2}=\cos \frac{5 \theta}{2}$
$\Rightarrow \frac{15 \theta}{2}=2 \mathrm{k} \pi \pm \frac{5 \theta}{2}$
$5 \theta=2 \mathrm{k} \pi$ or $10 \theta=2 \mathrm{k} \pi$
$\theta=\frac{2 \mathrm{k} \pi}{5} \quad \theta=\frac{\mathrm{k} \pi}{5}$
$\therefore \theta=\left\{-\pi, \frac{-4 \pi}{5}, \frac{-3 \pi}{5}, \frac{-2 \pi}{5}, \frac{-\pi}{5}, 0, \frac{\pi}{5}, \frac{2 \pi}{5}, \frac{3 \pi}{5}, \frac{4 \pi}{5}, \pi\right\}$
$\mathrm{m}=5, \mathrm{n}=5$
$\therefore \mathrm{m} . \mathrm{n}=25$
86. If $\int_{\frac{1}{3}}^{3} \log _{e} x \left\lvert\, d x=\frac{m}{n} \log _{e}\left(\frac{n^{2}}{e}\right)\right.$, where $m$ and $n$ are coprime natural numbers, then $\mathrm{m}^{2}+\mathrm{n}^{2}-5$ is equal to $\qquad$ .
Official Ans. by NTA 20
Allen Ans. 20
Sol. $\quad \int_{\frac{1}{3}}^{3}|\ell n \mathrm{n}| \mathrm{dx}=\int_{\frac{1}{3}}^{1}(-\ell \operatorname{nn}) \mathrm{dx}+\int_{1}^{3}(\ell \mathrm{n} \mathrm{x}) \mathrm{dx}$
$=-[x \ell n x-x]_{1 / 3}^{1}+[x \ell n x-x]_{1}^{3}$
$=-\left[-1-\left(\frac{1}{3} \ln \frac{1}{3}-\frac{1}{3}\right)\right]+[3 \ln 3-3-(-1)]$
$=\left[-\frac{2}{3}-\frac{1}{3} \ln \frac{1}{3}\right]+[3 \ln 3-2]$
$=-\frac{4}{3}+\frac{8}{3} \ln 3$
$=\frac{4}{3}(2 \ln 3-1)$
$=\frac{4}{3}\left(\ln \frac{9}{\mathrm{e}}\right)$
$\therefore \mathrm{m}=4, \mathrm{n}=3$
Now, $\mathrm{m}^{2}+\mathrm{n}^{2}-5=16+9-5=20$
87. The remainder when $(2023)^{2023}$ is divided by 35 is $\qquad$ .

Official Ans. by NTA 7
Allen Ans. 7
Sol. (2023) ${ }^{2023}$
$=(2030-7)^{2023}$
$=(35 \mathrm{~K}-7)^{2023}$
$={ }^{2023} \mathrm{C}_{0}(35 \mathrm{~K})^{2023}(-7)^{0}+{ }^{2023} \mathrm{C}_{1}(35 \mathrm{~K})^{2022}(-7)+$
..... $\qquad$ $+{ }^{2023} \mathrm{C}_{2023}(-7)^{2023}$
$=35 \mathrm{~N}-7^{2023}$.
Now, $-7^{2023}=-7 \times 7^{2022}=-7\left(7^{2}\right)^{1011}$
$=-7(50-1)^{1011}$
$=-7\left({ }^{1011} \mathrm{C}_{0} 50^{1011}-{ }^{1011} \mathrm{C}_{1}(50)^{1010}+\ldots . . .{ }^{1011} \mathrm{C}_{1011}\right)$
$=-7(5 \lambda-1)$
$=-35 \lambda+7$
$\therefore$ when $(2023)^{2023}$ is divided by 35 remainder is 7
88. If the shortest distance between the line joining the points $(1,2,3)$ and $(2,3,4)$, and the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-2}{0}$ is $\alpha$, then $28 \alpha^{2}$ is equal to $\qquad$ -.
Official Ans. by NTA 18
Allen Ans. 18
Sol. $\quad \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}) \quad \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{p}}$

$$
\overrightarrow{\mathrm{r}}=(+\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}) \quad \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{b}}+\mu \overrightarrow{\mathrm{q}}
$$

$\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 1 \\ 2 & -1 & 0\end{array}\right|=\hat{\mathrm{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathrm{k}}$
$d=\left|\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|}\right|$
$d=\left|\frac{(-3 \hat{j}-\hat{k}) \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})}{\sqrt{14}}\right|$
$=\left|\frac{-6+3}{\sqrt{14}}\right|=\frac{3}{\sqrt{14}}$
$\alpha=\frac{3}{\sqrt{14}}$
Now, $28 \alpha^{2}=22^{2} 8 \times \frac{9}{14}=18$
89. $25 \%$ of the population are smokers. A smoker has 27 times more chances to develop lung cancer then a non-smoker. A person is diagnosed with lung cancer and the probability that this person is a smoker is $\frac{\mathrm{k}}{10}$.Then the value of k is $\qquad$ .

Official Ans. by NTA 9
Allen Ans. 9
Sol. $\mathrm{E}_{1}$ : Smokers
$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{4}$
$\mathrm{E}_{2}$ : non-smokers
$P\left(E_{2}\right)=\frac{3}{4}$
E: diagnosed with lung cancer
$\mathrm{P}\left(\mathrm{E} / \mathrm{E}_{1}\right)=\frac{27}{28}$
$\mathrm{P}\left(\mathrm{E} / \mathrm{E}_{2}\right)=\frac{1}{28}$
$P\left(E_{1} / E\right)=\frac{P\left(E_{1}\right) P\left(E / E_{1}\right)}{P(E)}$
$=\frac{\frac{1}{4} \times \frac{27}{28}}{\frac{1}{4} \times \frac{27}{28}+\frac{3}{4} \times \frac{1}{28}}=\frac{27^{9}}{3 \sigma_{10}}=\frac{9}{10}$
$\mathrm{K}=9$
90. A triangle is formed by X - axis, Y - axis and the line $3 x+4 y=60$. Then the number of points $P(a$, b)which lie strictly inside the triangle, where $a$ is an integer and $b$ is a multiple of $a$, is $\qquad$ .
Official Ans. by NTA 31
Allen Ans. 31

Sol. If $\mathrm{x}=1, \mathrm{y}=\frac{57}{4}=14.25$

$(1,1)(1,2)-(1,14) \quad \Rightarrow 14 \mathrm{pts}$.
If $x=2, y=\frac{27}{2}=13.5$
$(2,2)(2,4) \ldots(2,12) \quad \Rightarrow 6$ pts.
If $x=3, y=\frac{51}{4}=12.75$
$(3,3)(3,6)-(3,12) \quad \Rightarrow 4 \mathrm{pts}$.
If $x=4, y=12$
$(4,4)(4,8) \quad \Rightarrow 2$ pts.
If $x=5 . y=\frac{45}{4}=11.25$
$(5,5),(5,10) \quad \Rightarrow 2 \mathrm{pts}$.
If $x=6, y=\frac{21}{2}=10.5$
$(6,6) \quad \Rightarrow 1 \mathrm{pt}$.
If $x=7, y=\frac{39}{4}=9.75$
$(7,7)$
$\Rightarrow 1 \mathrm{pt}$.
If $x=8, y=9$
$(8,8)$
$\Rightarrow 1 \mathrm{pt}$.
If $x=9 y=\frac{33}{4}=8.25 \Rightarrow$ no pt.
Total $=31 \mathrm{pts}$.

