JEE Main 2023 (1st Attempted) (Shift - 01 Mathematics Paper)

25.01.2023

MATHEMATICS

SECTION-A

- 61. Let M be the maximum value of the product of two positive integers when their sum is 66. Let the sample space $S = \left\{ x \in Z : x(66-x) \ge \frac{5}{9}M \right\}$ and the event $A = \left\{ x \in S : x \text{ is a multiple of 3} \right\}$.
 - $(1) \frac{15}{44}$
- (2) $\frac{1}{3}$
- (3) $\frac{1}{5}$
- (4) $\frac{7}{22}$

Official Ans. by NTA (2) Allen Ans. (2)

Then P(A) is equal to

Sol. $M = 33 \times 33$ $x(66-x) \ge \frac{5}{9} \times 33 \times 33$

 $11 \le x \le 55$

A: {12, 15, 18, 54}

$$P(A) = \frac{15}{45} = \frac{1}{3}$$

- 62. Let \vec{a} , \vec{b} and \vec{c} be three non zero vectors such that $\vec{b} \cdot \vec{c} = 0$ and $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} \vec{c}}{2}$. If \vec{d} be a vector such that $\vec{b} \cdot \vec{d} = \vec{a} \cdot \vec{b}$, then $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$ is equal to
 - (1) $\frac{3}{4}$
- (2) $\frac{1}{2}$
- $(3) -\frac{1}{4}$
- $(4) \frac{1}{4}$

Official Ans. by NTA (4) Allen Ans. (4)

Sol. $(\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = \frac{\vec{b} - \vec{c}}{2}$ $\vec{a} \cdot \vec{c} = \frac{1}{2}, \ \vec{a} \cdot \vec{b} = \frac{1}{2}$ $\therefore \vec{b} \cdot \vec{d} = \frac{1}{2}$

TEST PAPER WITH SOLUTION

 $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{a} \cdot (\vec{b} \times (\vec{c} \times \vec{d}))$

 $= \vec{a} \cdot ((\vec{b} \cdot \vec{d}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{d})$

 $= (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) = \frac{1}{4}$

63. Let y = y(x) be the solution curve of the differential equation $\frac{dy}{dx} = \frac{y}{x}(1 + xy^2(1 + \log_e x))$,

x > 0, y(1) = 3. Then $\frac{y^2(x)}{9}$ is equal to:

$$(1) \frac{x^2}{5 - 2x^3(2 + \log_e x^3)}$$

(2)
$$\frac{x^2}{2x^3(2 + \log_e x^3) - 3}$$

(3)
$$\frac{x^2}{3x^3(1+\log_2 x^2)-2}$$

$$(4) \frac{x^2}{7 - 3x^3(2 + \log_a x^2)}$$

Official Ans. by NTA (1) Allen Ans. (1)

Sol.
$$\frac{dy}{dx} - \frac{y}{x} = y^3 (1 + \log_e x)$$

$$\frac{1}{y^3} \frac{dy}{dx} - \frac{1}{xy^2} = 1 + \log_e x$$

Let
$$-\frac{1}{y^2} = t \Rightarrow \frac{2}{y^3} \frac{dy}{dx} = \frac{dt}{dx}$$

$$\therefore \frac{dt}{dx} + \frac{2t}{x} = 2(1 + \log_e x)$$

$$I.F. = e^{\int \frac{2}{x} dx} = x^2$$

$$\frac{-x^2}{y^2} = \frac{2}{3} \left(\left(1 + \log_e x \right) x^3 - \frac{x^3}{3} \right) + C$$

$$y(1) = 3$$

$$\frac{y^2}{9} = \frac{x^2}{5 - 2x^3(2 + \log_e x^3)}$$

OR

$$xdy = ydx + \overline{xy^3(1 + \log_e x)}dx$$

$$\frac{xdy - ydx}{y^3} = x(1 + \log_e x)dx$$

$$-\frac{x}{y}d\left(\frac{x}{y}\right) = x^2(1 + \log_e x)dx$$

$$-\left(\frac{x}{y}\right)^2 = 2\int x^2(1 + \log_e x)dx$$

64. The value of

$$\lim_{n\to\infty} \frac{1+2-3+4+5-6+...+(3n-2)+(3n-1)-3n}{\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}}$$

is:

(1)
$$\frac{\sqrt{2}+1}{2}$$

(2)
$$3(\sqrt{2}+1)$$

(3)
$$\frac{3}{2}(\sqrt{2}+1)$$

(4)
$$\frac{3}{2\sqrt{2}}$$

Official Ans. by NTA (3)

Allen Ans. (3)

Sol.
$$\lim_{n \to \infty} \frac{0+3+6+9+\dots n \text{ terms}}{\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}}$$

 $\lim_{n \to \infty} \frac{3n(n-1)}{2(\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4})}$
 $=\frac{3}{2(\sqrt{2}-1)} = \frac{3}{2}(\sqrt{2}+1)$

65. The points of intersection of the line ax + by = 0, $(a \ne b)$ and the circle $x^2 + y^2 - 2x = 0$ are $A(\alpha, 0)$ and $B(1, \beta)$. The image of the circle with AB as a diameter in the line x + y + 2 = 0 is:

(1)
$$x^2 + y^2 + 5x + 5y + 12 = 0$$

(2)
$$x^2 + y^2 + 3x + 5y + 8 = 0$$

(3)
$$x^2 + y^2 + 3x + 3y + 4 = 0$$

(4)
$$x^2 + y^2 - 5x - 5y + 12 = 0$$

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. Only possibility $\alpha = 0$, $\beta = 1$

 \therefore equation of circle $x^2 + y^2 - x - y = 0$

Image of circle in x + y + 2 = 0 is

$$x^2 + y^2 + 5x + 5y + 12 = 0$$

by the students in a test are 10 and 4 respectively. Later, the marks of one of the students is increased from 8 to 12. If the new mean of the marks is 10.2. then their new variance is equal to:

(1)4.04

(2) 4.08

(3) 3.96

(4) 3.92

Official Ans. by NTA (3)

Allen Ans. (3)

Sol.
$$\sum_{i=1}^{n} x_i = 10n$$

$$\sum_{i=1}^{n} x_i - 8 + 12 = (10.2)n$$
 :: $n = 20$

Now
$$\frac{\sum_{i=1}^{20} x_i^2}{20} - (10)^2 = 4 \Rightarrow \sum_{i=1}^{20} x_i^2 = 2080$$

$$\frac{\sum_{i=1}^{20} x_i^2 - 8^2 + 12^2}{20} - (10.2)^2$$

$$= 108 - 104.04 = 3.96$$

67. Let

$$y(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^{16})$$
.

Then y'-y'' at x=-1 is equal to

(1)976

(2)464

(3)496

(4)944

Official Ans. by NTA (3)

Allen Ans. (3)

Sol.
$$y = \frac{1 - x^{32}}{1 - x} \Rightarrow y - xy = 1 - x^{32}$$

$$y'-xy'-y=-32x^{31}$$

$$y''-xy''-y'-y'=-(32)(31)x^{30}$$

at
$$x = -1 \implies y' - y'' = 496$$

Final JEE-Main Exam January, 2023/25-01-2023/Morning Session

- The vector $\vec{a} = -\hat{i} + 2\hat{j} + \hat{k}$ is rotated through a 68. right angle, passing through the y-axis in its way and the resulting vector is b. Then the projection of $3\vec{a} + \sqrt{2}\vec{b}$ on $\vec{c} = 5\hat{i} + 4\hat{j} + 3\hat{k}$ is
 - (1) $3\sqrt{2}$
- (2) 1
- (3) $\sqrt{6}$
- (4) $2\sqrt{3}$

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. $\vec{b} = \lambda \vec{a} \times (\vec{a} \times \hat{i})$

$$\Rightarrow \vec{b} = \lambda(-2\hat{i} - 2\hat{j} + 2\hat{k})$$

$$|\vec{\mathbf{b}}| = |\vec{\mathbf{a}}|$$
 $\therefore \sqrt{6} = \sqrt{12} |\lambda| \Rightarrow \lambda = \pm \frac{1}{\sqrt{2}}$

 $\left(\lambda = \frac{1}{\sqrt{2}} \text{ rejected } : \vec{b} \text{ makes acute angle with y axis}\right)$

$$\vec{b} = -\sqrt{2}(-\hat{i} - \hat{j} + \hat{k})$$

$$\frac{(3\vec{a} + \sqrt{2}\vec{b}) \cdot \vec{c}}{|\vec{c}|} = 3\sqrt{2}$$

69. minimum function value the

$$f(x) = \int_{0}^{2} e^{|x-t|} dt$$
 is

- (1) 2(e-1)
- (2) 2e-1

(3) 2

(4) e(e-1)

Official Ans. by NTA (1)

Allen Ans. (1)

For $x \le 0$ Sol.

$$f(x) = \int_{0}^{2} e^{t-x} dt = e^{-x} (e^{2} - 1)$$

For 0 < x < 2

$$f(x) = \int_{0}^{x} e^{x-t} dt + \int_{0}^{2} e^{t-x} dt = e^{x} + e^{2-x} - 2$$

For $x \ge 2$

$$f(x) = \int_{0}^{2} e^{x-t} dt = e^{x-2} (e^{2} - 1)$$

For $x \le 0$, f(x) is \downarrow and $x \ge 2$, f(x) is \uparrow

 \therefore Minimum value of f(x) lies in $x \in (0,2)$

Applying $A.M \ge G.M$,

minimum value of f(x) is 2(e-1)

Consider the lines L₁ and L₂ given by

$$L_1: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z-2}{2}$$

$$L_2: \frac{x-2}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$

A line L_3 having direction ratios 1, -1, -2, intersects L₁ and L₂ at the points P and Q respectively. Then the length of line segment PQ is

- (1) $2\sqrt{6}$
- (2) $3\sqrt{2}$
- (3) $4\sqrt{3}$
- (4)4

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. Let $P = (2\lambda + 1, \lambda + 3, 2\lambda + 2)$

Let
$$Q = (\mu + 2, 2\mu + 2, 3\mu + 3)$$

$$\Rightarrow \frac{2\lambda - \mu - 1}{1} = \frac{\lambda - 2\mu + 1}{-1} = \frac{2\lambda - 3\mu - 1}{-2}$$

$$\Rightarrow \lambda = \mu = 3 \Rightarrow P(7,6,8)$$
 and Q(5,8,12)

$$PQ = 2\sqrt{6}$$

Let x = 2 be a local minima of the function 71. $f(x) = 2x^4 - 18x^2 + 8x + 12$, $x \in (-4,4)$. If M is

> local maximum value of the function f in (-4, 4), then M =

- (1) $12\sqrt{6} \frac{33}{2}$ (2) $12\sqrt{6} \frac{31}{2}$
- (3) $18\sqrt{6} \frac{33}{2}$ (4) $18\sqrt{6} \frac{31}{2}$

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. $f'(x) = 8x^3 - 36x + 8 = 4(2x^3 - 9x + 2)$

$$f'(x) = 0$$

$$\therefore x = \frac{\sqrt{6} - 2}{2}$$

$$f(x) = \left(x^2 - 2x - \frac{9}{2}\right) \left(2x^2 + 4x - 1\right) + 24x + 7.5$$

$$\therefore f\left(\frac{\sqrt{6}-2}{2}\right) = M = 12\sqrt{6} - \frac{33}{2}$$

72. Let
$$z_1 = 2 + 3i$$
 and $z_2 = 3 + 4i$. The set

$$S = \left\{ z \in C : |z - z_1|^2 - |z - z_2|^2 = |z_1 - z_2|^2 \right\}$$

represents a

- (1) straight line with sum of its intercepts on the coordinate axes equals 14
- (2) hyperbola with the length of the transverse axis 7
- (3) straight line with the sum of its intercepts on the coordinate axes equals -18
- (4) hyperbola with eccentricity 2

Official Ans. by NTA (1)

Allen Ans. (1)

Sol.
$$((x-2)^2 + (y-3)^2) - ((x-3)^2 - (y-4)^2) = 1+1$$

 $\Rightarrow x + y = 7$

- 73. The distance of the point $(6,-2\sqrt{2})$ from the common tangent y = mx + c, m > 0, of the curves $x = 2y^2$ and $x = 1 + y^2$ is
 - $(1) \frac{1}{3}$
 - (2) 5
 - (3) $\frac{14}{3}$
 - (4) $5\sqrt{3}$

Official Ans. by NTA (2)

Allen Ans. (2)

Sol. For

$$y^2 = \frac{x}{2}$$
, T: $y = mx + \frac{1}{8m}$

For tangent to $y^2 + 1 = x$

$$\Rightarrow \left(mx + \frac{1}{8m}\right)^2 + 1 = x$$

$$D = 0 \implies m = \frac{1}{2\sqrt{2}}$$

$$\therefore T: x - 2\sqrt{2}y + 1 = 0$$

$$d = \left| \frac{6+8+1}{\sqrt{9}} \right| = 5$$

74. Let S_1 and S_2 be respectively the sets of all $a \in R - \{0\} \quad \text{for which the system of linear}$ equations

$$ax + 2ay - 3az = 1$$

$$(2a+1)x + (2a+3)y + (a+1)z = 2$$

$$(3a+5)x+(a+5)y+(a+2)z=3$$

has unique solution and infinitely many solutions. Then

- (1) $n(S_1) = 2$ and S_2 is an infinite set
- (2) S_1 is an infinite set an $n(S_2) = 2$
- (3) $S_1 = \Phi$ and $S_2 = \mathbb{R} \{0\}$
- (4) $S_1 = \mathbb{R} \{0\}$ and $S_2 = \Phi$

Official Ans. by NTA (4) Allen Ans. (4)

Sol.
$$\Delta = \begin{vmatrix} a & 2a & -3a \\ 2a+1 & 2a+3 & a+1 \\ 3a+5 & a+5 & a+2 \end{vmatrix}$$

$$= a(15a^2 + 31a + 36) = 0 \Rightarrow a = 0$$

$$\Delta \neq 0$$
 for all $a \in R - \{0\}$

Hence
$$S_1 = R - \{0\}$$
 $S_2 = \Phi$

75. Let
$$f(x) = \int \frac{2x}{(x^2+1)(x^2+3)} dx$$
.

If $f(3) = \frac{1}{2} (\log_e 5 - \log_e 6)$, then f(4) is equal to

(1)
$$\frac{1}{2} (\log_e 17 - \log_e 19)$$

- (2) $\log_{e} 17 \log_{e} 18$
- (3) $\frac{1}{2} (\log_e 19 \log_e 17)$
- (4) $\log_{e} 19 \log_{e} 20$

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. Put
$$x^2 = t$$

$$\int \frac{dt}{(t+1)(t+3)} = \frac{1}{2} \int \left(\frac{1}{t+1} - \frac{1}{t+3} \right) dt$$

$$f(x) = \frac{1}{2} \ln \left(\frac{x^2 + 1}{x^2 + 3} \right) + C$$

$$f(3) = \frac{1}{2} (\ln 10 - \ln 12) + C$$

$$\Rightarrow$$
 C = 0

$$f(4) = \frac{1}{2} \ln \left(\frac{17}{19} \right)$$

Final JEE-Main Exam January, 2023/25-01-2023/Morning Session

- 76. The statement $(p \land (\sim q)) \Rightarrow (p \Rightarrow (\sim q))$ is
 - (1) equivalent to $(\sim p) \lor (\sim q)$
 - (2) a tautology
 - (3) equivalent to $p \vee q$
 - (4) a contradiction

Official Ans. by NTA (2)

Allen Ans. (2)

Sol.
$$(p \land \neg q) \rightarrow (p \rightarrow \neg q)$$

$$\equiv (\sim (p \land \sim q)) \lor (\sim p \lor \sim q)$$

$$\equiv (\sim p \lor q) \lor (\sim p \lor \sim q)$$

$$\equiv \sim p \lor t \equiv t$$

77. Let $f:(0,1) \to \mathbb{R}$ be a function defined by

$$f(x) = \frac{1}{1 - e^{-x}}$$
, and

g(x) = (f(-x) - f(x)). Consider two statements

- (I) g is an increasing function in (0, 1)
- (II) g is one-one in (0, 1)

Then,

- (1) Only (I) is true
- (2) Only (II) is true
- (3) Neither (I) nor (II) is true
- (4) Both (I) and (II) are true

Official Ans. by NTA (4)

Allen Ans. (4)

Sol.
$$g(x) = f(-x) - f(x) = \frac{1 + e^x}{1 - e^x}$$

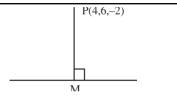
$$\Rightarrow$$
 g'(x) = $\frac{2e^x}{(1-e^x)^2} > 0$

- \Rightarrow g is increasing in (0, 1)
- \Rightarrow g is one-one in (0, 1)
- **78.** The distance of the point P(4, 6, -2) from the line passing through the point (-3, 2, 3) and parallel to a line with direction ratios 3, 3, -1 is equal to:
 - (1) 3
 - (2) $\sqrt{6}$
 - (3) $2\sqrt{3}$
 - (4) $\sqrt{14}$

Official Ans. by NTA (4)

Allen Ans. (4)

Sol.



Equation of line is $\frac{x+3}{3} = \frac{y-2}{3} = \frac{z-3}{-1} = \lambda$

$$M(3\lambda - 3, 3\lambda + 2, 3 - \lambda)$$

D.R of PM
$$(3\lambda - 7, 3\lambda - 4, 5 - \lambda)$$

Since PM is perpendicular to line

$$\Rightarrow 3(3\lambda - 7) + 3(3\lambda - 4) - 1(5 - \lambda) = 0$$

$$\Rightarrow \lambda = 2$$

$$\Rightarrow$$
 M(3,8,1) \Rightarrow PM = $\sqrt{14}$

79. Let x, y, z > 1 and

$$A = \begin{bmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 2 & \log_y z \\ \log_z x & \log_z y & 3 \end{bmatrix}.$$

Then |adj(adj A²)| is equal to

- $(1) 6^4$
- $(2) 2^8$
- $(3) 4^8$
- $(4) 2^4$

Official Ans. by NTA (2)

Allen Ans. (2)

Sol.
$$|A| = \frac{1}{\log x \cdot \log y \cdot \log z} \begin{vmatrix} \log x & \log y & \log z \\ \log x & 2\log y & \log z \\ \log x & \log y & 3\log z \end{vmatrix} = 2$$

$$\Rightarrow \left| \operatorname{adj}(\operatorname{adj} A^2) \right| = \left| A^2 \right|^4 = 2^8$$

80. If a_r is the coefficient of x^{10-r} in the Binomial

expansion of
$$(1 + x)^{10}$$
, then $\sum_{r=1}^{10} r^3 \left(\frac{a_r}{a_{r-1}}\right)^2$ is equal

to

- (1)4895
- (2) 1210
- (3) 5445
- (4) 3025

Official Ans. by NTA (2)

Allen Ans. (2)

Sol.
$$a_r = {}^{10}C_{10-r} = {}^{10}C_r$$

$$\Rightarrow \sum_{r=1}^{10} r^3 \left(\frac{{}^{10}C_r}{{}^{10}C_{r-1}}\right)^2 = \sum_{r=1}^{10} r^3 \left(\frac{11-r}{r}\right)^2 = \sum_{r=1}^{10} r(11-r)^2$$

$$= \sum_{r=1}^{10} (121r + r^3 - 22r^2) = 1210$$

SECTION-B

81. Let $S = \{1, 2, 3, 5, 7, 10, 11\}$. The number of nonempty subsets of S that have the sum of all elements a multiple of 3, is

Official Ans. by NTA (43)

Allen Ans. (43)

Sol. Elements of the type 3k = 3

Elements of the type 3k + 1 = 1, 7, 9

Elements of the type 3k + 2 = 2, 5, 11

Subsets containing one element $S_1 = 1$

Subsets containing two elements

$$S_2 = {}^3C_1 \times {}^3C_1 = 9$$

Subsets containing three elements

$$S_3 = {}^3C_1 \times {}^3C_1 + 1 + 1 = 11$$

Subsets containing four elements

$$S_4 = {}^3C_3 + {}^3C_3 + {}^3C_2 \times {}^3C_2 = 11$$

Subsets containing five elements

$$S_5 = {}^3C_2 \times {}^3C_2 \times 1 = 9$$

Subsets containing six elements $S_6 = 1$

Subsets containing seven elements $S_7 = 1$

$$\Rightarrow$$
 sum = 43

82. For some $a,b,c \in \mathbb{N}$, let f(x) = ax - 3 and

$$g(x) = x^b + c, x \in \mathbb{R}$$
. If $(fog)^{-1}(x) = \left(\frac{x-7}{2}\right)^{1/3}$,

then (fog)(ac) + (gof)(b) is equal to _____.

Official Ans. by NTA (2039)

Allen Ans. (2039)

Sol. Let fog(x) = h(x)

$$\Rightarrow h^{-1}(x) = \left(\frac{x-7}{2}\right)^{\frac{1}{3}}$$

$$\Rightarrow$$
 h(x) = fog(x) = 2x³ + 7

$$fog(x) = a(x^b + c) - 3$$

$$\Rightarrow$$
 a = 2, b = 3, c = 5

$$\Rightarrow$$
 fog(ac) = fog(10) = 2007

$$g(f(x) = (2x - 3)^3 + 5$$

$$\Rightarrow$$
 gof(b) = gof(3) = 32

$$\Rightarrow$$
 sum = 2039

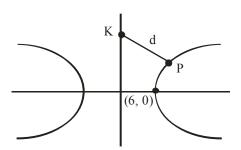
83. The vertices of a hyperbola H are $(\pm 6,0)$ and its eccentricity is $\frac{\sqrt{5}}{2}$. Let N be the normal to H at a point in the first quadrant and parallel to the line $\sqrt{2}x + y = 2\sqrt{2}$. If d is the length of the line segment of N between H and the y-axis then d^2 is

Official Ans. by NTA (216)

Allen Ans. (216)

equal to .

Sol.



H:
$$\frac{x^2}{36} - \frac{y^2}{9} = 1$$

equation of normal is $6x \cos\theta + 3y \cot\theta = 45$

slope =
$$-2 \sin \theta = -\sqrt{2}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Equation of normal is $\sqrt{2}x + y = 15$

P: (a $\sec\theta$, b $\tan\theta$)

$$\Rightarrow$$
 P(6 $\sqrt{2}$.3) and K(0.15)

$$d^2 = 216$$

84. Let

$$S = \left\{ \alpha : \log_2(9^{2\alpha - 4} + 13) - \log_2\left(\frac{5}{2}.3^{2\alpha - 4} + 1\right) = 2 \right\}.$$

Then the maximum value of $\beta \, \text{for}$ which the

equation
$$x^2 - 2\left(\sum_{\alpha \in S} \alpha\right)^2 x + \sum_{\alpha \in S} (\alpha + 1)^2 \beta = 0$$
 has

real roots, is _____.

Official Ans. by NTA (25)

Allen Ans. (25)

Sol.
$$\log_2(9^{2\alpha-4}+13)-\log_2\left(\frac{5}{2}.3^{2\alpha-4}+1\right)=2$$

$$\Rightarrow \frac{9^{2\alpha-4} + 13}{\frac{5}{2}3^{2\alpha-4} + 1} = 4$$

$$\Rightarrow \alpha = 2$$
 or

$$\sum_{\alpha \in S} \alpha = 5$$
 and $\sum_{\alpha \in S} (\alpha + 1)^2 = 25$

$$\Rightarrow$$
 x² - 50x + 25 β = 0 has real roots

$$\Rightarrow \beta \le 25$$

$$\Rightarrow \beta_{\text{max}} = 25$$

85. The constant term in the expansion of

$$\left(2x + \frac{1}{x^7} + 3x^2\right)^5$$
 is _____.

Official Ans. by NTA (1080)

Allen Ans. (1080)

Sol. General term is
$$\sum \frac{5!(2x)^{n_1}(x^{-7})^{n_2}(3x^2)^{n_3}}{n_1! n_2! n_3!}$$

For constant term,

$$n_1 + 2n_3 = 7n_2$$

&
$$n_1 + n_2 + n_3 = 5$$

Only possibility $n_1 = 1$, $n_2 = 1$, $n_3 = 3$

 \Rightarrow constant term = 1080

86. Let A₁, A₂, A₃ be the three A.P. with the same common difference d and having their first terms as A, A + 1, A + 2, respectively. Let a, b, c be the 7th, 9th, 17th terms of A₁, A₂, A₃, respectively such

that
$$\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix} + 70 = 0$$

If a = 29, then the sum of first 20 terms of an AP whose first term is c - a - b and common difference is $\frac{d}{12}$, is equal to _____.

Official Ans. by NTA (495)

Allen Ans. (495)

Sol.
$$\begin{vmatrix} A+6d & 7 & 1\\ 2(A+1+8d) & 17 & 1\\ A+2+16d & 17 & 1 \end{vmatrix} + 70 = 0$$

$$\Rightarrow$$
 A = -7 and d = 6

$$\therefore c - a - b = 20$$

$$S_{20} = 495$$

87. If the sum of all the solutions of

$$\tan^{-1}\left(\frac{2x}{1-x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3},$$

 $-1 < x < 1, x \neq 0$, is $\alpha - \frac{4}{\sqrt{3}}$, then α is equal to

——·

Official Ans. by NTA (2)

Allen Ans. (2)

Sol. Case
$$I: x > 0$$

$$\tan^{-1}\frac{2x}{1-x^2} + \tan^{-1}\frac{2x}{1-x^2} = \frac{\pi}{3}$$

$$x = 2 - \sqrt{3}$$

Case II: x < 0

$$\tan^{-1}\frac{2x}{1-x^2} + \tan^{-1}\frac{2x}{1-x^2} + \pi = \frac{\pi}{3}$$

$$x = \frac{-1}{\sqrt{3}} \Rightarrow \alpha = 2$$

88. Let the equation of the plane passing through the line

x-2y-z-5=0=x+y+3z-5 and parallel to the line x+y+2z-7=0=2x+3y+z-2 be ax+by+cz=65. Then the distance of the point (a, b, c) from the plane 2x+2y-z+16=0 is

Official Ans. by NTA (9)

Allen Ans. (9)

Sol. Equation of plane is

$$(x-2y-z-5)+b(x+y+3z-5)=0$$

$$\begin{vmatrix} 1+b & -2+b & -1+3b \\ 1 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix} = 0$$

$$\Rightarrow$$
 b = 12

:. plane is 13x + 10y + 35z = 65

Distance from given point to plane = 9

89. Let x and y be distinct integers where $1 \le x \le 25$ and $1 \le y \le 25$. Then, the number of ways of choosing x and y, such that x + y is divisible by 5, is _____.

Official Ans. by NTA (120)

Allen Ans. (120)

Sol. $x + y = 5\lambda$

Cases:

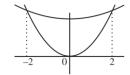
X	\mathbf{y}	Number of ways
5λ	5λ	20
$5\lambda + 1$	$5\lambda + 4$	25
$5\lambda + 2$	$5\lambda + 3$	25
$5\lambda + 3$	$5\lambda + 2$	25
$5\lambda + 4$	$5\lambda + 1$	25
Total = 120)	

90. It the area enclosed by the parabolas $P_1: 2y = 5x^2$ and $P_2: x^2 - y + 6 = 0$ is equal to the area enclosed by P_1 and $y = \alpha x$, $\alpha > 0$, then α^3 is equal to

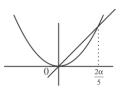
Official Ans. by NTA (600)

Allen Ans. (600)

Sol.



Abscissa of point of intersection of $2y = 5x^2$ and $y = x^2 + 6$ is ± 2



Area =
$$2\int_{0}^{2} \left(x^{2} + 6 - \frac{5x^{2}}{2}\right) dx = \int_{0}^{\frac{2\alpha}{5}} \left(\alpha x - \frac{5x^{2}}{2}\right) dx$$

$$\Rightarrow \int_{0}^{\frac{2\alpha}{5}} \left(\alpha x - \frac{5x^{2}}{2} \right) dx = 16$$
$$\Rightarrow \alpha^{3} = 600$$