CHEMISTRY
 SECTION-A

61.

A is
(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Allen Ans. (4)
Sol.

62. Four gases A, B, C and D have critical temperatures $5.3, \quad 33.2, \quad 126.0$ and 154.3 K respectively.
For their adsorption on fixed amount of charcoal, the correct order is :
(1) $\mathrm{C}>$ B $>$ D $>$ A
(2) $\mathrm{C}>$ D $>$ B $>$ A
(3) D $>$ C $>$ A $>$ B
(4) $\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}$

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Extent of adsorption α critical temp.

TEST PAPER WITH SOLUTION

63. Given below are two statement: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: 5f electrons can participate in bonding to a far greater extent than $4 f$ electrons
Reason R: 5 f orbitals are not as buried as 4 f orbitals
In the light of the above statements, choose the correct answer from the options given below
(1) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(2) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}
(3) \mathbf{A} is false but \mathbf{R} is true
(4) \mathbf{A} is true but \mathbf{R} is false

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. 5 f orbital not buried as 4 f orbitals so e^{-} present in 5 f orbital experience less nuclear attraction than e^{-}present in 4 f orbital. Hence electrons of 5 f orbital can take part in bonding to a far greater extent.
64. The incorrect statement regarding the reaction given below is
$\mathrm{Me}-\mathrm{N}-\mathrm{Me}$

(1) The electrophile involved in the reaction is NO^{+}
(2) ' B ' is N -nitroso ammonium compound
(3) The reaction occurs at low temperature
(4) The product ' B ' formed in the above reaction is p -nitroso compound at low temperature
Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\mathrm{NaNO}_{2}+\mathrm{HX} \rightarrow \mathrm{HNO}_{2}+\mathrm{NaX}$

P - Nitroso product
65. Match List I with List II

LISTI Complex		LISTII CFSE ($\left.\boldsymbol{\Delta}_{\mathbf{0}}\right)$	
A.	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	I.	-0.6
B.	$\left[\mathrm{Ti}\left(\mathrm{N}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	II.	-2.0
C.	$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	III.	-1.2
D.	$\left[\mathrm{NiF}_{6}\right]^{4-}$	IV.	-0.4

Choose the correct answer from the options given below :
(1) A-I, B-IV, C-II, D-III
(2) A-II, B-III, C-I, D-IV
(3) A-I, B-II, C-IV, D-III
(4) A-III, B-IV, C-I, D-II

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\mathrm{CFSE}=\left(-0.4 \mathrm{nt}_{2 \mathrm{~g}}+0.6 \mathrm{n}_{\mathrm{eg}}\right) \Delta_{0}$
$\mathrm{nt}_{2 \mathrm{~g}}=$ number of electrons in $\mathrm{t}_{2 \mathrm{~g}}$ orbital
$n_{\text {eg }}=$ number of electrons in eg orbital

Complex	No.of at electrons	CFSE $\left(\Delta_{0}\right)$	
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2}$	$\mathrm{~d}^{9}($ S.L. $)$	$\mathrm{t}_{2 \mathrm{~g}}^{2,2,2} \mathrm{eg}^{2,1}$	-0.6
$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$	$\mathrm{~d}^{1}($ W.L. $)$	$\mathrm{t}_{2 \mathrm{~g}}^{\mathrm{t}, 0} \mathrm{eg}^{0,0}$	-0.4
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	$\mathrm{d}^{5}($ S.L. $)$	$\mathrm{t}_{2 g}^{2,2,1} \mathrm{eg}^{0,0}$	-2.0
$\left[\mathrm{NiF}_{6}\right]^{4-}$	$\mathrm{d}^{8}($ W.L. $)$	$\mathrm{t}_{2 g}^{2,2,2} \mathrm{eg}^{1,1}$	-1.2

66. Match List I with List II

LIST I (Examples)		LIST I (Examples)	
A.	2-Chloro-1, 3 - butadiene	I.	Biodegradable polymer
B.	Nylon 2-nylon 6	II.	Synthetic Rubber
C.	Polyacrylonitrile	III.	Polyester
D.	Dacron	IV.	Addition Polymer

Choose the correct answer from the options given below :
(1) A-IV, B-I, C-III, D-II
(2) A-IV, B-III, C-I, D-II
(3) A-II, B-IV, C-I, D-III
(4) A-II, B-I, C-IV, D-III

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. FACT
67. The density of alkali metals is in the order
(1) $\mathrm{Na}<\mathrm{K}<\mathrm{Cs}<\mathrm{Rb}$
(2) $\mathrm{K}<\mathrm{Na}<\mathrm{Rb}<\mathrm{Cs}$
(3) $\mathrm{K}<\mathrm{Cs}<\mathrm{Na}<\mathrm{Rb}$
(4) $\mathrm{Na}<\mathrm{Rb}<\mathrm{K}<\mathrm{Cs}$

Official Ans. by NTA (2)
Allen Ans. (2)

Sol. In general moving down the group, mass increases more prominently as compared to volume (size) hence density increases for Group I metal. Due to empty 3d subshell in K increase in size is more prominent as compare to mass.
$\mathrm{Li}<\mathrm{K}<\mathrm{Na}<\mathrm{Rb}<\mathrm{Cs}$
68. Given below are two statements :

Statements : SbCI_{5} is more covalent than SbCI_{3}
Statements : The higher oxides of halogens also tend to be more stable than the lower ones.
In the light of the above statements, choose the most appropriate answer from the options given below
(1) Both statement I and Statement II are correct
(2) Both statement I and Statement II are incorrect
(3) Statement I is correct but Statement II is incorrect
(4) Statement I is incorrect but Statement II is correct
Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Statement I : Is correct according to Fajan's rule Sb^{+5} more polarising power than Sb^{+3}.
Statement II : Stability of higher oxides of halogen is primarily due to
a) Higher oxidation state
b) More EN halogen
c) Resonance stabilization
69. A metal chloride contains 55.0% of chlorine by weight. 100 mL vapours of the metal chloride at STP weigh 0.57 g . The molecular formula of the metal chloride is
(Given : Atomic mass of chlorine is 35.5 u)
(1) MCl_{2}
(2) MCl_{4}
(3) MCl_{3}
(4) MCl

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Molecular. weight of metal chloride
$=\frac{0.57}{100} \times 22700$
$=129.39$
weight of $\mathrm{Cl}=129.39 \times 0.55$
$=71.1645$
\therefore Mole of $\mathrm{Cl}=\frac{71.1645}{35.5} \cong 2$
Hence MCl_{2}
70. Given below are two statements: one is labelled as Assertion \mathbf{A} and the other is labelled as Reason R
Assertion A : In the Ellingham diagram, a sharp change in slope of the line is observed for $\mathrm{Mg} \rightarrow \mathrm{MgO}$ at $\sim 1120^{\circ} \mathrm{C}$

Reason R: There is a large change of entropy associated with the change of state
In the light of the above statements, choose the correct answer from the options given below
(1) Both A and R are true but R is NOT the correct explanation of A
(2) Both A and R are true and R is the correct explanation of A
(3) A is false but R is true
(4) A is true but R is false

Official Ans. by NTA (2)
Allen Ans. (2)
Sol.

For line II, $\Delta \mathrm{S}$ is more -ve than line I . hence higher slope.

For I $\Delta \mathrm{S}_{\mathrm{I}}=\mathrm{S}_{\text {solid }}-\mathrm{S}_{\text {solid }}+\mathrm{S}_{\text {gas }}$
For II $\Delta \mathrm{S}_{\text {II }}=\mathrm{S}_{\text {solid }}-\mathrm{S}_{\text {liq }}+\mathrm{S}_{\text {gas }}$
Hence $\Delta \mathrm{S}_{\text {II }}$ more -ve than $\Delta \mathrm{S}_{\text {I }}$
71. Match List I with List II

LIST I		LIST II	
A.	Nitrogen oxides in air	I.	Eutrophication
B.	Methane in air	II.	pH of rain water becomes 5.6.
C.	Carbon dioxide	III.	Global warming
D.	Phosphate fertilisers in water	IV.	Acid rain

Choose the correct answer from the options given below :
(1) A-IV, B-III, C-II, D-I
(2) A-II, B-III, C-I, D-IV
(3) A-I, B-II, C-III, D-IV
(4) A-IV, B-II, C-III, D-I

Official Ans. by NTA (1)
Allen Ans. (1)

Sol.:

i. $4 \mathrm{NO}_{2} \mathrm{~g}+\mathrm{O}_{2} \mathrm{~g}+2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq})$
$\mathrm{SO}_{2} \& \mathrm{NO}_{2}$ have major contribution in acid rain
ii. $\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{O}_{3}, \mathrm{CFC}$ are responsible for global warming
iii. $\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$ (aq.)

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \text { (aq.) } \rightleftharpoons \mathrm{H}^{+} \text {(aq.) }+\mathrm{HCo}_{3}^{-} \text {(aq.) }
$$

Rain water has pH of 5.6 due to the Presence of H^{+}ions formed by the reaction of rain water with CO_{2}
iv. Phosphates present in fertilizers contribution for Eutrophication (Process in which nutrient enriched water bodies support a dense plant population, which kills animal life by depriving it of oxygen and results in subsequent loss of biodiversity is known as Eutrophication.)
72. For lead storage battery pick the correct statements
A. During charging of battery, PbSO_{4} on anode is converted into PbO_{2}
B. During charging of battery, PbSO_{4} on cathode is converted into PbO_{2}
C. Lead storage battery, consists of grid of lead packed with PbO_{2} as anode
D. Lead storage battery has $\sim 38 \%$ solution of sulphuric acid as an electrolyte

Choose the correct answer from the options given below :
(1) B, D only
(2) B, C, D only
(3) A, B, D only
(4) B, C only

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. Lead storage battery consists of lead anode and a grid of lead packed with lead oxide $\left(\mathrm{PbO}_{2}\right)$ as cathode, a 38% solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used as an electrolyte.
On charging the battery the reaction is reversed and $\mathrm{PbSO}_{4}(\mathrm{~s})$ on anode and cathode is converted into Pb and PbO_{2} respectively.
73. 2 - hexene $\xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{O}_{3}}$ Pr oducts

The two products formed in above reaction are -
(1) Butanoic acid and acetic acid
(2) Butanal and acetic acid
(3) Butanal and acetaldehyde
(4) Butanoic acid and acetaldehyde

Official Ans. by NTA (1)
Allen Ans. (1)
Sol.

Acetic acid Butanoic acid
it is oxidative ozonolysis.
74. Correct statements for the given reaction are :

A. Compound ' B ' is aromatic
B. The completion of above reaction is very slow
C. 'A' shows tautomerism
D. The bond lengths $\mathrm{C}-\mathrm{C}$ in compound B are found to be same
Choose the correct answer from the options given below :
(1) A, B and D only
(2) A, B and C only
(3) B, C and D only
(4) A, C and D only

Official Ans. by NTA (4)
Allen Ans. (4)
Sol.

Squaric

Resonance hybrid of B showing all $\mathrm{C}-\mathrm{C}$ bond length same

Enol form it can show tautomer
75. The bond order and magnetic property of acetylide ion are same as that of
(1) NO^{+}
(2) O_{2}^{+}
(3) O_{2}^{-}
(4) N_{2}^{+}

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Acetylide ion $\rightarrow \mathrm{C}_{2}^{2-} \overline{\mathrm{C}} \equiv \overline{\mathrm{C}}$
Bond order $=3$ \& Diamagnetic
$\mathrm{NO}^{+} 14 \mathrm{e}^{-} \rightarrow$ Bond order $=3 \&$ Diamagnetic
76. In the given reaction cycle
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \underline{\mathrm{X}}+\underline{\mathrm{Y}}$

X, Y and Z respectively are
(1)

X	Y	Z
CaO	$\mathrm{NaCl}+\mathrm{CO}_{2}$	KCI

(2)

(3)

X	Y	Z
CaCO_{3}	NaCl	HCl

(4)

X	Y	Z
CaO	$\mathrm{NaCl}+\mathrm{CO}_{2}$	NaCl

Official Ans. by NTA (3)
Allen Ans. (3)
Sol.

77. Given below are two statements :

Statement I : Boron is extremely hard indicating its high lattice energy
Statement II : Boron has highest melting and boiling point compared to its other group members.
In the light of the above statements, choose the most appropriate answer from the options given below
(1) Statement I is incorrect but Statement II is correct
(2) Both Statement I and Statement II is correct
(3) Statement I is correct but Statement II is incorrect
(4) Both Statement I and Statement II is incorrect

Official Ans. by NTA (2)
Allen Ans. (2)

Sol. Boron is non- metallic in nature. It is extremely hard and black coloured solid. It exists in many allotropic forms. Due to very strong crystalline lattice, boron has unusually high melting point and boiling point.

Element						
	B	Al	Ga	In	Tl	
Melting point/K	2453	933	303	430	576	
Boiling point/K	3923	2740	2676	2353	1730	

78.

A in the above reaction is :
(1)

(2)

(3)

(4)

Official Ans. by NTA (3)
Allen Ans. (3)
Sol.

79	9. Match List I with List II		
	$\begin{gathered} \text { LIST I } \\ \text { Type of Hydride } \end{gathered}$		LIST II Example
A.	Electron deficient hydride	I.	MgH_{2}
B.	Electron rich hydride	II.	HF
C.	Electron precise hydride	III.	$\mathrm{B}_{2} \mathrm{H}_{6}$
D.	Saline hydride	IV.	CH_{4}

Choose the correct answer from the options given below :
(1) A-III, B-II, C-IV, D-I
(2) A-II, B-III, C-IV, D-I
(3) A-II, B-III, C-I, D-IV
(4) A-III, B-II, C-I, D-IV

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\mathrm{B}_{2} \mathrm{H}_{6} \Rightarrow \mathrm{e}^{-}$deficient hydride
$\mathrm{HF} \Rightarrow \mathrm{e}^{-}$rich hydride
$\mathrm{CH}_{4} \Rightarrow \mathrm{e}^{-}$Precise hydride
$\mathrm{MgH}_{2} \Rightarrow$ Saline hydride
80. The major product ' P ' formed in the following sequence of reactions is

(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Allen Ans. (4)
Sol.

SECTION-B

81. One mole of an ideal gas at 350 K is in a 2.0 L vessel of thermally conducting walls, which are in contact with the surroundings. It undergoes isothermal reversible expansion from 2.0 L to 3.0 L against a constant pressure of 4 atm . The change in entropy of the surroundings ΔS is
\qquad $\mathrm{J} \mathrm{K}^{-1}$ (Nearest integer)
Given : $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{Mol}^{-1}$.
Official Ans. by NTA (3)
Allen Ans. (3)
Sol. $\Delta \underset{\text { System }}{S}=n R \ell n\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)$
$=1 \times 8.314 \ln \left(\frac{3}{2}\right)$
$\Delta \mathrm{S}_{\text {System }}=3.37$
$\Delta \mathrm{S}_{\text {Surr. }}=3.37$
Correct Ans : 3
82. The mass of NH_{3} produced when 131.8 kg of cyclohexanecarbaldehyde undergoes Tollen's test is \qquad kg. (Nearest Integer)
Molar Mass of $\mathrm{C}=12 \mathrm{~g} / \mathrm{mol}$
$\mathrm{N}=14 \mathrm{~g} / \mathrm{mol}$
$\mathrm{O}=16 \mathrm{~g} / \mathrm{mol}$
Official Ans. by NTA (60)
Allen Ans. (60)
Sol.

$$
\begin{aligned}
\mathrm{W}_{\mathrm{NH}_{3}}= & \frac{131.8 \times 1000}{112} \times 3 \times 17 \\
& =60 \mathrm{Kg}
\end{aligned}
$$

83. In an oligopeptide named Alanylglycylphenyl alanyl isoleucine, the number of sp^{2} hybridised carbons is \qquad .

Official Ans. by NTA (10)
Allen Ans. (10)
Sol.

84. An analyst wants to convert. 1 L HCl of $\mathrm{pH}=1$ to a solution of HCl of pH 2 . The volume of water needed to do this dilution is \qquad mL. (Nearest Integer)

Official Ans. by NTA (9000)
Allen Ans. (9000)
Sol.
$\left(\mathrm{M}_{1} \times \mathrm{V}_{1}\right)$
-1×1
$10 \times 1$$\quad \begin{aligned} & \left(\mathrm{M}_{2} \times \mathrm{V}_{2}\right) \\ & -2 \\ & 10 \times \mathrm{V}_{2}\end{aligned}$
$\mathrm{V}_{2}=10 \mathrm{~L}$
Water added $=10-1$
$=9$ Litre
$=9000 \mathrm{~mL}$
85. Three organic compounds A, B and C were allowed to run in thin layer chromatography using hexane and gave the following result (see figure). The R_{f} value of the most polar compound is
\qquad $\times 10^{-2}$

Official Ans. by NTA (25)
Allen Ans. (25)
Sol. More R_{f}, less its polarity
$\mathrm{R}_{\mathrm{f}}=\frac{\text { Distance travelled by compound ' } \mathrm{X} \text { ' }}{\text { Distance travelled by solvent } \mathrm{Y}^{\prime}}$
$=\frac{2}{8}=0.25=25 \times 10^{-2}$
86. 80 mole percent of MgCl_{2} is dissociated in aqueous solution. The vapour pressure of 1.0 molal aqueous solution of MgCl_{2} at $38^{\circ} \mathrm{C}$ is
\qquad mm Hg. (Nearest integer)

Given : Vapour pressure of water at $38^{\circ} \mathrm{C}$ is 50 mm Hg

Official Ans. by NTA (48)

Allen Ans. (48)
Sol.
$\mathrm{MgCl}_{2} \rightarrow \mathrm{Mg}^{+2}+2 \mathrm{Cl}^{-}$
$1-\alpha \quad \alpha \quad 2 \alpha$
$i=1+2 \alpha(\alpha=0.8)$
$\mathrm{i}=2.6$
$\frac{\Delta \mathrm{p}}{\mathrm{p}^{\mathrm{o}}}=\frac{\mathrm{i} \times \mathrm{n}_{2}}{\mathrm{n}_{1}}$
$\Delta \mathrm{p}=2.34$
$p_{s}=47.66$
$\mathrm{p}_{\mathrm{s}} \cong 48$
87.

The value of x in compound ' D ' is \qquad
Official Ans. by NTA (15)
Allen Ans. (15)

Sol.

88. At 600 K , the root mean square (rms) speed of gas $\mathrm{X}($ molar mass $=40)$ is equal to the most probable speed of gas Y at 90 K . The molar mass of the gas Y is \qquad $\mathrm{g} \mathrm{mol}^{-1}$. (Nearest integer)

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. $\left(\mathrm{U}_{\mathrm{rms}}\right)_{\mathrm{X}, 600}=\left(\mathrm{U}_{\mathrm{mp}}\right)_{\mathrm{Y}, 90}$
$\sqrt{\frac{3 \times \mathrm{R} \times 600}{40}}=\sqrt{\frac{2 \times \mathrm{R} \times 90}{\mathrm{M}}}$
$M=4$
89. The reaction $2 \mathrm{NO}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NOBr}$
takes places through the mechanism given below :
$\mathrm{NO}+\mathrm{Br}_{2} \Leftrightarrow \mathrm{NOBr}_{2}$ (fast)
$\mathrm{NOBr}_{2}+\mathrm{NO} \rightarrow 2 \mathrm{NOBr}$ (slow)

The overall order of the reaction is \qquad .

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. $\mathrm{RDS}: \mathrm{NOBr}_{2}+\mathrm{NO} \rightarrow 2 \mathrm{NOBr}$
$\left.\mathrm{r}=\mathrm{K}\left[\mathrm{NOBr}_{2}\right] \mathrm{NO}\right] \quad----(\mathrm{i})$
$\mathrm{Keq}=\frac{\left[\mathrm{NOBr}_{2}\right]}{[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]} \quad-----(\mathrm{ii})$

From (i) \& (ii)
$\mathrm{r}=\mathrm{K}$. Keq. [NO] $\left[\mathrm{Br}_{2}\right][\mathrm{NO}]$
$\mathrm{r}=\mathrm{K}^{\prime}[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]$

Overall order $=3$

Ans. 3
90. Values of work function $\left(\mathrm{W}_{0}\right)$ for a few metals are given below

Metal	Li	Na	K	Mg	Cu	Ag
$\mathrm{W}_{\mathrm{o}} / \mathrm{eV}$	2.42	2.3	2.25	3.7	4.8	4.3

The number of metals which will show photoelectric effect when light of wavelength 400 nm falls on it is \qquad
Given : $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}$ s
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
Official Ans. by NTA (3)
Allen Ans. (3)
Sol. $E(\mathrm{ev})=\frac{1240}{400}=3.1 \mathrm{ev}$
$\mathrm{Mg}, \mathrm{Cu}, \mathrm{Ag}$
Ans. 3

