CHEMISTRY

SECTION-A

61. L -isomer of tetrose $\mathrm{X}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ gives positive Schiff's test and has two chiral carbons. On acetylation. ' X ' yields triacetate. ' X ' also undergoes following reactions

' X ' is
(1)

(2)

(3)

(4)

Official Ans. by NTA (2)
Allen Ans. (2)
Sol.

L-tetrose with two chiral centre

(B)
optically active

(x) gives positive schiff's test due - CHO group
(x) is L-tetrose.

TEST PAPER WITH SOLUTION

62. The polymer X - consists of linear molecules and is closely packed. It is prepared in the presence of triethylaluminium and titanium tetrachloride under low pressure. The polymer X is -
(1) Polyacrylonitrile
(2) Low density polythene
(3) Polytetrafluoroethane
(4) High density polythene

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Ethene undergoes addition polymerisation to high density polythene in the presence of catalyst such as AlEt_{3} and TiCl_{4} (Ziegler - Natta catalyst) at a temperature of 333 K to 343 K and under a pressure of 6-7 atmosphere.
63. When a solution of mixture having two inorganic salts was treated with freshly prepared ferrous sulphate in acidic medium, a dark brown ring was formed whereas on treatment with neutral FeCl_{3}, it gave deep red colour which disappeared on boiling and a brown red ppt was formed. The mixture contains
(1) $\mathrm{CH}_{3} \mathrm{COO}^{-} \& \mathrm{NO}_{3}^{-}$
(2) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \& \mathrm{NO}_{3}^{-}$
(3) $\mathrm{SO}_{3}^{2-} \& \mathrm{CH}_{3} \mathrm{COO}^{-}$
(4) $\mathrm{SO}_{3}^{2-} \& \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{FeCl}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}$ or

$$
\left[\mathrm{Fe}_{3}(\mathrm{OH})_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}\right]^{+}
$$

Blood red colour

$$
\downarrow \Delta
$$

$\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right) \downarrow$
Red-brown precipitate
$2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{Fe}^{2+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{NO} \uparrow+$
$4 \mathrm{SO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO} \rightarrow\left[\underset{\text { Brown }}{\left.\operatorname{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}+\mathrm{H}_{2} \mathrm{O}}\right.$
64. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R :

Assertion A : In the photoelectric effect, the electrons are ejected from the metal surface as soon as the beam of light of frequency greater than threshold frequency strikes the surface.

Reason R: When the photon of any energy strikes an electron in the atom, transfer of energy from the photon to the electron takes place.

In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both A and R are correct but R is NOT the correct explanation of A
(2) A is correct but R is not correct
(3) Both A and R are correct and R is the correct explanation of A
(4) A is not correct but R is correct

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. There is a characteristic minimum frequency, or "threshold frequency," for each metal below which the photoelectric effect is not seen. The ejected electrons leave with a specific amount of kinetic energy at a frequency $v>v_{0}$ with an increase in light frequency of these electron kinetic energies also rise.
65. 25 mL of silver nitrate solution (1 M) is added dropwise to 25 mL of potassium iodide (1.05 M) solution. The ion(s) present in very small quantity in the solution is/are
(1) NO_{3}^{-}only
(2) K^{+}only
(3) Ag^{+}and I^{-}both
(4) I^{-}only

Official Ans. by NTA (3)

Allen Ans. (3)
Sol. $\mathrm{AgNO}_{3}+\mathrm{KI} \rightarrow \mathrm{AgI} \downarrow+\mathrm{KNO}_{3}$
$\mathrm{AgI} \rightarrow \mathrm{Ag}_{\mathrm{S}}^{+}+\underset{\mathrm{S}+0.625}{\mathrm{I}^{-}}$
AgI is a insoluble salt so concentration Ag^{+}and I^{-} will be negligible.
66. ' A ' and ' B ' in the below reactions are :

(Major Product)
(1)

$B=$

(2)

(3)

$B=$

(4)

$B=$

Official Ans. by NTA (4)
Allen Ans. (4)
Sol.

67. The set which does not have ambidentate ligand(s) is
(1) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$, ethylene diammine, $\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{EDTA}^{4-}, \mathrm{NCS}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(3) $\mathrm{NO}_{2}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}, \mathrm{EDTA}^{4-}$
(4) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}, \mathrm{NO}_{2}^{-}, \mathrm{NCS}^{-}$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\mathrm{NO}_{2}^{-}, \mathrm{NCS}^{-}$are ambidentate ligand

EDTA Ethylene diamine tetra acetate

68.

Where $\mathrm{Nu}=$ Nucleophile
Find out the correct statement from the options given below for the above 2 reactions.
(1) Reaction (I) is of $2^{\text {nd }}$ order and reaction (II) is of $1^{\text {st }}$ order
(2) Reaction (I) and (II) both are of $2^{\text {nd }}$ order
(3) Reaction (I) is of $1^{\text {st }}$ order and reaction (II) is of $2^{\text {nd }}$ order
(4) Reactions (I) and (II) both are of $1^{\text {st }}$ order

Official Ans. by NTA (3)
Allen Ans. (3)
Sol.

Electron Donating group
$\mathrm{S}_{\mathrm{N}}{ }^{1}$ Mech. : $\mathrm{I}^{\text {st }}$ order

Electron withdrawing group
$\mathrm{S}_{\mathrm{N}}{ }^{2}$ Mech : $2^{\text {nd }}$ order
69. For elements B, C, N, Li, Be, O and F the correct order of first ionization enthalpy is
(1) $\mathrm{Li}<\mathrm{Be}<$ B $<$ C $<\mathrm{N}<\mathrm{O}<$ F
(2) B $>\mathrm{Li}>\mathrm{Be}>$ C $>$ N $>$ O $>$ F
(3) $\mathrm{Li}<$ B $<\mathrm{Be}<$ C $<$ O $<$ N $<$ F
(4) $\mathrm{Li}<\mathrm{Be}<$ B $<$ C $<$ O $<\mathrm{N}<$ F

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. First I.E.
$\mathrm{F}>\mathrm{N}>\mathrm{O}>\mathrm{C}>\mathrm{Be}>\mathrm{B}>\mathrm{Li}$
$\mathrm{Li}-520 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Be}-899 \mathrm{~kJ} / \mathrm{mol}$
B $-801 \mathrm{~kJ} / \mathrm{mol}$
C $-1086 \mathrm{~kJ} / \mathrm{mol}$
N-1402 kJ/mol
O-1314 kJ/mol
F-1681 kJ / mol
70. Match List-I with List-II :

List-I Species	List-II Geometry/Shape
A. $\mathrm{H}_{3} \mathrm{O}^{+}$	I. Tetrahedral
B. Acetylide anion	II. Linear
C. NH_{4}^{+}	III. Pyramidal
D. ClO_{2}^{-}	IV. Bent

Choose the correct answer from the options given below :
(1) A-III, B-II, C-I, D-IV
(2) A-III, B-I, C-II, D-IV
(3) A-III, B-IV, C-I, D-II
(4) A-III, B-IV, C-II, D-I

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Molecule/Ion Hybridisation Shape

Acelylide sp
$\mathrm{NH}_{4}^{+} \quad \mathrm{sp}^{3}$
$\mathrm{ClO}_{2}^{-} \quad \mathrm{sp}^{3}$
linear
$\overline{\mathrm{C}} \equiv \overline{\mathrm{C}}$

71. For compound having the formula GaAlCl_{4}, the correct option from the following is
(1) Ga is more electronegative than Al and is present as a cationic part of the salt GaAlCl_{4}
(2) Oxidation state of Ga in the salt GaAlCl_{4} is +3 .
(3) Cl forms bond with both Al and Ga in GaAlCl_{4}
(4) Ga is coordinated with Cl in GaAlCl_{4}

Official Ans. by NTA (1)

Allen Ans. (1)
Sol. Gallous tetrachloro aluminate $\mathrm{Ga}^{+} \mathrm{AlCl}_{4}^{-}$

Structure of $\stackrel{+}{\mathrm{G}} \mathrm{A}_{\mathrm{A}} \mathrm{Cl}_{4}$

Ga is cationic part of salt GaAlCl_{4}.
72. In the extraction process of copper, the product obtained after carrying out the reactions
(i) $2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
(ii) $2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$ is called
(1) Blister copper
(2) Copper scrap
(3) Reduced copper
(4) Copper matte

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+3 \mathrm{SO}_{2}$
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$

Blister copper

Due to evolution of SO_{2}, the solidified copper formed has a blistered look and is referred to as blister copper.
73. Match List-I with List-II :

List-I	List-II
A. K	I. Thermonuclear reactions
B. KCl	II. Fertilizer
C. KOH	III. Sodium potassium pump
D. Li	IV. Absorbent of CO_{2}

Choose the correct answer from the options given below:
(1) A-III, B-II, C-IV, D-I
(2) A-IV, B-I, C-III, D-II
(3) A-IV, B-III, C-I, D-II
(4) A-III, B-IV, C-II, D-I

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. K^{+}- Sodium - Potassium Pump
KCl - Fertiliser
KOH - absorber of CO_{2}
Li - used in thermonuclear reactions
74. Thin layer chromatography of a mixture shows the following observation :

The correct order of elution in the silica gel column chromatography is
(1) A, C, B
(2) $\mathrm{B}, \mathrm{C}, \mathrm{A}$
(3) C, A, B
(4) $\mathrm{B}, \mathrm{A}, \mathrm{C}$

Official Ans. by NTA (1)
Allen Ans. (1)

Sol.

According to the observation, A is more mobile and interacts with the mobile phase more than C , and C is more drawn to the mobile phase than B .
Hence, the correct order of elution in the silico gel column chromatography is $-\mathrm{B}<\mathrm{C}<\mathrm{A}$
75. Which of the following complex has a possibility to exist as meridional isomer?
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
(2) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]$
(3) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$
(4) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\left[\mathrm{MA}_{3} \mathrm{~B}_{3}\right]$ type of compound exists as facial and meridonial isomer.

76. Given below are two statements :

Statement-I : Methane and steam passed over a heated Ni catalyst produces hydrogen gas.
Statement-II : Sodium nitrite reacts with $\mathrm{NH}_{4} \mathrm{Cl}$ to give $\mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}$ and NaCl .
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both the statements I and II are correct
(2) Both the statements I and II are incorrect
(3) Statement I is incorrect but Statement II is correct
(4) Statement I is correct but Statement II is incorrect
Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\mathrm{CH}_{4}(\mathrm{~g})+\underset{\text { Steam }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow[1270 \mathrm{~K}]{\mathrm{Ni}} \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}), ~\left(\mathrm{~N}^{2}\right.}$
$\mathrm{NaNO}_{2}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{NaCl}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$
77. Given below are two statements :

Statement I : If BOD is 4 ppm and dissolved oxygen is 8 ppm , then it is a good quality water.
Statement II : If the concentration of zinc and nitrate salts are 5 ppm each, then it can be a good quality water.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both the statements I and II are incorrect
(2) Statement I is incorrect but Statement II is correct
(3) Both the statements I and II are correct
(4) Statement I is correct but Statement II is incorrect
Official Ans. by NTA (3)

Allen Ans. (3)
Sol. Clean water would have BOD value of less than 5 ppm.
Maximum limit of Zn in clean water
$=5.0 \mathrm{ppm}$ or $\mathrm{mg} \mathrm{dm}^{-3}$
Maximum limit of NO_{3}^{-}in clean water
$=50 \mathrm{ppm}$ or $\mathrm{mg} \mathrm{dm}^{-3}$
78. Arrange the following compounds in increasing order of rate of aromatic electrophilic substitution reaction

(a)

(c)

(b)

(d)
(1) d, b, c, a
(2) b, c, a, d
(3) c, a, b, d
(4) d, b, a, c

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. Benzene becomes more reactive towards EAS when any substituent raises the electron density.

a
$-\mathrm{CH}_{2}$ has
+H effect

b

- OH has +R
while - CH_{2} group has +H effect.

c

d
-OH and -O- both
show +R effect

Correct order

$$
\mathrm{c}<\mathrm{a}<\mathrm{b}<\mathrm{d}
$$

79. The complex that dissolves in water is
(1) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
(2) $\left[\mathrm{Fe}_{3}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}\right] \mathrm{Cl}$
(3) $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$
(4) $\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{As}\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)_{4}\right]$

Official Ans. by NTA (2)

Allen Ans. (2)

Sol. $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$ Prussian Blue-water insoluble $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$ very poorly water soluble $\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{As}\left(\mathrm{MO}_{3} \mathrm{O}_{10}\right)_{4}\right]$ water insoluble ammonium arseno molybdate
$\left[\mathrm{Fe}_{3}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}\right] \mathrm{Cl}$ is water soluble.
80. o-Phenylenediamine $\xrightarrow{\mathrm{HNO}_{2}}{ }^{\prime} \mathrm{X}$ '

Major Product
' X ' is
(1)

(2)

(3)

(4)

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Orthophenyl amine.

SECTION-B

81. A mixture of 1 mole of $\mathrm{H}_{2} \mathrm{O}$ and 1 mole of CO is taken in a 10 litre container and heated to 725 K . At equilibrium 40% of water by mass reacts with carbon monoxide according to the equation :
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$.
The equilibrium constant $\mathrm{K}_{\mathrm{C}} \times 10^{2}$ for the reaction is \qquad . (Nearest integer)

Official Ans. by NTA (44)
Allen Ans. (44)
Sol. $\quad \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$
$\mathrm{t}=0 \quad 1 \mathrm{~mol} 1 \mathrm{~mol} \quad 0 \quad 0$
at equ. $1-x \quad 1-x \quad x \quad x$
at equilibrium 40% by mass water reacts with CO
$\mathrm{x}=0.4 \quad 1-\mathrm{x}=0.6$
$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{0.4 \times 0.4}{0.6 \times 0.6}=0.44$
$\mathrm{K}_{\mathrm{C}} \times 10^{2}=44$
82. The ratio of spin-only magnetic moment values $\mu_{\text {eff }}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-} / \mu_{\text {eff }}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is \qquad -.

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Spin magnetic moment of $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}\left(\mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{0}\right)$
$\mu_{1}=\sqrt{3(3+2)}=\sqrt{15} \mathrm{BM}$
Spin magnetic moment of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\left(\mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{0}\right)$
$\mu_{2}=\sqrt{3(3+2)}=\sqrt{15} \mathrm{BM}$
$\frac{\mu_{1}}{\mu_{2}}=\frac{\sqrt{15}}{\sqrt{15}}=1$
83. An atomic substance A of molar mass $12 \mathrm{~g} \mathrm{~mol}^{-1}$ has a cubic crystal structure with edge length of 300 pm . The no. of atoms present in one unit cell of A is \qquad . (Nearest integer)

Given the density of A is $3.0 \mathrm{~g} \mathrm{~mL}^{-1}$ and $\mathrm{N}_{\mathrm{A}}=6.02$ $\times 10^{23} \mathrm{~mol}^{-1}$

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. $\mathrm{d}=3 \mathrm{~g} / \mathrm{cc}$

$$
\mathrm{M}=12 \mathrm{~g} / \mathrm{mol}
$$

$\mathrm{a}=300 \mathrm{pm}=3 \times 10^{-8} \mathrm{~cm}$
$Z=\frac{d \times N_{A} \times a^{3}}{M}=\frac{3 \times 6.02 \times 10^{23} \times\left(3 \times 10^{-8}\right)^{3}}{12}$
$=4.06 \approx 4$
84.

The ratio x / y on completion of the above reaction is \qquad .

Official Ans. by NTA (2)

Allen Ans. (2)

Sol.

$\therefore \mathrm{x}=2$ mole
$\frac{x}{y}=\frac{2}{1}=2$
85.

The number of hyperconjugation structures involved to stabilize carbocation formed in the above reaction is \qquad -.

Official Ans. by NTA (7)
Allen Ans. (7)
Sol.

86. Solid fuel used in rocket is a mixture of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and Al (in ratio $1: 2$). The heat evolved (kJ) per gram of the mixture is \qquad (Neatest integer)

Given : $\Delta \mathrm{H}_{\mathrm{f}}^{\theta}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=-1700 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\Delta \mathrm{H}_{\mathrm{f}}^{\theta}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=-840 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Molar mass of Fe, Al and O are 56, 27 and 16 g mol^{-1} respectively.

Official Ans. by NTA (4)
Allen Ans. (4)
Sol.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
$$

Molar mass $160 \mathrm{~g} \mathrm{27g}$

$$
\begin{aligned}
& \left(\Delta \mathrm{H}_{\mathrm{f}}^{0}\right)_{\text {reaction }}=\left[\left(\Delta \mathrm{H}_{\mathrm{f}}^{0}\right)_{\mathrm{Al}_{2} \mathrm{O}_{3}}+2\left(\Delta \mathrm{H}_{\mathrm{f}}^{0}\right)_{\mathrm{Fe}}\right]- \\
& \\
& {\left[\left(\Delta \mathrm{H}_{\mathrm{f}}^{0}\right)_{\mathrm{Fe}_{2} \mathrm{O}_{3}}+2\left(\Delta \mathrm{H}_{\mathrm{f}}^{0}\right)_{\mathrm{Al}}\right]}
\end{aligned}
$$

$=[-1700+0]-[-840+0]$
$=-860 \mathrm{~kJ} / \mathrm{mol}$
Total mass of mixture $=\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Al}$ (1:2 molar ratio)
$=160+2 \times 27$
$=214 \mathrm{~g} / \mathrm{mol}$
Heat evolved per gram $=\frac{860}{214}=4 \mathrm{~kJ} / \mathrm{g}$
87. A solution of sugar is obtained by mixing 200 g of its 25% solution and 500 g of its 40% solution (both by mass). The mass percentage of the resulting sugar solution is \qquad . (Nearest integer)
Official Ans. by NTA (36)
Allen Ans. (36)
Sol. Total mass of sugar in mixture of 25% of 200 and 40% of 500 g

Sugar solution $=0.25 \times 200+0.40 \times 500$

$$
=50+200=250 \mathrm{~g}
$$

Total mass of solution $=200+500=700 \mathrm{~g}$
Mass of sugar in solution $=\frac{250}{700} \times 100=35.7 \%$

$$
\approx 36 \%
$$

88. $\mathrm{KClO}_{3}+6 \mathrm{FeSO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$

$$
\mathrm{KCl}+3 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

The above reaction was studied at 300 K by monitoring the concentration of FeSO_{4} in which initial concentration was 10 M and after half an hour became 8.8 M . The rate of production of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is \qquad $\times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
(Nearest integer)
Official Ans. by NTA (333)
Allen Ans. (333)
Sol. $\mathrm{KClO}_{3}+6 \mathrm{FeSO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KCl}+$
$3 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \mathrm{ROR}=-\frac{\Delta\left[\mathrm{KClO}_{3}\right]}{\Delta \mathrm{t}}=\frac{-1}{6} \frac{\Delta\left[\mathrm{FeSO}_{4}\right]}{\Delta \mathrm{t}} \\
& \\
& =\frac{+1}{3} \frac{\Delta\left[\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]}{\Delta \mathrm{t}} \\
& \begin{aligned}
& \frac{\Delta\left[\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]}{\Delta \mathrm{t}}=\frac{1}{2} \frac{-\Delta\left[\mathrm{FeSO}_{4}\right]}{\Delta \mathrm{t}} \\
&=\frac{1}{2} \frac{(10-8.8)}{30 \times 60} \\
&= 0.333 \times 10^{-3} \\
&= 333 \times 10^{-6} \mathrm{~mol} \mathrm{litre}^{-1} \mathrm{sec}^{-1}
\end{aligned}
\end{aligned}
$$

89. $0.004 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ solution is isotonic with 0.01 M glucose solution. Percentage dissociation of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is \qquad (Nearest integer)

Official Ans. by NTA (75)
Allen Ans. (75)
Sol. Isotonic solutions,
$\pi_{\mathrm{K}_{2} \mathrm{SO}_{4}}=\pi_{\text {Glucose }}$
$\mathrm{i} \times 0.004 \times \mathrm{RT}=0.01 \times \mathrm{RT}$
$\mathrm{i}=2.5$
For $\mathrm{K}_{2} \mathrm{SO}_{4} \quad\{$ for dissociation $\mathrm{i}=1+(\mathrm{n}-1) \alpha\}$
$\operatorname{DOD}(\alpha)=\frac{\mathrm{i}-1}{\mathrm{n}-1}=\frac{2.5-1}{3-1}=0.75$
$\%$ dissociation $=75$
90. In an electrochemical reaction of lead, at standard temperature, if $\mathrm{E}_{\left(\mathrm{Pb}^{2+} / \mathrm{Pb}\right)}^{0}=\mathrm{m}$ Volt and $\mathrm{E}_{\left(\mathrm{Pb}^{4+} / \mathrm{Pb}\right)}^{0}=\mathrm{n}$ Volt, then the value of $\mathrm{E}_{\left(\mathrm{Pb}^{2+} / \mathrm{Pb}^{4+}\right)}^{0}$ is given by $m-x n$. The value of x is \qquad .
(Nearest integer)
Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}$
$\Delta \mathrm{G}_{1}^{0}=-2 \mathrm{FE}_{1}^{0}$
$\mathrm{Pb}^{4+}+4 \mathrm{e}^{-} \rightarrow \mathrm{Pb}$ $\Delta \mathrm{G}_{2}^{0}=-4 \mathrm{FE}_{2}^{0}$
$\mathrm{Pb}^{2+} \rightarrow \mathrm{Pb}^{4+}+2 \mathrm{e}^{-}$ $\Delta \mathrm{G}_{3}^{0}=-2 \mathrm{FE}_{3}^{0}$
$\Delta \mathrm{G}_{3}^{0}=\Delta \mathrm{G}_{1}^{0}-\Delta \mathrm{G}_{2}^{0}$
$-2 \mathrm{FE}_{3}^{0}=2 \mathrm{~F}(2 \mathrm{n}-\mathrm{m})$
$\mathrm{E}_{3}^{0}=\mathrm{m}-2 \mathrm{n}=\mathrm{m}-\mathrm{xn}$
Hence $\mathrm{x}=2$

