MATHEMATICS

SECTION-A

1. Let f be a continuous function satisfying $\int_{0}^{\mathrm{t}^{2}}\left(\mathrm{f}(\mathrm{x})+\mathrm{x}^{2}\right) \mathrm{dx}=\frac{4}{3} \mathrm{t}^{3}, \forall \mathrm{t}>0$. Then $\mathrm{f}\left(\frac{\pi^{2}}{4}\right) \quad$ is equal to :
(1) $\pi\left(1-\frac{\pi^{3}}{16}\right)$
(2) $-\pi^{2}\left(1+\frac{\pi^{2}}{16}\right)$
(3) $-\pi\left(1+\frac{\pi^{3}}{16}\right)$
(4) $\pi^{2}\left(1-\frac{\pi^{2}}{16}\right)$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\int_{0}^{\mathrm{t}^{2}}\left(\mathrm{f}(\mathrm{x})+\mathrm{x}^{2}\right) \mathrm{dx}=\frac{4}{3} \mathrm{t}^{3}, \forall \mathrm{t}>0$
$\left(f\left(t^{2}\right)+t^{4}\right)=2 t$
$f\left(t^{2}\right)=2 t-t^{4}$
$\mathrm{t}=\frac{\pi}{2} \Rightarrow \mathrm{f}\left(\frac{\pi^{2}}{4}\right)=\frac{2 \pi}{2}-\frac{\pi^{4}}{16}$
$=\pi-\frac{\pi^{4}}{16}=\pi\left(1-\frac{\pi^{3}}{16}\right)$
2. Eight persons are to be transported from city A to city B in three cars of different makes. If each car can accommodate at most three persons, then the number of ways, in which they can be transported, is:
(1) 3360
(2) 1680
(3) 560
(4) 1120

Official Ans. by NTA (1)
Allen Ans. (2)

TEST PAPER WITH SOLUTION
Sol.

Ways $=\frac{8!}{3!3!2!2!} \times 3$!
$=\frac{8 \times 7 \times 6 \times 5 \times 4}{4}$
$=56 \times 30$
$=1680$
3. For, $\alpha, \beta, \gamma, \delta \in \mathbb{N}$, if
$\int\left(\left(\frac{x}{e}\right)^{2 x}+\left(\frac{e}{x}\right)^{2 x}\right) \log _{e} x d x=\frac{1}{\alpha}\left(\frac{x}{e}\right)^{\beta x}-\frac{1}{\gamma}\left(\frac{e}{x}\right)^{\delta x}+C$,
Where $\mathrm{e}=\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n}!}$ and C is constant of integration,
then $\alpha+2 \beta+3 \gamma-4 \delta$ is equal to:
(1) 1
(2) -4
(3) -8
(4) 4

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\quad\left(x=e^{\ln x}\right)$
$\int\left(\left(\frac{x}{e}\right)^{2 x}+\left(\frac{e}{x}\right)^{2 x}\right) \log _{e} x d x=\int\left[e^{2(x \ln x-x)}+e^{-2(x \ln x-x)}\right] \ln x d x$ $\mathrm{x} \ln \mathrm{x}-\mathrm{x}=\mathrm{t}$
$\ln x . d x=d t$
$\int\left(e^{2 t}+e^{-2 t}\right) d t$
$\frac{e^{2 t}}{2}-\frac{e^{-2 t}}{2}+C$
$=\frac{1}{2}\left(\frac{x}{e}\right)^{2 x}-\frac{1}{2}\left(\frac{e}{x}\right)^{2 x}+C$
$\alpha=\beta=\gamma=\delta=2$
$\alpha+2 \beta+3 \gamma-4 \delta=4$
4. Let the image of the point $\mathrm{P}(1,2,6)$ in the plane passing through the points $\mathrm{A}(1,2,0), \mathrm{B}(1,4,1)$ and $\mathrm{C}(0,5,1)$ be $\mathrm{Q}(\alpha, \beta, \gamma)$. Then $\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)$ is equal to :
(1) 65
(2) 70
(3) 76
(4) 62

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Equation of plane $A(x-1)+B(y-2)+C(z-0)=0$
Put $(1,4,1) \Rightarrow 2 \mathrm{~B}+\mathrm{C}=0$
Put $(0,5,1) \Rightarrow-\mathrm{A}+3 \mathrm{~B}+\mathrm{C}=0$

$$
\text { Sub: } B-A=0 \Rightarrow A=B, C=-2 B
$$

$1(x-1)+1(y-2)-2(z-0)=0$
$x+y-2 z-3=0$
Image is $(\alpha, \beta, \gamma) \mathrm{pt} \equiv(1,2,6)$
$\frac{\alpha-1}{1}=\frac{\beta-2}{1}=\frac{\gamma-6}{-2}=\frac{-2(1+2-12-3)}{6}$
$\frac{\alpha-1}{1}=\frac{\beta-2}{1}=\frac{\gamma-6}{-2}=4$
$\alpha=5, \beta=6, \gamma=-2 \Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}$
$=25+36+4=65$
5. Let $A=\{2,3,4\}$ and $B=\{8,9,12\}$. Then the number of elements in the relation
$R=\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \in(A \times B, A \times B): a_{1}\right.$ divides b_{2} and a_{2} divides $\left.b_{1}\right\}$ is:
(1) 36
(2) 12
(3) 18
(4) 24

Official Ans. by NTA (1)
Allen Ans. (1)

Sol.

a_{1} divides b_{2}
Each element has 2 choices
$\Rightarrow 3 \times 2=6$
a_{2} divides b_{1}
Each element has 2 choices
$\Rightarrow 3 \times 2=6$
Total $=6 \times 6=36$
6. If $A=\frac{1}{5!6!7!}\left[\begin{array}{ccc}5! & 6! & 7! \\ 6! & 7! & 8! \\ 7! & 8! & 9!\end{array}\right]$, then $|\operatorname{adj}(\operatorname{adj}(2 A))|$ is equal to :
(1) 2^{8}
(2) 2^{12}
(3) 2^{20}
(4) 2^{16}

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\quad|\operatorname{adjadj}(2 \mathrm{~A})|=|2 \mathrm{~A}|^{(\mathrm{n}-1)^{2}}$

$$
\begin{aligned}
& =|2 \mathrm{~A}|^{4} \\
& =\left(2^{3}|\mathrm{~A}|\right)^{4} \\
& =2^{12}|\mathrm{~A}|^{4} \Rightarrow 2^{16}
\end{aligned}
$$

$$
|A|=\frac{1}{5!6!7!} 5!6!\left|\begin{array}{lll}
1 & 6 & 42 \\
1 & 7 & 56 \\
1 & 8 & 72
\end{array}\right|
$$

$$
\mathrm{R}_{3} \rightarrow \mathrm{R}_{3} \rightarrow \mathrm{R}_{2}
$$

$$
\mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \rightarrow \mathrm{R}_{1}
$$

$$
|\mathrm{A}|=\left|\begin{array}{lll}
1 & 8 & 42 \\
0 & 1 & 14 \\
0 & 1 & 16
\end{array}\right|=2
$$

7. Let A be the point $(1,2)$ and B be any point on the curve $x^{2}+y^{2}=16$. If the centre of the locus of the point P, which divides the line segment $A B$ in the ratio $3: 2$ is the point $C(\alpha, \beta)$, then the length of the line segment AC is
(1) $\frac{6 \sqrt{5}}{5}$
(2) $\frac{4 \sqrt{5}}{5}$
(3) $\frac{2 \sqrt{5}}{5}$
(4) $\frac{3 \sqrt{5}}{5}$

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. $\stackrel{\bullet}{\mathrm{A}(1,2)} \quad \mathrm{P}(\mathrm{h}, \mathrm{k}) \quad \mathrm{B}(4 \cos \theta, 4 \sin \theta)$

$$
\begin{array}{ll}
\frac{12 \cos \theta+2}{5}=\mathrm{h} & \Rightarrow 12 \cos \theta=5 \mathrm{~h}-2 \\
\frac{12 \sin \theta+4}{5}=\mathrm{k} & \Rightarrow 12 \sin \theta=5 \mathrm{k} \mathrm{4}
\end{array}
$$

Sq \& add :
$144=(5 \mathrm{~h}-2) 2+(5 \mathrm{k}-4) 2$
$\left(x-\frac{2}{5}\right)^{2}+\left(y-\frac{4}{5}\right)^{2}=\frac{144}{25}$
Centre $\equiv\left(\frac{2}{5}, \frac{4}{5}\right) \equiv(\alpha, \beta)$
$\mathrm{AC}=\sqrt{\left(1-\frac{2}{5}\right)^{2}+\left(2-\frac{4}{5}\right)^{2}}$

$$
=\sqrt{\frac{9}{25}+\frac{36}{25}}=\frac{\sqrt{45}}{5}=\frac{3 \sqrt{5}}{5}
$$

8. Let a die be rolled n times. Let the probability of getting odd numbers seven times be equal to the probability of getting odd numbers nine times. If the probability of getting even numbers twice is $\frac{\mathrm{k}}{2^{15}}$, then k is equal to :
(1) 30
(2) 90
(3) 15
(4) 60

Official Ans. by NTA (4)

Allen Ans. (4)
Sol. $\mathrm{P}($ odd number 7 times $)=\mathrm{P}($ odd number 9 times $)$
${ }^{\mathrm{n}} \mathrm{C}_{7}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right)^{\mathrm{n}-7}={ }^{\mathrm{n}} \mathrm{C}_{9}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)^{\mathrm{n}-9}$
${ }^{\mathrm{n}} \mathrm{C}_{7}={ }^{\mathrm{n}} \mathrm{C}_{9}$
$\Rightarrow \mathrm{n}=16$
Required

$$
\begin{aligned}
\mathrm{P} & ={ }^{16} \mathrm{C}_{2} \times\left(\frac{1}{2}\right)^{16} \\
& =\frac{16 \cdot 15}{2} \times \frac{1}{2^{16}}=\frac{15}{2^{13}} \\
\Rightarrow & \frac{60}{2^{15}} \Rightarrow \mathrm{k}=60
\end{aligned}
$$

9. Let $g(x)=f(x)+f(1-x)$ and $f^{\prime \prime}(x)>0, x \in(0,1)$. If g is decreasing in the interval $(0, \alpha)$ and increasing in the interval $(\alpha, 1)$, then $\tan ^{1}(2 \alpha)+\tan ^{-1}\left(\frac{1}{\alpha}\right)+\tan ^{-1}\left(\frac{\alpha+1}{\alpha}\right)$ is equal to :
(1) $\frac{3 \pi}{2}$
(2) π
(3) $\frac{5 \pi}{4}$
(4) $\frac{3 \pi}{4}$

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}(1-\mathrm{x}) \& \mathrm{f}^{\prime \prime}(\mathrm{x})>0, \mathrm{x} \in(0,1)$
$\mathrm{g}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})-\mathrm{f}^{\prime}(1-\mathrm{x})=0$
$\Rightarrow \quad \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(1-\mathrm{x})$
$\mathrm{x}=1-\mathrm{x}$
$\mathrm{x}=\frac{1}{2}$
$g^{\prime}(x)=0$
at $\mathrm{x}=\frac{1}{2}$
$g^{\prime \prime}(x)=f^{\prime \prime}(x)+f^{\prime \prime}(1-x)>0$
g is concave up
hence $\alpha=\frac{1}{2}$
$\tan ^{-1} 2 \alpha+\tan ^{-1} \frac{1}{\alpha}+\tan ^{-1} \frac{\alpha+1}{\alpha}$
$\Rightarrow \quad \tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\pi$
10. Let a circle of radius 4 be concentric to the ellipse $15 x^{2}+19 y^{2}=285$. Then the common tangents are inclined to the minor axis of the ellipse at the angle.
(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{12}$
(4) $\frac{\pi}{6}$

Official Ans. by NTA (2)
Allen Ans. (2)

Sol. $\frac{x^{2}}{19}+\frac{y^{2}}{15}=1$

Let tang be
$y=m x \pm \sqrt{19 m^{2}+15}$
$m x-y \pm \sqrt{19 m^{2}+15}=0$
Parallel from $(0,0)=4$
$\left|\frac{ \pm \sqrt{19 \mathrm{~m}^{2}+15}}{\sqrt{\mathrm{~m}^{2}+1}}\right|=4$
$19 m^{2}+15=16 m^{2}+16$
$3 m^{2}=1$
$\mathrm{m}= \pm \frac{1}{\sqrt{3}}$
$\theta=\frac{\pi}{6}$ with x-axis
Required angle $\frac{\pi}{3}$.
11. Let $\overrightarrow{\mathrm{a}}=2 \hat{i}+7 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+5 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$. Let \vec{d} be a vector which is perpendicular to both $\vec{a} \quad$ and $\quad \vec{b}, \quad$ and $\quad \vec{c} \cdot \vec{d}=12$. Then $(-\hat{i}+\hat{j}-\hat{k}) \cdot(\vec{c} \times \vec{d})$ is equal to
(1) 48
(2) 42
(3) 44
(4) 24

Official Ans. by NTA (3)
Allen Ans. (3)

Sol. $\quad \vec{a}=2 \hat{i}+7 \hat{j}-\hat{k}$
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+5 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{d}}=\lambda(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=\lambda\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 7 & -1 \\ 3 & 0 & 5\end{array}\right|$
$\overrightarrow{\mathrm{d}}=\lambda(35 \hat{\mathrm{i}}-13 \hat{\mathrm{j}}-21 \hat{\mathrm{k}})$
$\lambda(35+13-42)=12$
$\lambda=2$
$\overrightarrow{\mathrm{d}}=2(35 \hat{\mathrm{i}}-13 \hat{\mathrm{j}}-21 \hat{\mathrm{k}})$
$(\hat{i}+\hat{j}-\hat{k})(\vec{c} \times \vec{d})$
$=\left|\begin{array}{ccc}-1 & 1 & -1 \\ 1 & -1 & 2 \\ 70 & -26 & -42\end{array}\right|=44$
12. If $\mathrm{S}_{\mathrm{n}}=4+11+21+34+50+$ \qquad to n terms, then $\frac{1}{60}\left(\mathrm{~S}_{29}-\mathrm{S}_{9}\right)$ is equal to
(1) 226
(2) 220
(3) 223
(4) 227

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. $\quad \mathrm{S}_{\mathrm{n}}=4+11+21+34+50+\ldots .+\mathrm{n}$ terms Difference are in A.P.

Let $T_{n}=a n^{2}+b n+c$
$\mathrm{T}_{1}=\mathrm{a}+\mathrm{b}+\mathrm{c}=4$
$\mathrm{T}_{2}=4 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=11$
$\mathrm{T}_{3}=9 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}=21$
By solving these 3 equations
$\mathrm{a}=\frac{3}{2}, \mathrm{~b}=\frac{5}{2}, \mathrm{c}=0$
So $\mathrm{T}_{\mathrm{n}}=\frac{3}{2} \mathrm{n}^{2}+\frac{5}{2} n$
$\mathrm{S}_{\mathrm{n}}=\Sigma \mathrm{T}_{\mathrm{n}}$
$=\frac{3}{2} \Sigma \mathrm{n}^{2}+\frac{5}{2} \Sigma \mathrm{n}$
$=\frac{3}{2} \frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}=\frac{5}{2} \frac{(\mathrm{n})(\mathrm{n}+1)}{2}$
$=\frac{\mathrm{n}(\mathrm{n}+1)}{4}[2 \mathrm{n}+1+5]$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{4}(2 \mathrm{n}+6)=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+3)}{2}$
$\frac{1}{60}\left(\frac{29 \times 30 \times 32}{2}-\frac{9 \times 10 \times 12}{2}\right)=223$
13. If the points P and Q are respectively the circumcentre and the orthocentre of a $\triangle \mathrm{ABC}$, then $\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}$ is equal to
(1) $2 \overrightarrow{\mathrm{QP}}$
(2) $\overrightarrow{\mathrm{QP}}$
(3) $2 \overrightarrow{P Q}$
(4) $\overrightarrow{P Q}$

Official Ans. by NTA (4)
Allen Ans. (4)
Sol.

$\overline{\mathrm{PA}}+\overline{\mathrm{PB}}+\overline{\mathrm{PC}}=\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}$
$\overline{\mathrm{PG}}=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}}{3}$
$\Rightarrow \overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=3 \overline{\mathrm{PG}}=\overline{\mathrm{PQ}}$
Ans. (4)
14. The statement $\sim[p \vee(\sim(p \wedge q))]$ is equivalent to
(1) $(\sim(\mathrm{p} \wedge \mathrm{q})) \wedge \mathrm{q}$
(2) $\sim(p \wedge q)$
(3) $\sim(p \vee q)$
(4) $(p \wedge q) \wedge(\sim p)$

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\sim[p \vee(\sim(p \wedge q))]$
$\sim \mathrm{p} \wedge(\mathrm{p} \wedge \mathrm{q})$
15. Let $\mathrm{S}=\left\{\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^{2} \mathrm{x}}+9^{\tan ^{2} \mathrm{x}}=10\right\}$ and $\beta=\sum_{x \in S} \tan ^{2}\left(\frac{x}{3}\right)$, then $\frac{1}{6}(\beta-14)^{2}$ is equal to
(1) 32
(2) 8
(3) 64
(4) 16

Official Ans. by NTA (1)
Allen Ans. (1)

Sol. Let $9^{\tan ^{2} x}=P$
$\frac{9}{\mathrm{P}}+\mathrm{P}=10$
$\mathrm{P}^{2}-10 \mathrm{P}+9=0$
$(P-9)(P-1)=0$
$\mathrm{P}=1,9$
$9^{\tan ^{2} \mathrm{x}}=1,9^{\tan ^{2} \mathrm{x}}=9$
$\tan ^{2} \mathrm{x}=0, \tan ^{2} \mathrm{x}=1$
$\mathrm{x}=0, \pm \frac{\pi}{4} \quad \therefore \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\mathrm{p}}{2}\right)$
$\beta=\tan ^{2}(0)+\tan ^{2}\left(+\frac{\pi}{12}\right)+\tan ^{2}\left(-\frac{\pi}{12}\right)$
$=0+2\left(\tan 15^{\circ}\right)^{2}$
$2(2-\sqrt{3})^{2}$
$2(7-4 \sqrt{3})$
Than $\frac{1}{6}(14-8 \sqrt{3}-14)^{2}=32$
16. If the coefficients of x and x^{2} in $(1+x)^{p}(1-x)^{q}$ are 4 and -5 respectively, then $2 p+3 q$ is equal to
(1) 63
(2) 69
(3) 66
(4) 60

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $(1+x)^{P}(1-x)^{q}$
$\left(1+p x+\frac{p(p-1)}{2!} x^{2}+\ldots\right)$
$\left(1-q x+\frac{q(q-1)}{2!} x^{2}-\ldots\right)$
$\mathrm{p}-\mathrm{q}=4$
$\frac{p(p-1)}{2}+\frac{q(q-1)}{2}-p q=-5$
$\mathrm{p}^{2}+\mathrm{q}^{2}-\mathrm{p}-\mathrm{q}-2 \mathrm{pq}=-10$
$(\mathrm{q}+4)^{2}+\mathrm{q}^{2}-(\mathrm{q}+4)-\mathrm{q}-2(4+\mathrm{q}) \mathrm{q}=-10$
$q^{2}+8 q+16-q^{2}-q-4-q-8 q-2 q^{2}=-10$
$-2 q=-22$
$\mathrm{q}=11$
$\mathrm{p}=15$
$2(15)+3(11)$
$30+33=63$
17. Let the line $\frac{x}{1}=\frac{6-y}{2}=\frac{z+8}{5}$ intersect the lines $\frac{x-5}{4}=\frac{y-7}{3}=\frac{z+2}{1}$ and $\frac{x+3}{6}=\frac{3-y}{3}=\frac{z-6}{1}$ at the points A and B respectively. Then the distance of the mid-point of the line segment $A B$ from the plane $2 \mathrm{x}-2 \mathrm{y}+\mathrm{z}=14$ is
(1) 4
(2) $\frac{10}{3}$
(3) 3
(4) $\frac{11}{3}$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\frac{x}{1}=\frac{y-6}{-2}=\frac{z+8}{5}=\lambda$
$\frac{x-5}{4}=\frac{y-7}{3}=\frac{z+2}{1}=\mu$
$\frac{x+3}{4}=\frac{y-3}{-3}=\frac{z-6}{1}=\gamma$
Intersection of (1) \& (2) "A"
$(\lambda,-2 \lambda+6,5 \lambda-8) \&(4 \mu+5,3 \mu+7, \mu-2)$
$\lambda=1, \mu=-1$
$\mathrm{A}(1,4,-3)$
Intersection of (1) \& (3) "B"
$(\lambda,-2 \lambda+6,5 \lambda-8) \&(6 \gamma-3,-3 \gamma+3, \gamma+6)$
$\lambda=3$
$\gamma=1$
B(3, 0, 7)
Mid point of $\mathrm{A} \& \mathrm{~B} \Rightarrow(2,2,2)$
Perpendicular distance from the plane
$2 x-2 y+z=14$
$\Rightarrow \quad\left|\frac{2(2)-2(2)+2-14}{\sqrt{4+4+1}}\right|=4$
18. Let $S=\left\{z=x+i y: \frac{2 z-3 i}{4 z+2 i}\right.$ is a real number $\}$.

Then which of the following is NOT correct?
(1) $y+x^{2}+y^{2} \neq-\frac{1}{4}$
(2) $x=0$
(3) $(x, y)=\left(0,-\frac{1}{2}\right)$
(4) $\mathrm{y} \in\left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, \infty\right)$

Official Ans. by NTA (3)
Allen Ans. (3)

Sol. $\frac{2 z-3 i}{q z+2 i} \in R$
$\frac{2(x+i y)-3 i}{4(x+i t)+2 i}=\frac{2 x+(2 y-3) i}{4 x+(4 y+2) i} \times \frac{4 x-(4 y+2) i}{4 x-(4 y+2) i}$
$4 x(2 y-3)-2 x(4 y+2)=0$
$\mathrm{x}=0 \quad \mathrm{y} \neq-\frac{1}{2}$
Ans. $=3$
19. Let the number $(22)^{2022}+(2022)^{22}$ leave the remainder α when divided by 3 and β when divided by 7. Then $\left(\alpha^{2}+\beta^{2}\right)$ is equal to
(1) 10
(2) 5
(3) 20
(4) 13

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $(22)^{2022}+(2022)^{22}$
divided by 3
$(21+1)^{2022}+(2022)^{22}$
$=3 \mathrm{k}+1 \quad(\alpha=1)$
Divided by 7
$(21+1)^{2022}+(2023-1)^{22}$
$7 \mathrm{k}+1+1$
$7 \mathrm{k}+2$
So $\alpha^{2}+\beta^{2} \Rightarrow 5$
20. Let μ be the mean and σ be the standard deviation of the distribution

x_{i}	0	1	2	3	4	5
f_{i}	$\mathrm{k}+2$	2 k	$\mathrm{k}^{2}-1$	$\mathrm{k}^{2}-1$	$\mathrm{k}^{2}+1$	$\mathrm{k}-3$

where $\sum f_{i}=62$. if $[x]$ denotes the greatest integer $\leq \mathrm{x}$, then $\left[\mu^{2}+\sigma^{2}\right]$ is equal
(1) 8
(2) 7
(3) 6
(4) 9

Official Ans. by NTA (1)
Allen Ans. (1)

Sol. $\quad \sum f_{i}=62$
$\Rightarrow \quad 3 \mathrm{k}^{2}+16 \mathrm{k}-12 \mathrm{k}-64=0$
$\Rightarrow \quad \mathrm{k}=$ or $-\frac{16}{3}$ (rejected)
$\mu=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\mu=\frac{8+2(15)+3(15)+4(17)+5}{62}=\frac{156}{62}$
$\sigma^{2}=\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)^{2}$
$=\frac{8 \times 1^{2}+15 \times 13+17 \times 16+25}{62}-\left(\frac{156}{62}\right)^{2}$
$\sigma^{2}=\frac{500}{62}-\left(\frac{156}{62}\right)^{2}$
$\sigma^{2}+\mu^{2}=\frac{500}{62}$
$\left[\sigma^{2}+\mu^{2}\right]=8$

SECTION-B

21. Let the equations of two adjacent sides of a parallelogram $A B C D$ be $2 x-3 y=-23$ and $5 x+4 y$ $=23$. If the equation of its one diagonal $A C$ is $3 x+$ $7 y=23$ and the distance of A from the other diagonal is d , then $50 \mathrm{~d}^{2}$ is equal to \qquad -.
Official Ans. by NTA (529)
Allen Ans. (529)
Sol.

(-4,5)
A \& C point will be $(-4,5) \&(3,2)$
mid point of AC will be $\left(-\frac{1}{2}, \frac{7}{2}\right)$
equation of diagonal BD is
$y-\frac{7}{2}=\frac{\frac{7}{2}}{-\frac{1}{2}} \quad\left(x+\frac{1}{2}\right)$
$\Rightarrow \quad 7 x+y=0$
Distance of A from diagonal BD
$=\mathrm{d}=\frac{23}{\sqrt{50}}$
$\Rightarrow \quad 50 \mathrm{~d}^{2}=(23)^{2}$
$50 \mathrm{~d}^{2}=529$
22. Let S be the set of values of λ, for which the system of equations
$6 \lambda x-3 y+3 z=4 \lambda^{2}$,
$2 \mathrm{x}+6 \lambda \mathrm{y}+4 \mathrm{z}=1$,
$3 x+2 y+3 \lambda z=\lambda$ has no solution. Then $12 \sum_{\lambda \in S}|\lambda|$ is equal to \qquad .

Official Ans. by NTA (24)
Allen Ans. (24)
Sol. $\Delta=\left|\begin{array}{ccc}6 \lambda & -3 & 3 \\ 2 & 6 \lambda & 4 \\ 3 & 2 & 3 \lambda\end{array}\right|=0$ (For No Solution)
$2 \lambda\left(9 \lambda^{2}-4\right)+(3 \lambda-6)+(2-9 \lambda)=0$
$18 \lambda^{3}-14 \lambda-4=0$
$(\lambda-1)(3 \lambda+1)(3 \lambda+2)=0$
$\Rightarrow \lambda=1,-1 / 3,-2 / 3$
For each $\lambda, \Delta_{1}=\left|\begin{array}{ccc}6 \lambda & -3 & 4 \lambda^{2} \\ 2 & 6 \lambda & 1 \\ 3 & 2 & \lambda\end{array}\right| \neq 0$
Ans. $12\left(1+\frac{1}{3}+\frac{2}{3}\right)=24$
23. Let the foot of perpendicular from the point $A(4,3$, 1) on the plane $P: x-y+2 z+3=0$ be N. If $B(5$, $\alpha, \beta), \alpha, \beta \in \mathbb{Z}$ is a point on plane P such that the area of the triangle ABN in $3 \sqrt{2}$, then $\alpha^{2}+\beta^{2}+\alpha \beta$ is equal to \qquad .

Official Ans. by NTA (7)
Allen Ans. (7)
Sol.

$\mathrm{AN}=\sqrt{6}$
$5-\alpha+2 \beta+3=0$
$\Rightarrow \quad \alpha=8+2 \beta$
N is given by

$$
\left.\begin{array}{ll}
& \frac{\mathrm{x}-4}{1}=\frac{\mathrm{y}-3}{-1}=\frac{\mathrm{z}-1}{2}=\frac{-(4-3+2+3)}{1+1+4} \\
\Rightarrow \quad & \mathrm{x}=3, \mathrm{y}=4, \mathrm{z}=-1
\end{array}\right) \quad \mathrm{N} \text { is }(3,4,-1) .
$$

24. Let quadratic curve passing through the point $(-1,0)$ and touching the line $\mathrm{y}=\mathrm{x}$ at $(1,1)$ be $\mathrm{y}=$ $\mathrm{f}(\mathrm{x})$. Then the x -intercept of the normal to the curve at the point $(\alpha, \alpha+1)$ in the first quadrant is
\qquad .
Official Ans. by NTA (11)
Allen Ans. (11)
Sol. $f(x)=(x+1)(a x+b)$
$1=2 a+2 b$ \qquad
$\mathrm{f}^{\prime}(\mathrm{x})=(\mathrm{ax}+\mathrm{b})+\mathrm{a}(\mathrm{x}+1)$
$1=(3 a+b)$ \qquad (2)
$\Rightarrow \mathrm{b}=1 / 4, \mathrm{a}=1 / 4$
$\mathrm{f}(\mathrm{x})=\frac{(\mathrm{x}+1)^{2}}{4}$
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{x}}{2}+\frac{1}{2}$
$\alpha+1=\frac{(\alpha+1)^{2}}{4}, \alpha>-1$
$\alpha+1=4$
$\alpha=3$
normal at $(3,4)$
$y-4=-\frac{1}{2}(x-3)$
$\mathrm{y}=0$

$$
x=8+3
$$

Ans. 11
25. Let the tangent at any point P on a curve passing through the points $(1,1)$ and $\left(\frac{1}{10}, 100\right)$, intersect positive x -axis and y -axis at the points A and B respectively. If $\mathrm{PA}: \mathrm{PB}=1: \mathrm{k}$ and $\mathrm{y}=\mathrm{y}(\mathrm{x})$ is the solution of the differential equation $\mathrm{e}^{\frac{\mathrm{dy}}{\mathrm{dx}}}=\mathrm{kx}+\frac{\mathrm{k}}{2}$, $y(0)=k$, then $4 y(1)-5 \log _{e} 3$ is equal to \qquad .

Official Ans. by NTA (6)
Allen Ans. (5) (answer is $4+\ell$ n3)
Sol. equation of tangent at $\mathrm{P}(\mathrm{x}, \mathrm{y})$
$Y-y=\frac{d y}{d x}(X-x)$
$\mathrm{Y}=0$
$X=\frac{-y d x}{d y}+x$

$\frac{\mathrm{k} \alpha+0}{\mathrm{k}+1}=\mathrm{x}, \quad \alpha=\frac{\mathrm{k}+1}{\mathrm{k}} \mathrm{x}$
$\frac{k+1}{k} x=-y \frac{d x}{d y}+x$
$x+\frac{x}{k}=-y \frac{d x}{d y}+x$
$x \frac{d y}{d x}+k y=0 \quad \frac{d y}{d x}+\frac{k}{x} y=0$
y. $\mathrm{x}^{\mathrm{k}}=\mathrm{C}$

C $=1$
100. $\left(\frac{1}{10}\right)^{k}=1$
$\mathrm{K}=2$
$\frac{d y}{d x}=\ln (2 x+1)$
$y=\frac{2 x+1}{2}(\ln (2 x+1)-1)+c$
$2=\frac{1}{2}(0-1)+\mathrm{C}$
$\mathrm{C}=2+\frac{1}{2}=\frac{5}{2}$
$y(1)=\frac{3}{2}(\ln 3-1)+\frac{5}{2}$
$=\frac{3}{2} \ln 3+1$
$4 y(1)=6 \ln 3+4$
$4 y(1)-5 \ln 3=4+\ell n 3$
26. Suppose $a_{1}, a_{2}, 2, a_{3}, a_{4}$ be in an arithmeticogeometric progression. If the common ratio of the corresponding geometric progression is 2 and the sum of all 5 terms of the arithmetico-geometric progression is $\frac{49}{2}$, then a_{4} is equal to \qquad .

Official Ans. by NTA (16)
Allen Ans. (16)
Sol. $\frac{(\mathrm{a}-2 \mathrm{~d})}{4}, \frac{(\mathrm{a}-\mathrm{d})}{2}, \mathrm{a}, 2(\mathrm{a}+\mathrm{d}), 4(\mathrm{a}+2 \mathrm{~d})$
$\mathbf{a}=\mathbf{2}$
$\left(\frac{1}{4}+\frac{1}{2}+1+6\right) \times 2+(-1+2+8) d=\frac{49}{2}$
$2\left(\frac{3}{4}+7\right)+9 d=\frac{49}{2}$
$9 d=\frac{49}{2}-\frac{62}{4}=\frac{98-62}{4}=9$
$\mathrm{d}=1$
$\Rightarrow \mathrm{a}_{4}=4(\mathrm{a}+2 \mathrm{~d})$

$$
=16
$$

27. If the domain of the function $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ is $[\alpha, \beta) \cup(\gamma, \delta]$, then $|3 \alpha+10(\beta+\gamma)+21 \delta|$ is equal to \qquad .
Official Ans. by NTA (24)
Allen Ans. (24)
Sol. $f(x)=\sec ^{-1} \frac{2 x}{5 x+3}$
$\left|\frac{2 x}{5 x+3}\right|$
$\left|\frac{2 x}{5 x+3}\right| \geq 1 \Rightarrow|2 x| \geq|5 x+3|$
$(2 x)^{2}-(5 x+3)^{2} \geq|5 x+3|$
$(7 x+3)(-3 x-3) \geq 0$

$-\quad+\quad-$
$-1 \quad-\frac{3}{7}$

$\therefore \quad$ domain $\left[-1, \frac{-3}{5}\right) \cup\left(\frac{-3}{5}, \frac{-3}{7}\right]$
$\alpha=-1, \beta=\frac{-3}{5}, \gamma=\frac{-3}{5}, \delta=\frac{-3}{7}$
$3 \alpha+10(\beta+\gamma)+21 \delta=-3$
$-3+10\left(\frac{-6}{5}\right)+\left(\frac{-3}{7}\right) 21=-24$
28. The sum of all the four-digit numbers that can be formed using all the digits $2,1,2,3$ is equal to
\qquad .
Official Ans. by NTA (26664)
Allen Ans. (26664)
Sol. 2, 1, 2, 3

$$
\begin{array}{lll}
-\quad-\quad- & \underline{1} & \frac{3!}{2!}=3 \\
-\quad-\quad & \underline{2} & 3!=6 \\
-\quad-\quad & \underline{3} & \frac{3!}{2!}=3
\end{array}
$$

Sum of digits of unit place $=3 \times 1+6 \times 2+3 \times 3$ $=24$
$\therefore \quad$ required sum
$=24 \times 1000+24 \times 100+24 \times 10+24 \times 1$
$=24 \times 1111$
Ans; 26664
29. In the figure, $\theta_{1}+\theta_{2}=\frac{\pi}{2}$ and $\sqrt{3}(\mathrm{BE})=4(\mathrm{AB})$. If the area of $\Delta \mathrm{CAB}$ is $2 \sqrt{3}-3$ unit 2, when $\frac{\theta_{2}}{\theta_{1}}$ is the largest, then the perimeter (in unit) of \triangle CED is equal to \qquad _.

Official Ans. by NTA (6)
Allen Ans. (6)
Sol.

$\sqrt{3} \mathrm{BE}=4 \mathrm{AB}$
$\operatorname{Ar}(\triangle \mathrm{CAB})=2 \sqrt{3}-3$
$\frac{1}{2} \mathrm{x}^{2} \tan \theta_{1}=2 \sqrt{3}-3$
$\mathrm{BE}=\mathrm{BD}+\mathrm{DE}$
$=\mathrm{x}\left(\tan \theta_{1}+\tan \theta_{2}\right)$
$\mathrm{BE}=\mathrm{AB}\left(\tan \theta_{1}+\cot \theta_{1}\right)$
$\frac{4}{\sqrt{3}} \tan \theta_{1}+\cot \theta_{1} \Rightarrow \tan \theta_{1}=\sqrt{3}, \frac{1}{\sqrt{3}}$
$\theta_{1}=\frac{\pi}{6}$
$\theta_{2}=\frac{\pi}{3}$
$\theta_{1}=\frac{\pi}{3}$
$\theta_{2}=\frac{\pi}{6}$
as $\frac{\theta_{2}}{\theta_{1}}$ is largest $\therefore \theta_{1}=\frac{\pi}{6} \quad \theta_{2}=\frac{\pi}{3}$
$\therefore \mathrm{x}^{2}=\frac{(2 \sqrt{3}-3) \times 2}{\tan \theta_{1}}=\frac{\sqrt{3}(2-\sqrt{3}) \times 2}{\tan \frac{\pi}{6}}$
$x^{2}=12-6 \sqrt{3}=(3-\sqrt{3})^{2}$
$\mathrm{x}=3-\sqrt{3}$
Perimeter of \triangle CED
$=C D+D E+C E$
$=3 \sqrt{3}+(3-\sqrt{3}) \sqrt{3}+(3-\sqrt{3}) \times 2=6$
Ans: 6
30. If the area of the region $\left\{(x, y):\left|x^{2}-2\right| \leq y \leq x\right\}$ is A, then $6 \mathrm{~A}+16 \sqrt{2}$ is equal to \qquad .

Official Ans. by NTA (27)
Allen Ans. (27)
Sol. $\left|x^{2}-2\right| \leq y \leq x$

$A=\int_{1}^{\sqrt{2}}\left(x-\left(2-x^{2}\right)\right) d x+\int_{\sqrt{2}}^{2}\left(x-\left(x^{2}-2\right)\right) d x$ $=\left(1-2 \sqrt{2}+\frac{2 \sqrt{2}}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right)+\left(2-\frac{8}{3}+4\right)-\left(1-\frac{2 \sqrt{2}}{3}+2 \sqrt{2}\right)$
$=-4 \sqrt{2}+\frac{4 \sqrt{2}}{3}+\frac{7}{6}+\frac{10}{3}=\frac{-8 \sqrt{2}}{3}+\frac{9}{2}$
$6 \mathrm{~A}=-16 \sqrt{2}+27 \therefore 6 \mathrm{~A}+16 \sqrt{2}=27$
Ans: 27

