CHEMISTRY

SECTION-A

61. Incorrect method of preparation for alcohols from the following is:
(1) Ozonolysis of alkene.
(2) Reaction of Ketone with RMgBr followed by hydrolysis.
(3) Hydroboration-oxidation of alkene.
(4) Reaction of alkyl halide with aqueous NaOH .

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Ozonolysis of alkene, gives aldehyde, ketone \& carboxylic acid.
62. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: The energy required to form Mg^{2+} from Mg is much higher than that required to produce Mg^{+}.
Reason R: Mg^{2+} is small ion and carry more charge than Mg^{+}.
In the light of the above statements, choose the correct answer from the options given below:
(1) Both A and R are true but R is NOT the correct explanation of A .
(2) A is true but R is false.
(3) A is false but R is true.
(4) Both A and R are true and R is the correct explanation of A.
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Assertion \& Reason are correct and Reason is correct explanation.
\because Successive I.E. always increases.
63. In Carius tube, an organic compound ' X ' is treated with sodium peroxide to form a mineral acid ' Y '.
The solution of BaCl_{2} is added to ' Y ' to form a precipitate ' Z '. ' Z ' is used for the quantitative estimation of an extra element. ' X ' could be:
(1) Cytosine
(2) Chloroxylenol
(3) A nucleotide
(4) Methionine

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $X \xrightarrow{\mathrm{Na}_{2} \mathrm{O}_{2}} \mathrm{Y} \xrightarrow{\mathrm{BaCl}_{2}} \underset{\left[\mathrm{BaSO}_{4}\right]}{\mathrm{Z}}$
Methionine: $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$

$\left(\mathrm{CH}_{2}\right)_{2}$ $\stackrel{\mathrm{S}}{\mathrm{S}-\mathrm{CH}_{3}}$

TEST PAPER WITH SOLUTION

64. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: 3.1500 g of hydrated oxalic acid dissolved in water to make 250.0 mL solution will result in 0.1 M oxalic acid solution.
Reason R: Molar mass of hydrated oxalic acid is $126 \mathrm{~g} \mathrm{~mol}^{-1}$.
In the light of the above statements, chose the correct answer from the options given below:
(1) Both A and R are true but R is NOT the correct explanation of A .
(2) A is false but R is true.
(3) A is true but R is false.
(4) Both A and R are true and R is the correct explanation of A.
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Assertion is correct.
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
M & =\frac{3.15 \times 1000}{126 \times 250} \\
& =\frac{12.6}{126}=0.1
\end{aligned}
$$

Reason is correct. It is used as a fact in explanation of assertion.
65. Buna-S can be represented as:
(1)

(2)

(3)

(4)

Official Ans. by NTA (2)
Allen Ans. (2)

66. In the reaction give below:

The product ' X ' is:
(1)

(2)

(3)

(4)

Official Ans. by NTA (1)
Allen Ans. (1)

Sol.

67. Ferric chloride is applied to stop bleeding because:
(1) Cl^{-}ions cause coagulation of blood.
(2) Blood absorbs FeCl_{3} and forms a complex.
(3) Fe^{3+} ions coagulate blood which is a negatively charged sol.
(4) FeCl_{3} reacts with the constituents of blood which is a positively charged sol.

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. Fe^{3+} coagulation negatively charged sol blood.
68. The reaction used for preparation of soap from fat is:
(1) reduction reaction
(2) alkaline hydrolysis reaction
(3) an addition reaction
(4) an oxidation reaction

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. Saponification: Alkaline hydrolysis.
69. The decreasing order of hydride affinity for following carbocations is:
A.

B.

C.

D.

Choose the correct answer from the options given below:
(1) A, C, B, D
(2) C, A, B, D
(3) C, A, D, B
(4) A, C, D, B

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. Stability order of cations is : C $<\mathrm{A}<\mathrm{B}<\mathrm{D}$
70. The correct relationship between unit cell edge length ' a ' and radius of sphere ' r ' for face-centred and body centred cubic structures respectively are:
(1) $r=2 \sqrt{2} a$ and $\sqrt{3} r=4 a$
(2) $r=2 \sqrt{2} a$ and $4 r=\sqrt{3} a$
(3) $2 \sqrt{2} r=$ a and $4 r=\sqrt{3} a$
(4) $2 \sqrt{2} r=$ a and $\sqrt{3} r=4 a$

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. FCC
$\mathrm{a} \sqrt{2}=4 \mathrm{r}$
$r=\frac{a \sqrt{2}}{4}$
$\Rightarrow \mathrm{a}=2 \sqrt{2} \mathrm{r}$
BCC
$4 \mathrm{r}=\mathrm{a} \sqrt{3}$
71. Number of water molecules in washing soda and soda ash respectively are:
(1) 10 and 1
(2) 1 and 10
(3) 1 and 0
(4) 10 and 0

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Washing soda: $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$
Soda ash : $\mathrm{Na}_{2} \mathrm{CO}_{3}$
72. The delicate balance of CO_{2} and O_{2} is NOT disturbed by:
(1) Burning of Coal
(2) Deforestation
(3) Burning of petroleum
(4) Respiration

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Respiration, is a natural process, So balance of CO_{2} and O_{2} not disturbed by respiration.
73. The correct order of the number of unpaired electrons in the given complexes is
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
B. $\left[\mathrm{FeF}_{6}\right]^{3-}$
C. $\left[\mathrm{CoF}_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}(\text { oxalate })_{3}\right]^{3-}$
E. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

Choose the correct answer from the options given below:
(1) A $<$ E $<$ D $<$ C $<$ B
(2) E $<$ A $<$ D $<$ C $<$ B
(3) E $<$ A $<$ B $<$ D $<$ C
(4) A $<$ E $<$ C $<$ B $<$ D

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \mathrm{n}=1$
B. $\left[\mathrm{FeF}_{6}\right]^{3-} \mathrm{n}=5$
C. $\left[\mathrm{CoF}_{6}\right]^{3-} \mathrm{n}=4$
D. $\left[\mathrm{Cr}(\text { oxalate })_{3}\right]^{3-} \mathrm{n}=3$
E. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \mathrm{n}=0$
74. The correct order for acidity of the following hydroxyl compound is:
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
C.

D.

E.

Choose the correct answer from the options given below:
(1) E $>$ C $>$ D $>$ A $>$ B
(2) D $>$ E $>$ C $>$ A $>$ B
(3) $\mathrm{C}>$ E $>$ D $>$ B $>$ A
(4) E $>$ D $>$ C $>$ B $>$ A

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\mathrm{E}>\mathrm{C}>\mathrm{D}>\mathrm{A}>\mathrm{B}$
75. The major product ' P ' formed in the given reaction is:

(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Allen Ans. (4)

Sol.

76. Match List I with List II

List I Complex		List II Crystal Field splitting energy (Δ_{0})	
A.	$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	I.	-1.2
B.	$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	II.	-0.6
C.	$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	III.	0
D.	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	IV	-0.8

Choose the correct answer from the options given below:
(1) A-II, B-IV, C-I, D-III
(2) A-IV, B-I, C-II, D-III
(3) A-IV, B-I, C-III, D-II
(4) A-II, B-IV, C-III, D-I

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. A-IV, B-I, C-II, D-III
(A) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{Ti}^{2+} \Rightarrow 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{0}$
$\mathrm{t}_{2 \mathrm{~g}} \mathrm{e}^{-}=2$
$\mathrm{e}_{\mathrm{g}} \mathrm{e}^{-}=0$
CFSE $=[-0.4 \times 2+0.6 \times 0] \Delta_{0}$

$$
=-0.8 \Delta
$$

(B) $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{V}^{2+} \Rightarrow 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0}$
$\mathrm{t}_{2 \mathrm{~g}} \mathrm{e}^{-}=3$
$\mathrm{e}_{\mathrm{g}} \mathrm{e}^{-}=0$
$\mathrm{CFSE}=[-0.4 \times 3+0.6 \times 0] \Delta_{0}$

$$
=-1.2 \Delta_{0}
$$

(C) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
$\mathrm{Mn}^{3+} \Rightarrow 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{0}$
$\mathrm{t}_{2 \mathrm{~g}} \mathrm{e}^{-}=3$
$\mathrm{e}_{\mathrm{g}} \mathrm{e}^{-}=1$
$\mathrm{CFSE}=[-0.4 \times 3+0.6 \times 1] \Delta_{0}$

$$
=-0.6 \Delta_{0}
$$

(D) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
$\mathrm{Fe}^{3+} \Rightarrow 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$
$\mathrm{t}_{2 \mathrm{~g}} \mathrm{e}^{-}=3 \quad \mathrm{e}_{\mathrm{g}}=2$
$\mathrm{CFSE}=[-0.4 \times 3+0.6 \times 2] \Delta_{0}$

$$
=0 \Delta_{0}
$$

77. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A: Physical properties of isotopes of hydrogen are different.
Reason: Mass difference between isotopes of hydrogen is very large.
In the light of the above statements, chose the correct answer from the options given below:
(1) A is false but R is true.
(2) Both A and R are true and R is the NOT the correct explanation of A .
(3) A is true but R is false.
(4) Both A and R are true and R is the correct explanation of A.
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Both A and R are true and R is the correct explanation of A .
Due to mass difference in isotopes of hydrogen, these have different physical property.
78. Match List-I with List-II.

	List - I		List - II
A.	16 g of $\mathrm{CH}_{4}(\mathrm{~g})$	I.	Weighs 28 g
B.	1 g of $\mathrm{H}_{2}(\mathrm{~g})$	II.	60.2×10^{23} electrons
C.	1 mole of $\mathrm{N}_{2}(\mathrm{~g})$	III.	Weighs 32g
D.	0.5 mol of $\mathrm{SO}_{2}(\mathrm{~g})$	IV.	Occupies 11.4 L volume at STP

Choose the correct answer from the options given below:
(1) A-I, B-III, C-II, D-IV
(2) A-II, B-III, C-IV, D-I
(3) A-II, B-IV, C-III, D-I
(4) A-II, B-IV, C-I, D-III

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\quad 16 \mathrm{~g} \mathrm{CH}_{4}=1$ mole CH_{4} contains $10 \times 6.02 \times 10^{23}$ electrons

$$
=60.2 \times 10^{23}
$$

$1 \mathrm{~g} \mathrm{H}_{2}=0.5$ mole $^{\mathrm{H}_{2}}$ gas occupy 11.35 litre volume at STP
1 mole of $\mathrm{N}_{2}=28 \mathrm{~g}$
0.5 mole of $\mathrm{SO}_{2}=32 \mathrm{~g}$
79. The correct order of metallic character is:
(1) $\mathrm{Be}>\mathrm{Ca}>\mathrm{K}$
(2) $\mathrm{Ca}>\mathrm{K}>\mathrm{Be}$
(3) $\mathrm{K}>\mathrm{Ca}>\mathrm{Be}$
(4) $\mathrm{K}>\mathrm{Be}>\mathrm{Ca}$

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. On moving from top to bottom metallic character increases while on moving from left to right metallic decreases.
$\mathrm{K}>\mathrm{Ca}>\mathrm{Be}$.
80. Gibbs energy vs T plot for the formation of oxides is given below:

For the given diagram, the correct statement is-
(1) At $600^{\circ} \mathrm{C}, \mathrm{C}$ can reduce ZnO
(2) At $600^{\circ} \mathrm{C}, \mathrm{C}$ can reduce FeO
(3) At $600^{\circ} \mathrm{C}, \mathrm{CO}$ cannot reduce FeO
(4) At $600^{\circ} \mathrm{C}$, CO can reduce ZnO

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. at $600^{\circ} \mathrm{C}$,
$\mathrm{FeO}+\mathrm{C} \longrightarrow \mathrm{Fe}+\mathrm{CO}_{2}$

SECTION-B

81. $\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$

For the given reaction, if the initial pressure is 450 mm Hg and the pressure at time t is 720 mm Hg at a constant temperature T and constant volume V . The fraction of $\mathrm{A}(\mathrm{g})$ decomposed under these conditions is $\mathrm{x} \times 10^{-1}$. The value of x is \qquad (nearest integer)
Official Ans. by NTA (3)
Allen Ans. (3)
Sol.

	$\mathrm{A}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{~B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})}$
$\mathrm{t}=0$	450
timet	$450-\mathrm{x} \quad 2 \mathrm{x} \quad \mathrm{x}$

$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}$
$720=450-x+2 x+x$
$2 \mathrm{x}=270$
$\mathrm{x}=135$
Fraction of A decomposed $=\frac{135}{450}=0.3=3 \times 10^{-1}$
So, $x=3$
82. In alkaline medium, the reduction of permanganate anion involves a gain of \qquad electrons.

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. In faintly alkaline medium,
$\mathrm{MnO}_{4}^{-}+3 \mathrm{e}^{-}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$
No. of electrons gained $=3$
83. The number of endothermic process/es from the following is \qquad
A. $\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{I}(\mathrm{g})$
B. $\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{Cl}(\mathrm{g})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
E. Dissolution of ammonium chloride in water

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. A \rightarrow Endothermic (Atomisation)
$\mathrm{B} \rightarrow$ Endothermic (Atomisation)
C \rightarrow Endothermic (Vapourisation)
D \rightarrow Exothermic (Combustion)
$\mathrm{E} \rightarrow$ Endothermic (Dissolution)
84. The number of molecules from the following which contain only two lone pair of electrons is
$\mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}, \mathrm{CO}, \mathrm{XeF}_{4}, \mathrm{NH}_{3}, \mathrm{NO}, \mathrm{CO}_{2}, \mathrm{~F}_{2}$
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{N}_{2}, \mathrm{NO}$, has two lone pair of electrons.
85. The difference in the oxidation state of Xe between the oxidised product of Xe formed on complete hydrolysis of XeF_{4} and XeF_{4} is \qquad
Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $6 \mathrm{XeF}_{4}+12 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{XeO}_{3}+4 \mathrm{Xe}+24 \mathrm{HF}+3 \mathrm{O}_{2}$
in XeO_{3}, Oxidation state of $\mathrm{Xe}=+6$
in XeF_{4}, Oxidation state of $\mathrm{Xe}=+4$
So difference in oxidation state $=2$
86. An aqueous solution of volume $300 \mathrm{~cm}^{3}$ contains 0.63 g of protein. The osmotic pressure of the solution at 300 K is 1.29 mbar . The molar mass of the protein is \qquad $\mathrm{g} \mathrm{mol}^{-1}$
Given : $\mathrm{R}=0.083 \mathrm{~L}^{\text {bar K }}{ }^{-1} \mathrm{~mol}^{-1}$
Official Ans. by NTA (40535)
Allen Ans. (40535)
Sol. $\because \pi=\mathrm{CRT}$

$$
\begin{aligned}
\pi & =\frac{\mathrm{n}}{\mathrm{~V}} \mathrm{RT} \\
\pi & =\frac{\omega}{\mathrm{V}} \frac{\mathrm{RT}}{\mathrm{M}} \\
\mathrm{M} & =\frac{\omega \mathrm{RT}}{\pi \times \mathrm{V}} \\
\mathrm{M} & =\frac{0.63 \times 0.083 \times 300}{1.29 \times 10^{-3} \times 300 \times 10^{-3}} \\
\mathrm{M} & =40535 \mathrm{gm} / \mathrm{moL}
\end{aligned}
$$

87. For a metal ion, the calculated magnetic moment is 4.90 BM. This metal ion has \qquad number of unpaired electons.
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\mu=\sqrt{n(n+2)} B M$
$4.90=\sqrt{n(n+2)}$
$\mathrm{n}=4$
88.

The electron in the $\mathrm{n}^{\text {th }}$ orbit of Li^{2+} is excited to $(n+1)$ orbit using the radiation of energy $1.47 \times 10^{-17} \mathrm{~J}$ (as shown in the diagram). The value of n is \qquad .

Given $\mathrm{R}_{\mathrm{H}}=2.18 \times 10^{-18} \mathrm{~J}$
Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\Delta \mathrm{E}=\mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$
$1.47 \times 10^{-17}=2.18 \times 10^{-18} \times 9\left(\frac{1}{\mathrm{n}^{2}}-\frac{1}{(\mathrm{n}+1)^{2}}\right)$
$\frac{1.47}{1.96}=\frac{3}{4}=\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}$
So, $\mathrm{n}=1$
89. The specific conductance of 0.0025 M acetic acid is $5 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$ at a certain temperature. The dissociation constant of acetic acid is \qquad \times 10^{-7}. (Nearest integer)
Consider limiting molar conductivity of $\mathrm{CH}_{3} \mathrm{COOH}$ as $400 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Official Ans. by NTA (66)
Allen Ans. (66)
Sol. $\wedge_{m}=\frac{k}{C} \times 1000$
Given $\mathrm{k}=5 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$
$\mathrm{C}=0.0025 \mathrm{M}$
$\wedge_{\mathrm{m}}=\frac{5 \times 10^{-5} \times 10^{3}}{0.0025}=\frac{5 \times 10^{-2}}{2.5 \times 10^{-3}}$

$$
=20 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
$$

$\alpha=\frac{20}{400}=\frac{1}{20}$
$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}=\frac{0.0025 \times \frac{1}{20} \times \frac{1}{20}}{\frac{19}{20}}$

$$
\begin{aligned}
& =\frac{0.0025}{19 \times 20}=6.6 \times 10^{-6} \\
& =66 \times 10^{-7}
\end{aligned}
$$

90. The number of incorrect statement/s from the following is \qquad
A. The successive half lives of zero order reactions decreases with time.
B. A substance appearing as reactant in the chemical equation may not affect the rate of reaction
C. Order and molecularity of a chemical reaction can be a fractional number
D. The rate constant units of zero and second order reaction are $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ and $\mathrm{mol}^{-1} \mathrm{Ls}^{-1}$ respectively
Official Ans. by NTA (1)
Allen Ans. (1)
Sol. (A) For zero order $t_{1 / 2}=\frac{[A]_{0}}{2 K}$ as concentration decreases half life decreases (Correct statement)
(B) If order w.r.t. that reactant is zero then it will not affect rate of reaction. (Correct statement)
(C) Order can be fractional but molecularity can not be (Incorrect statement)
(D) For zero order reaction unit is $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ and for second order reaction unit is $\mathrm{mol}^{-1} \mathrm{Ls}^{-1}$ (Correct statement)
