CHEMISTRY

SECTION-A

61. A compound is formed by two elements X and Y. The element Y forms cubic close packed arrangement and those of element X occupy one third of the tetrahedral voids. What is the formula of the compound?
(1) $X_{2} Y_{3}$
(2) $X_{3} Y$
(3) $X_{3} Y_{2}$
(4) XY_{3}

Official Ans. by NTA (1)

Allen Ans. (1)
Sol. $\mathrm{Y}: \mathrm{CCP} \Rightarrow 4 \mathrm{Y}$
$\mathrm{X}=1 / 3 \mathrm{THV}=1 / 3 \times 8 \Rightarrow 8 / 3 \mathrm{x}$
\therefore Formula: $\mathrm{X}_{8 / 3} \mathrm{Y}_{4}$ or $\mathrm{X}_{2} \mathrm{Y}_{3}$
62. Match List I with List II

List I Element detected		List II Reagent used/ Product formed	
A	Nitrogen	I.	$\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$
B	Sulphur	II.	AgNO_{3}
C	Phosphorous	III.	$\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
D	Halogen	IV.	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoO}_{4}$

Choose the correct answer from the options given below:
(1) A-II, B-IV, C-I, D-III
(2) A-IV, B-II, C-I, D-III
(3) A-II, B-I, C-IV, D-III
(4) A-III, B-I, C-IV, D-II

Official Ans. by NTA (4)
Allen Ans. (4)
Nitrogen detection by lassaigne's method
$\mathrm{Na}+\mathrm{C}+\mathrm{N} \rightarrow \mathrm{NaCN}$
$6 \mathrm{NaCN}+\mathrm{FeSO}_{4} \rightarrow \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{Na}_{2} \mathrm{SO}_{4}$
$\mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$ (Prussian blue)
Sulphur detection by Sodium nitroprusside
$\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]+\mathrm{Na}_{2} \mathrm{~S} \rightarrow \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]$
[Purple]
Phosphorus detection by ammonium molybdate
$\mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{NaNO}_{3}$

TEST PAPER WITH SOLUTION

$\mathrm{H}_{3} \mathrm{PO}_{4}+12\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoO}_{4}+21 \mathrm{HNO}_{3} \rightarrow$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} .12 \mathrm{MoO}_{3}+21 \mathrm{NH}_{4} \mathrm{NO}_{3}+12 \mathrm{H}_{2} \mathrm{O}$ (canary yellow)
Halogen give specific coloured ppt with $\mathrm{AgNO}_{3}(\mathrm{aq})$
$\mathrm{NaCl}+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \underset{(\text { White })}{\mathrm{AgCl}+\mathrm{NaNO}_{3}}$
$\mathrm{NaBr}+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{AgBr}+\mathrm{NaNO}_{3}$
(Pale yellow)
$\mathrm{NaI}+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{AgI}+\mathrm{NaNO}_{3}$
(Yellow)
63. The standard electrode potential of $\mathrm{M}^{+} / \mathrm{M}$ in aqueous solution does not depend on
(1) Ionisation of a solid metal atom
(2) Sublimation of a solid metal
(3) Ionisation of a gaseous metal atom
(4) Hydration of a gaseous metal ion

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Factual
64. Polymer used in orlon is:
(1) Polyacrylonitrile
(2) Polyethene
(3) Polycarbonate
(4) Polyamide

Official Ans. by NTA (1)
Allen Ans. (1)

Polyacrylonitrile
(Orlon)
65. The difference between electron gain enthalpies will be maximum between:
(1) Ne and F
(2) Ne and Cl
(3) Ar and Cl
(4) Ar and F

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. Cl has the most negative $\Delta \mathrm{H}_{\mathrm{eg}}$ among all the elements and Ne has the most positive $\Delta \mathrm{H}_{\text {eg }}$.
66. Match List I with List II

List I Enzymatic reaction		List II Enzyme	
A	Sucrose Fructose	Glucose and	I.
Zymase			
B	Glucose \rightarrow ethyl alcohol and CO_{2}	II.	Pepsin
C	Starch \rightarrow Maltose	III.	Invertase
D	Proteins \rightarrow Amino acids	IV.	Diastase

Choose the correct answer from the options given below:
(1) A-III, B-I, C-II, D-IV
(2) A-I, B-IV, C-III, D-II
(3) A-III, B-I, C-IV, D-II
(4) A-I, B-II, C-IV, D-III

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. Factual
67. The possibility of photochemical smog formation is more at
(1) The places with healthy vegetation
(2) Himalayan villages in winter
(3) Marshy lands
(4) Industrial areas

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Photochemical smog occurs in warm, dry and sunny climate. The main components come from the action of sunlight on unsaturated hydrocarbon and nitrogen oxides produced by automobiles and factories.
68. The setting time of Cement is increased by adding
(1) Clay
(2) Silica
(3) Limestone
(4) Gypsum

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Factual
69. Given below are two statements: one is labelled as assertion and the other is labelled as reason .
Assertion: Loss of electron from hydrogen atom results in nucles of $\sim 1.5 \times 10^{-3} \mathrm{pm}$ size.
Reason: Proton $\left(\mathrm{H}^{+}\right)$always exists in combined form
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both A and R are correct and R is the correct explanation of A
(2) A is correct but R is not correct
(3) A is not correct but R is correct
(4) Both A and R are correct but R is NOT the correct explanation of A.
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Factual
70.

Oily Liquid R .
Compound P is neutral. Q gives effervescence with
NaHCO_{3} while R reacts with Hinsbergs reagent to give solid soluble in NaOH . Compound P is
(1)

(2)

(3)

(4)

Official Ans. by NTA (2)
Allen Ans. (2)
Sol.

71. Match List I with List II

List I Name of reaction		List II Reagent used	
A	Hell-Volhard- Zelinsky reaction	I.	$\mathrm{NaOH}+\mathrm{I}_{2}$
B	Iodoform reaction	II.	(i) $\quad \mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{CS}_{2}($ (ii $)$ $\mathrm{H}_{2} \mathrm{O}$
C	Etard reaction	III.	(i) $\mathrm{Br}_{2} /$ red phosphorus (ii) $\mathrm{H}_{2} \mathrm{O}$
D	Gatterman-Koch reaction	IV.	$\mathrm{CO}, \quad \mathrm{HCl}, \quad$ anhyd. AlCl_{3}

Choose the correct answer from the options given below:
(1) A-III, B-II, C-I, D-IV
(2) A-III, B-I, C-IV, D-II
(3) A-I, B-II, C-III, D-IV
(4) A-III, B-I, C-II, D-IV

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. HVZ reactions $=\mathrm{Br}_{2} /$ red P
Iodoform reaction $=\mathrm{NaOH}+\mathrm{I}_{2}$
Etard reaction $=$ (i) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{CS}_{2}$ (ii) $\mathrm{H}_{2} \mathrm{O}$
Gatterman-Koch Reaction $=\mathrm{CO}, \mathrm{HCl}$, Anhydrous, AlCl_{3}
72. The major products A and B from the following reactions are:

(1) $\mathrm{A}=$

(2) $\mathrm{A}=$

(3) $\mathrm{A}=$

(4) $\mathrm{A}=$

Official Ans. by NTA (4)
Allen Ans. (4)

Sol.

73. Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A: The spin only magnetic moment value for $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is 1.74 BM , whereas for $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is 5.92 BM .
Reason \mathbf{R} : In both complexes, Fe is present in +3 oxidation state.

In the light of the above statements, choose the correct answer from the options given below:
(1) Both A and R are true but R is NOT the correct explanation of A
(2) A is false but R is true
(3) A is true but R is false
(4) Both A and R are true and R is the correct explanation of A
Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

Unpaired electron $=1$
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}=\sqrt{1 \times 3}=1.74$ B.M.
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ No pairing because $\mathrm{H}_{2} \mathrm{O}$ is WFL
Number of unpaired electrons $=5, \mu=5.92$ BM
Assertion is true, Reason is true but not correct explanation.
74. Match List I with List II

List I Vitamin		List II Deficiency disease	
A	Vitamin A	I.	Beri-Beri
B	Thiamine	II.	Cheilosis
C	Ascorbic acid	III.	Xeropthalmia
D	Riboflavin	IV.	Scurvy

Choose the correct answer from the options given below:
(1) A-IV, B-II,C-III, D-I
(2) A-III, B-II, C-IV, D-I
(3) A-IV, B-I,C-III, D-II
(4) A-III,B-I,C-IV, D-II

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Factual
75. Which of the following options are correct for the reaction
$2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}{ }_{(\mathrm{aq})}+\mathrm{Zn}(\mathrm{s}) \rightarrow 2 \mathrm{Au}(\mathrm{s})+\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}{ }_{(\mathrm{aq})}$
A. Redox reaction
B. Displacement reaction
C. Decomposition reaction
D. Combination reaction

Choose the correct answer from the options given below:
(1) A and B only
(2) A only
(3) C and D only
(4) A and D only

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\quad 2\left[\begin{array}{l}+1 \\ \mathrm{Au}(\mathrm{CN})_{2}\end{array}\right]^{-}+\stackrel{0}{\mathrm{Zn}(\mathrm{s})} \longrightarrow 2{ }^{0} \mathrm{Au}+\left[\begin{array}{l}\left.\mathrm{Zn}(\mathrm{CN})_{4}\right]^{-2}\end{array}\right.$
Zn displaced Au^{+}
Reduction and Oxidation both are taking place.
76. Match List I with List II

List I Oxide		List II Type of Bond A $\mathrm{N}_{2} \mathrm{O}_{4}$ I.	
B	NO_{2}	$\mathrm{~N}=\mathrm{O}$ bond	
C	$\mathrm{N}_{2} \mathrm{O}_{5}$	III.	$1 \mathrm{~N}-\mathrm{O}-\mathrm{N}$ bond
D	$\mathrm{N}_{2} \mathrm{O}$	IV.	$1 \mathrm{~N}=\mathrm{N} / \mathrm{N} \equiv \mathrm{N} \equiv \mathrm{N}$ bond

Choose the correct answer from the options given below:
(1) A-II, B-IV, C-III, D-I
(2) A-II, B-I, C-III, D-IV
(3) A-III, B-I, C-IV, D-II
(4) A-III, B-I, C-II, D-IV

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\mathrm{N}_{2} \mathrm{O}_{4}$

NO_{2}
$\ddot{O}=\dot{N}-\underline{o}:$
$\mathrm{N}_{2} \mathrm{O}_{5}$

$\mathrm{N}_{2} \mathrm{O}$
$: \stackrel{\ddot{O}}{-1} \mathrm{~N}^{+1} \equiv \mathrm{~N}:$ and $\ddot{\mathrm{O}}=\stackrel{+}{\mathrm{N}}=\overline{\mathrm{N}}$
77. Strong reducing and oxidizing agents among the following, respectively, are
(1) Ce^{4+} and Eu^{2+}
(2) Ce^{4+} and Tb^{4+}
(3) Ce^{3+} and Ce^{4+}
(4) Eu^{2+} and Ce^{4+}

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. Factual

78. The major product formed in the following reaction is

(1)

(2)

(3)

(4)

Official Ans. by NTA (3)
Allen Ans. (3)

Sol.

79. For a concentrated solution of a weak electrolyte ($\mathrm{K}_{\mathrm{eq}}=$ equilibrium constant) $\mathrm{A}_{2} \mathrm{~B}_{3}$ of concentration ' c ', the degree of dissociation " α ' is
(1) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{108 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$
(2) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{6 \mathrm{c}^{5}}\right)^{\frac{1}{5}}$
(3) $\left(\frac{K_{e q}}{5 c^{4}}\right)^{\frac{1}{5}}$
(4) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{25 \mathrm{c}^{2}}\right)^{\frac{1}{5}}$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\quad \mathrm{A}_{2} \mathrm{~B}_{3}(\mathrm{aq}.) \rightleftharpoons 2 \mathrm{~A}_{\text {(aq.) }}^{3+}+3 \mathrm{~B}_{\text {(aq }}^{2-}$
$\mathrm{c}(1-\alpha) \quad 2 \mathrm{c} \alpha \quad 3 \mathrm{c} \alpha$
$\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{A}^{3+}\right]^{2}\left[\mathrm{~B}^{2-}\right]^{3}}{\left[\mathrm{~A}_{2} \mathrm{~B}_{3}\right]}=\frac{4 \mathrm{c}^{2} \alpha^{2} \times 27 \mathrm{c}^{3} \alpha^{3}}{\mathrm{c}(1-\alpha)}$
$\mathrm{K}_{\text {eq }}=\frac{108 \mathrm{c}^{5} \alpha^{5}}{\mathrm{c}} \quad \alpha=\left(\frac{\mathrm{K}_{\mathrm{eq}}}{108 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$
80. For the reaction:

The correct statement is :
(1) The transition state formed in the above reaction is less polar than the localised anion.
(2) The reaction can occur in acetic acid also.
(3) The solvent used in the reaction solvates the ions formed in rate determining step.
(4) Br^{-}can act as competing nucleophile.

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. This is finkelstein reaction

Clearly, the transition state is less polar than free anions. Br^{-}and I^{-}
Acetic acid is protic which does not support $\mathrm{S}_{\mathrm{N}} 2$
Acetone does not solvate anion
Br^{-}gets precipitated and hence can not compete with I^{-}
So only (1)is correct

SECTION-B

81. The wavelength of an electron of kinetic energy $4.50 \times 10^{-29} \mathrm{~J}$ is \qquad $\times 10^{-5} \mathrm{~m}$. (Nearest integer)

Given : mass of electron is $9 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.6 \times$ $10^{-34} \mathrm{~J} \mathrm{~s}$

Official Ans. by NTA (7)
Allen Ans. (7)
Sol. $\quad \lambda_{\mathrm{d}}=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}}=\frac{6.6 \times 10^{-34}}{\sqrt{2 \times 9 \times 10^{-31} \times 4.5 \times 10^{-29}}}$
$=\frac{6.6 \times 10^{-34}}{\sqrt{9^{2} \times 10^{-60}}}$
$=\frac{6.6 \times 10^{-34}}{9 \times 10^{-30}}=\frac{6.6}{9} \times 10^{-4}$
$=7.3 \times 10^{-5} \mathrm{~m}$
Therefore Ans $=7$
82. Number of bromo derivatives obtained on treating ethane with excess of Br_{2}, in diffused sunlight is...

Official Ans. by NTA (9)
Allen Ans. (9)
Sol. $\mathrm{CH}_{3}-\mathrm{CH}_{3}+\mathrm{Br}_{2}$ (Excess) $\xrightarrow{\mathrm{hv}}$
Monobromo Br

Dibromo

Tribromo

Hexabromo

83. Consider the graph of Gibbs free energy G vs Extent of reaction. The number of statement/s from the following which are true with respect to points (a), (b) and (c) is. \qquad

A. Reaction is spontaneous at (a) and (b)
B. Reaction is at equilibrium at point (b) and nonspontaneous at point (c)
C. Reaction is spontaneous at (a) and nonspontaneous at (c)
D. Reaction is non-spontaneous at (a) and (b)

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. For, Spontaneous process $\mathrm{dG}<0$
For, Equilibrium $\mathrm{dG}=0$
For, Nonspontaneous process $\mathrm{dG}>0$
$\therefore \quad$ A Wrong
B Correct
C Correct
D Wrong
84. Mass of Urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ required to be dissolved in 1000 g of water to reduce the vapour pressure of water by 25% is......g. (Nearest integer)

Given: Molar mass of N. C. O and H are 14. 12. 16 and $12 \mathrm{~mol}^{-1}$ respectively.

Official Ans. by NTA (1111)
Allen Ans. (1111)
Sol. $\quad \frac{\mathrm{P}^{0}-P_{s}}{\mathrm{P}_{\mathrm{s}}}=\frac{\mathrm{n}_{\text {solute }}}{\mathrm{n}_{\text {solvent }}}=\frac{\frac{\mathrm{x}}{60}}{\frac{1000}{18}}=\frac{\mathrm{P}^{0}-0.75 \mathrm{P}^{0}}{0.75 \mathrm{P}^{0}}$
$\Rightarrow \mathrm{x}=\frac{10000}{9}=1111 \mathrm{gm}$
Ans: 1111
85. The value of $\log \mathrm{K}$ for the reaction $\mathrm{A} \leftrightharpoons \mathrm{B}$ at 298 K is \qquad (Nearest integer)

Given: $\Delta \mathrm{H}^{0}=-54.07 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{S}^{\circ}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$($ Take $2.303 \times 8.314 \times 298=5705)$
Official Ans. by NTA (10)
Allen Ans. (10)
Sol. $\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}$
$\Rightarrow \Delta \mathrm{G}^{0}=(-54070-10 \times 298)$
Also, $\Delta \mathrm{G}^{0}=(-2.303 \mathrm{RT} \log \mathrm{K})$
$\Rightarrow(-54070-10 \times 298)$
$=(-2.303 \times 8.134 \times 298 \log \mathrm{~K})$
$\Rightarrow \log \mathrm{K}=10$ Ans: 10
86. The number of species from the following which have square pyramidal structure is
$\mathrm{PF}_{5}, \mathrm{BrF}_{4}^{-}, \mathrm{IF}_{5} ; \mathrm{BrF}_{5}, \mathrm{XeOF}_{4}, \mathrm{ICl}_{4}^{-}$
Official Ans. by NTA (3)
Allen Ans. (3)

Sol. PF_{5}
$\mathrm{sp}^{3} \mathrm{~d}$ (0 lone pair)
Trigonal bipyramidal

BrF_{4}^{-},
$s p^{3} d^{2}$ (2 lone pair)

IF_{5}
$\mathrm{sp}^{3} \mathrm{~d}^{2}$ (1 lone pair)

square pyramidal
BrF_{5}
$\mathrm{sp}^{3} \mathrm{~d}^{2}$ (1 lone pair)

square pyramidal
XeOF_{4}
$\mathrm{sp}^{3} \mathrm{~d}^{2}$ (1 lone pair)
 square pyramidal
ICl_{4}^{-}
$\mathrm{sp}^{3} \mathrm{~d}^{2}$ (2 lone pair)

	square planar

87. Number of ambidentate ligands in a representative metal complex $\left[\mathrm{M}(\mathrm{en})(\mathrm{SCN})_{4}\right]$ is
[en = ethylenediamine]
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\left[\mathrm{M}(\mathrm{en})(\mathrm{SCN})_{4}\right]$

Ambidentate ligand means two ligand site, so ambidentate ligand is SCN^{-}.

Ans: 4
88. For the adsorption of hydrogen on platinum, the activation energy is $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and for the adsorption of hydrogen on nickel, the activation energy is $41.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The logarithm of the ratio of the rates of chemisorption on equal areas of the metals at 300 K is \qquad (Nearest integer)

Given: $\ln 10=2.3 \quad \mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Official Ans. by NTA (2)

Allen Ans. (2)
Sol. $K=A e^{-\frac{E_{a}}{R T}}$
$K_{1}=A e^{-\frac{\left(E_{a}\right)_{1}}{R T}}$
$\mathrm{K}_{2}=\mathrm{Ae}^{-\frac{\left(\mathrm{E}_{\mathrm{a}}\right)_{2}}{\mathrm{RT}}}$
$\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\mathrm{e}^{\frac{\left(\mathrm{E}_{\mathrm{a}}\right)_{1}-\left(\mathrm{E}_{\mathrm{a}}\right)_{2}}{\mathrm{RT}}}$
$\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\left(\mathrm{E}_{\mathrm{a}}\right)_{1}-\left(\mathrm{E}_{\mathrm{a}}\right)_{2}}{2.3 \mathrm{RT}}$
$=\frac{(41.4-30) \times 1000}{2.3 \times 8.3 \times 300}=1.99$
Ans: 2
89. If 5 moles of BaCl_{2} is mixed with 2 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum number of moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ formed is \qquad
(Nearest integer)
Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $3 \mathrm{BaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl}$
5

2

$\mathrm{Na}_{3} \mathrm{PO}_{4}$ is limiting reagent.
2 mole $\mathrm{Na}_{3} \mathrm{PO}_{4}$ gives 1 mole of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Ans: 1
90. In ammonium-phosphomolybdate, the oxidation state of Mo is ${ }^{+}$ \qquad
Official Ans. by NTA (6)
Allen Ans. (6)
Sol. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} .12 \mathrm{MoO}_{3}$
Let $\mathrm{X}=$ oxidation state of Mo in MoO_{3}
$\mathrm{X}+(-2) \times 3=0$
$X=+6$
Ans: 6

