JEE Main 2024
01.02.2024

(Shift-01 Physics Paper)

PHYSICS

SECTION-A

31. With rise in temperature, the Young's modulus of elasticity
(1) changes erratically
(2) decreases
(3) increases
(4) remains unchanged

Ans. (2)
Sol. Conceptual questions
32. If R is the radius of the earth and the acceleration due to gravity on the surface of earth is $g=\pi^{2} \mathrm{~m} / \mathrm{s}^{2}$, then the length of the second's pendulum at a height $h=2 R$ from the surface of earth will be,:
(1) $\frac{2}{9} \mathrm{~m}$
(2) $\frac{1}{9} \mathrm{~m}$
(3) $\frac{4}{9} \mathrm{~m}$
(4) $\frac{8}{9} \mathrm{~m}$

Ans. (2)
Sol. $\mathrm{g}^{\prime}=\frac{\mathrm{GMe}}{(3 \mathrm{R})^{2}}=\frac{1}{9} \mathrm{~g}$
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}^{\prime}}}$
Since the time period of second pendulum is 2 sec .
$\mathrm{T}=2 \mathrm{sec}$
$2=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}} 9}$
$\ell=\frac{1}{9} \mathrm{~m}$

TEST PAPER WITH SOLUTION

33. In the given circuit if the power rating of Zener diode is 10 mW , the value of series resistance R_{s} to regulate the input unregulated supply is :

(1) $5 \mathrm{k} \Omega$
(2) 10Ω
(3) $1 \mathrm{k} \Omega$
(4) $10 \mathrm{k} \Omega$

Ans. (BONUS)

Sol.

Pd across R_{s}
$\mathrm{V}_{1}=8-5=3 \mathrm{~V}$
Current through the load resistor

$$
\mathrm{I}=\frac{5}{1 \times 10^{3}}=5 \mathrm{~mA}
$$

Maximum current through Zener diode

$$
I_{z \max .}=\frac{10}{5}=2 \mathrm{~mA}
$$

And minimum current through Zener diode

$$
\begin{gathered}
\mathrm{I}_{\mathrm{z} \text { min. }}=0 \\
\therefore \mathrm{I}_{\mathrm{s} \text { max. }}=5+2=7 \mathrm{~mA}
\end{gathered}
$$

And $\mathrm{R}_{\mathrm{s} \text { min }}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{\mathrm{smax}}}=\frac{3}{7} \mathrm{k} \Omega$
Similarly
$\mathrm{I}_{\mathrm{s} \text { min. }}=5 \mathrm{~mA}$
And $\mathrm{R}_{\mathrm{s} \text { max. }}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{\mathrm{s} \text { min. }}}=\frac{3}{5} \mathrm{k} \Omega$
$\therefore \frac{3}{7} \mathrm{k} \Omega<\mathrm{R}_{\mathrm{s}}<\frac{3}{5} \mathrm{k} \Omega$
34. The reading in the ideal voltmeter (V) shown in the given circuit diagram is :

(1) 5 V
(2) 10 V
(3) 0 V
(4) 3 V

Ans. (3)
Sol. $i=\frac{\mathrm{E}_{\mathrm{eq}}}{\mathrm{r}_{\mathrm{eq}}}=\frac{8 \times 5}{8 \times 0.2}$

$$
\begin{aligned}
& \mathrm{I}=25 \mathrm{~A} \\
& \mathrm{~V}=\mathrm{E}-\mathrm{ir} \\
& =5-0.2 \times 25 \\
& =0
\end{aligned}
$$

35. Two identical capacitors have same capacitance C. One of them is charged to the potential V and other to the potential 2 V . The negative ends of both are connected together. When the positive ends are also joined together, the decrease in energy of the combined system is :
(1) $\frac{1}{4} \mathrm{CV}^{2}$
(2) $2 \mathrm{CV}^{2}$
(3) $\frac{1}{2} \mathrm{CV}^{2}$
(4) $\frac{3}{4} \mathrm{CV}^{2}$

Ans. (1)
Sol. $\quad \mathrm{V}_{\mathrm{C}}=\frac{\mathrm{q}_{\text {net }}}{\mathrm{C}_{\text {net }}}=\frac{\mathrm{CV}+2 \mathrm{CV}}{2 \mathrm{C}}$

$$
\mathrm{V}_{\mathrm{C}}=\frac{3 \mathrm{~V}}{2}
$$

Loss of energy
$=\frac{1}{2} \mathrm{CV}^{2}+\frac{1}{2} \mathrm{C}(2 \mathrm{~V})^{2}-\frac{1}{2} 2 \mathrm{C}\left(\frac{3 \mathrm{~V}}{2}\right)^{2}$
$=\left(\frac{\mathrm{CV}^{2}}{4}\right)$
36. Two moles a monoatomic gas is mixed with six moles of a diatomic gas. The molar specific heat of the mixture at constant volume is :
(1) $\frac{9}{4} R$
(2) $\frac{7}{4} R$
(3) $\frac{3}{2} R$
(4) $\frac{5}{2} R$

Ans. (1)
Sol. $\quad \mathrm{C}_{\mathrm{V}}=\frac{\mathrm{n}_{1} \mathrm{C}_{\mathrm{V}_{1}}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{v}_{2}}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$

$$
\begin{aligned}
& =\frac{2 \times \frac{3}{2} \mathrm{R}+6 \times \frac{5}{2} \mathrm{R}}{2+6} \\
& =\frac{9}{4} \mathrm{R}
\end{aligned}
$$

37. A ball of mass 0.5 kg is attached to a string of length 50 cm . The ball is rotated on a horizontal circular path about its vertical axis. The maximum tension that the string can bear is 400 N . The maximum possible value of angular velocity of the ball in rad/s is,:
(1) 1600
(2) 40
(3) 1000
(4) 20

Ans. (2)
Sol. $T=m \omega^{2} \ell$
$400=0.5 \omega^{2} \times 0.5$
$\omega=40 \mathrm{rad} / \mathrm{s}$.
38. A parallel plate capacitor has a capacitance $\mathrm{C}=200 \mathrm{pF}$. It is connected to 230 V ac supply with an angular frequency $300 \mathrm{rad} / \mathrm{s}$. The rms value of conduction current in the circuit and displacement current in the capacitor respectively are :
(1) $1.38 \mu \mathrm{~A}$ and $1.38 \mu \mathrm{~A}$
(2) $14.3 \mu \mathrm{~A}$ and $143 \mu \mathrm{~A}$
(3) $13.8 \mu \mathrm{~A}$ and $138 \mu \mathrm{~A}$
(4) $13.8 \mu \mathrm{~A}$ and $13.8 \mu \mathrm{~A}$

Ans. (4)
Sol. $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{C}}}=230 \times 300 \times 200 \times 10^{-12}=13.8 \mu \mathrm{~A}$
39. The pressure and volume of an ideal gas are related as $\mathrm{PV}^{3 / 2}=\mathrm{K}$ (Constant). The work done when the gas is taken from state $\mathrm{A}\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1}\right)$ to state $\mathrm{B}\left(\mathrm{P}_{2}, \mathrm{~V}_{2}, \mathrm{~T}_{2}\right)$ is :
(1) $2\left(\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}\right)$
(2) $2\left(\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}\right)$
(3) $2\left(\sqrt{\mathrm{P}_{1}} \mathrm{~V}_{1}-\sqrt{\mathrm{P}_{2}} \mathrm{~V}_{2}\right)$
(4) $2\left(\mathrm{P}_{2} \sqrt{\mathrm{~V}_{2}}-\mathrm{P}_{1} \sqrt{\mathrm{~V}_{1}}\right)$

Ans. (1 or 2)
Sol. For $\mathrm{PV}^{\mathrm{x}}=$ constant
If work done by gas is asked then

$$
\mathrm{W}=\frac{\mathrm{nR} \Delta \mathrm{~T}}{1-\mathrm{x}}
$$

Here $\mathrm{x}=\frac{3}{2}$
$\therefore \mathrm{W}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{-\frac{1}{2}}$

$$
=2\left(\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}\right) \ldots . . \text { Option }(1) \text { is correct }
$$

If work done by external is asked then
$\mathrm{W}=-2\left(\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}\right) \ldots$. Option (2) is correct
40. A galvanometer has a resistance of 50Ω and it allows maximum current of 5 mA . It can be converted into voltmeter to measure upto 100 V by connecting in series a resistor of resistance
(1) 5975Ω
(2) 20050Ω
(3) 19950Ω
(4) 19500Ω

Ans. (3)

Sol.

$R=\frac{V}{I_{g}}-R_{g}=\frac{100}{5 \times 10^{-3}}-50$

$$
=20000-50
$$

$$
=19950 \Omega
$$

41. The de Broglie wavelengths of a proton and an α particle are λ and 2λ respectively. The ratio of the velocities of proton and α particle will be :
(1) $1: 8$
(2) $1: 2$
(3) $4: 1$
(4) $8: 1$

Ans. (4)
Sol. $\lambda=\frac{h}{p}=\frac{h}{m v} \Rightarrow v=\frac{h}{m \lambda}$

$$
\begin{aligned}
& \frac{v_{p}}{v_{\alpha}}=\frac{m_{\alpha}}{m_{p}} \times \frac{\lambda_{\alpha}}{\lambda_{p}} \\
& =4 \times 2=8
\end{aligned}
$$

42. 10 divisions on the main scale of a Vernier calliper coincide with 11 divisions on the Vernier scale. If each division on the main scale is of 5 units, the least count of the instrument is :
(1) $\frac{1}{2}$
(2) $\frac{10}{11}$
(3) $\frac{50}{11}$
(4) $\frac{5}{11}$

Ans. (4)
Sol. $10 \mathrm{MSD}=11 \mathrm{VSD}$

$$
\begin{aligned}
& 1 \mathrm{VSD}=\frac{10}{11} \mathrm{MSD} \\
& \mathrm{LC}=1 \mathrm{MSD}-1 \mathrm{VSD} \\
& =1 \mathrm{MSD}-\frac{10}{11} \mathrm{MSD} \\
& =\frac{1 \mathrm{MSD}}{11} \\
& =\frac{5}{11} \text { units }
\end{aligned}
$$

43. In series LCR circuit, the capacitance is changed from C to 4 C . To keep the resonance frequency unchanged, the new inductance should be :
(1) reduced by $\frac{1}{4} \mathrm{~L}$
(2) increased by 2 L
(3) reduced by $\frac{3}{4} \mathrm{~L}$
(4) increased to 4 L

Ans. (3)
Sol. $\omega^{\prime}=\omega$
$\frac{1}{\sqrt{\mathrm{~L}^{\prime} \mathrm{C}^{\prime}}}=\frac{1}{\sqrt{\mathrm{LC}}}$
$\therefore L^{\prime} C^{\prime}=\mathrm{LC}$
$L^{\prime}(4 C)=L C$

$$
L^{\prime}=\frac{L}{4}
$$

\because Inductance must be decreased by $\frac{3 \mathrm{~L}}{4}$
44. The radius (r), length (l) and resistance (R) of a metal wire was measured in the laboratory as
$\mathrm{r}=(0.35 \pm 0.05) \mathrm{cm}$
$\mathrm{R}=(100 \pm 10)$ ohm
$l=(15 \pm 0.2) \mathrm{cm}$
The percentage error in resistivity of the material of the wire is :
(1) 25.6%
(2) 39.9%
(3) 37.3%
(4) 35.6%

Ans. (2)
Sol. $\rho=\mathrm{R} \frac{\rho}{\ell}$

$$
\begin{aligned}
& \frac{\Delta \rho}{\rho}=\frac{\Delta \mathrm{R}}{\mathrm{R}}+2 \frac{\Delta \mathrm{r}}{\mathrm{r}}+\frac{\Delta \ell}{\ell} \\
& =\frac{10}{100}+2 \times \frac{0.05}{0.35}+\frac{0.2}{15} \\
& =\frac{1}{10}+\frac{2}{7}+\frac{1}{75}
\end{aligned}
$$

$$
\frac{\Delta \rho}{\rho}=39.9 \%
$$

45. The dimensional formula of angular impulse is :
(1) $\left[\mathrm{M} \mathrm{L}^{-2} \mathrm{~T}^{-1}\right]$
(2) $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
(3) $\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-1}\right]$
(4) $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}\right]$

Ans. (4)
Sol. Angular impulse = change in angular momentum. [Angular impulse] $=[$ Angular momentum $]=[\mathrm{mvr}]$ $=\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}\right]$
46. A simple pendulum of length 1 m has a wooden bob of mass 1 kg . It is struck by a bullet of mass $10^{-2} \mathrm{~kg}$ moving with a speed of $2 \times 10^{2} \mathrm{~ms}^{-1}$. The bullet gets embedded into the bob. The height to which the bob rises before swinging back is. (use $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1) 0.30 m
(2) 0.20 m
(3) 0.35 m
(4) 0.40 m

Ans. (2)

Sol.

$$
\begin{aligned}
& \mathrm{mu}=(\mathrm{M}+\mathrm{m}) \mathrm{V} \\
& 10^{-2} \times 2 \times 10^{2} \cong 1 \times \mathrm{V} \\
& \mathrm{~V} \cong 2 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}=0.2 \mathrm{~m}
\end{aligned}
$$

47. A particle moving in a circle of radius R with uniform speed takes time T to complete one revolution. If this particle is projected with the same speed at an angle θ to the horizontal, the maximum height attained by it is equal to 4 R . The angle of projection θ is then given by :
(1) $\sin ^{-1}\left[\frac{2 \mathrm{gT}^{2}}{\pi^{2} \mathrm{R}}\right]^{\frac{1}{2}}$
(2) $\sin ^{-1}\left[\frac{\pi^{2} R}{2 \mathrm{gT}^{2}}\right]^{\frac{1}{2}}$
(3) $\cos ^{-1}\left[\frac{2 \mathrm{gT}^{2}}{\pi^{2} \mathrm{R}}\right]^{\frac{1}{2}}$
(4) $\cos ^{-1}\left[\frac{\pi \mathrm{R}}{2 \mathrm{gT}^{2}}\right]^{\frac{1}{2}}$

Ans. (1)

Sol. $\frac{2 \pi \mathrm{R}}{\mathrm{T}}=\mathrm{V}$

$$
\begin{aligned}
& \text { Maximum height } \mathrm{H}=\frac{\mathrm{v}^{2} \sin ^{2} \theta}{2 \mathrm{~g}} \\
& 4 \mathrm{R}=\frac{4 \pi^{2} \mathrm{R}^{2}}{\mathrm{~T}^{2} 2 \mathrm{~g}} \sin ^{2} \theta \\
& \sin \theta=\sqrt{\frac{2 \mathrm{gT} \mathrm{~T}^{2}}{\pi^{2} \mathrm{R}}} \\
& \theta=\sin ^{-1}\left(\frac{2 \mathrm{gT}^{2}}{\pi^{2} \mathrm{R}}\right)^{\frac{1}{2}}
\end{aligned}
$$

48. Consider a block and trolley system as shown in figure. If the coefficient of kinetic friction between the trolley and the surface is 0.04 , the acceleration of the system in ms^{-2} is :
(Consider that the string is massless and unstretchable and the pulley is also massless and frictionless) :

(1) 3
(2) 4
(3) 2
(4) 1.2

Ans. (3)
Sol. $f_{k}=\mu \mathrm{N}=0.04 \times 20 \mathrm{~g}=8$ Newton

$$
a=\frac{60-8}{26}=2 \mathrm{~m} / \mathrm{s}^{2}
$$

49. The minimum energy required by a hydrogen atom in ground state to emit radiation in Balmer series is nearly :
(1) 1.5 eV
(2) 13.6 eV
(3) 1.9 eV
(4) 12.1 eV

Ans. (4)
Sol. Transition from $\mathrm{n}=1$ to $\mathrm{n}=3$
$\Delta \mathrm{E}=12.1 \mathrm{eV}$
50. A monochromatic light of wavelength $6000 \AA$ is incident on the single slit of width 0.01 mm . If the diffraction pattern is formed at the focus of the convex lens of focal length 20 cm , the linear width of the central maximum is :
(1) 60 mm
(2) 24 mm
(3) 120 mm
(4) 12 mm

Ans. (2)
Sol. Linear width

$$
\begin{aligned}
\mathrm{W} & =\frac{2 \lambda \mathrm{~d}}{\mathrm{a}}=\frac{2 \times 6 \times 10^{-7} \times 0.2}{1 \times 10^{-5}} \\
& =2.4 \times 10^{-2}=24 \mathrm{~mm}
\end{aligned}
$$

SECTION-B

51. A regular polygon of 6 sides is formed by bending a wire of length 4π meter. If an electric current of $4 \pi \sqrt{3} \mathrm{~A}$ is flowing through the sides of the polygon, the magnetic field at the centre of the polygon would be $x \times 10^{-7} \mathrm{~T}$. The value of x is
\qquad .

Ans. (72)

Sol.

$$
\begin{aligned}
& \mathrm{B}=6\left(\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{r}}\right)\left(\sin 30^{\circ}+\sin 30^{\circ}\right) \\
& =6 \frac{10^{-7} \times 4 \pi \sqrt{3}}{\left(\frac{\sqrt{3} \times 4 \pi}{2 \times 6}\right)} \\
& =72 \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

52. A rectangular loop of sides 12 cm and 5 cm , with its sides parallel to the x-axis and y-axis respectively moves with a velocity of $5 \mathrm{~cm} / \mathrm{s}$ in the positive x axis direction, in a space containing a variable magnetic field in the positive z direction. The field has a gradient of $10^{-3} \mathrm{~T} / \mathrm{cm}$ along the negative x direction and it is decreasing with time at the rate of $10^{-3} \mathrm{~T} / \mathrm{s}$. If the resistance of the loop is $6 \mathrm{~m} \Omega$, the power dissipated by the loop as heat is
\qquad $\times 10^{-9} \mathrm{~W}$.

Ans. (216)

Sol.

B_{0} is the magnetic field at origin
$\frac{\mathrm{dB}}{\mathrm{dx}}=-\frac{10^{-3}}{10^{-2}}$
$\int_{B_{0}}^{\mathrm{B}} \mathrm{dB}=-\int_{0}^{\mathrm{x}} 10^{-1} \mathrm{dx}$
$B-B_{0}=-10^{-1} \mathrm{x}$
$B=\left(B_{0}-\frac{x}{10}\right)$
Motional emf in $\mathrm{AB}=0$
Motional emf in $\mathrm{CD}=0$
Motional emf in $\mathrm{AD}=\varepsilon_{1}=\mathrm{B}_{0} \ell \mathrm{v}$
Magnetic field on rod BC B
$=\left(\mathrm{B}_{0}-\frac{\left(-12 \times 10^{-2}\right)}{10}\right)$

Motional emf in $\mathrm{BC}=\varepsilon_{2}=\left(\mathrm{B}_{0}+\frac{12 \times 10^{-2}}{10}\right) \ell \times \mathrm{v}$
$\varepsilon_{\text {eq }}=\varepsilon_{2}-\varepsilon_{1}=300 \times 10^{-7} \mathrm{~V}$
For time variation
$\left(\varepsilon_{\mathrm{eq}}\right)=\mathrm{A} \frac{\mathrm{dB}}{\mathrm{dt}}=60 \times 10^{-7} \mathrm{~V}$
$\left(\varepsilon_{\mathrm{eq}}\right)_{\text {net }}=\varepsilon_{\mathrm{eq}}+\left(\varepsilon_{\mathrm{eq}}\right)^{\prime}=360 \times 10^{-7} \mathrm{~V}$
Power $=\frac{\left(\varepsilon_{\text {eq }}\right)_{\text {net }}^{2}}{\mathrm{R}}=216 \times 10^{-9} \mathrm{~W}$
53. The distance between object and its 3 times magnified virtual image as produced by a convex lens is 20 cm . The focal length of the lens used is
\qquad cm .

Ans. (15)

Sol.

$\mathrm{v}=3 \mathrm{u}$
$\mathrm{v}-\mathrm{u}=20 \mathrm{~cm}$
$2 \mathrm{u}=20 \mathrm{~cm}$
$\mathrm{u}=10 \mathrm{~cm}$
$\frac{1}{(-30)}-\frac{1}{(-10)}=\frac{1}{\mathrm{f}}$
$\mathrm{f}=15 \mathrm{~cm}$
54. Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle θ with each other. When suspended in water the angle remains the same. If density of the material of the sphere is $1.5 \mathrm{~g} / \mathrm{cc}$, the dielectric constant of water will be \qquad
(Take density of water $=1 \mathrm{~g} / \mathrm{cc}$)
Ans. (3)

Sol.

In air $\tan \frac{\theta}{2}=\frac{\mathrm{F}}{\mathrm{mg}}=\frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}^{2} \mathrm{mg}}$

$$
\text { In water } \tan \frac{\theta}{2}=\frac{\mathrm{F}^{\prime}}{\mathrm{mg}^{\prime}}=\frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{r}^{2} \mathrm{mg}_{\mathrm{eff}}}
$$

Equate both equations

$$
\begin{aligned}
& \varepsilon_{0} \mathrm{~g}=\varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{~g}\left[1-\frac{1}{1.5}\right] \\
& \varepsilon_{\mathrm{r}}=3
\end{aligned}
$$

55. The radius of a nucleus of mass number 64 is 4.8 fermi. Then the mass number of another nucleus having radius of 4 fermi is $\frac{1000}{x}$, where x is \qquad .

Ans. (27)
Sol. $\mathrm{R}=\mathrm{R}_{0} \mathrm{~A}^{1 / 3}$

$$
\begin{aligned}
& \mathrm{R}^{3} \propto \mathrm{~A} \\
& \left(\frac{4.8}{4}\right)^{3}=\frac{64}{\mathrm{~A}}
\end{aligned}
$$

$=\frac{64}{\mathrm{~A}}=(1.2)^{3}$
$\frac{64}{\mathrm{~A}}=1.44 \times 1.2$
$\mathrm{A}=\frac{64}{1.44 \times 1.2}=\frac{1000}{\mathrm{x}}$
$x=\frac{144 \times 12}{64}=27$
56. The identical spheres each of mass 2 M are placed at the corners of a right angled triangle with mutually perpendicular sides equal to 4 m each. Taking point of intersection of these two sides as origin, the magnitude of position vector of the centre of mass of the system is $\frac{4 \sqrt{2}}{x}$, where the value of x is \qquad
Ans. (3)

Sol.

Position vector $\overrightarrow{\mathrm{r}}_{\mathrm{COM}}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{r}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{r}}_{2}+\mathrm{m}_{3} \overrightarrow{\mathrm{r}}_{3}}{\mathrm{~m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}}$
$\overrightarrow{\mathrm{r}}_{\mathrm{COM}}=\frac{2 \mathrm{M} \times 0+2 \mathrm{M} \times 4 \hat{\mathrm{i}}+2 \mathrm{M} \times 4 \hat{\mathrm{j}}}{6 \mathrm{M}}$
$\overrightarrow{\mathrm{r}}=\frac{4}{3} \hat{\mathrm{i}}+\frac{4}{3} \hat{\mathrm{j}}$
$|\overrightarrow{\mathrm{r}}|=\frac{4 \sqrt{2}}{3}$
$\mathrm{x}=3$
57. A tuning fork resonates with a sonometer wire of length 1 m stretched with a tension of 6 N . When the tension in the wire is changed to 54 N , the same tuning fork produces 12 beats per second with it. The frequency of the tuning fork is
\qquad Hz.

Ans. (6)
Sol. $\mathrm{f}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{T}{\mu}}$

$$
\begin{array}{ll}
\mathrm{f}_{1}=\frac{1}{2} \sqrt{\frac{6}{\mu}} & \mathrm{f}_{2}=\frac{1}{2} \sqrt{\frac{54}{\mu}} \\
\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}=\frac{1}{3} & \mathrm{f}_{2}-\mathrm{f}_{1}=12
\end{array}
$$

58. A plane is in level flight at constant speed and each of its two wings has an area of $40 \mathrm{~m}^{2}$. If the speed of the air is $180 \mathrm{~km} / \mathrm{h}$ over the lower wing surface and $252 \mathrm{~km} / \mathrm{h}$ over the upper wing surface, the mass of the plane is \qquad kg. (Take air density to be $1 \mathrm{~kg} \mathrm{~m}^{-3}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
Ans. (9600)
Sol. $A=80 \mathrm{~m}^{2}$
Using Bernonlli equation
$\mathrm{A}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)=\frac{1}{2} \rho\left(\mathrm{~V}_{1}^{2}-\mathrm{V}_{2}^{2}\right) \mathrm{A}$
$\mathrm{mg}=\frac{1}{2} \times 1\left(70^{2}-50^{2}\right) \times 80$
$\mathrm{mg}=40 \times 2400$
$\mathrm{m}=9600 \mathrm{~kg}$
59. The current in a conductor is expressed as $I=3 t^{2}+4 t^{3}$, where I is in Ampere and t is in second. The amount of electric charge that flows through a section of the conductor during $t=1 \mathrm{~s}$ to $t=2 \mathrm{~s}$ is \qquad C.

Ans. (22)
Sol. $\quad \mathrm{q}=\int_{1}^{2} \mathrm{idt}=\int_{1}^{2}\left(3 \mathrm{t}^{2}+4 \mathrm{t}^{3}\right) \mathrm{dt}$

$$
\mathrm{q}=\left.\left(\mathrm{t}^{3}+\mathrm{t}^{4}\right)\right|_{1} ^{2}
$$

$$
\mathrm{q}=22 \mathrm{C}
$$

60. A particle is moving in one dimension (along x axis) under the action of a variable force. It's initial position was 16 m right of origin. The variation of its position (x) with time (t) is given as $x=-3 t^{3}+18 t^{2}+16 t$, where x is in m and t is in s. The velocity of the particle when its acceleration becomes zero is \qquad m / s.

Ans. (52)
Sol. $\mathrm{x}=3 \mathrm{t}^{3}+18 \mathrm{t}^{2}+16 \mathrm{t}$

$$
\begin{aligned}
& \mathbf{v}=-9 t^{2}+36+16 \\
& a=-18 t+36 \\
& a=0 \text { at } t=2 s \\
& v=-9(2)^{2}+36 \times 2+16 \\
& v=52 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

