

JEE Main (2024)

MEMORY BASED PAPER SOLUTION

29 JAN 2024 (S-02)

CHEMISTRY

1. Which of the following is act as strong reducing agent 2

(1) Ce4+

(2) Gd³⁺ Oxidise Karna Chanta hau

(1) Potassium tetraoxidomangnate (vi)

- (2) Potassium mangnate
- (3) Potassium tetraoxido mangnease (vii)
- (4) Potassium tetraoxido mangnate (vii)

3. Statement-1: F has highest electronegativity in it's group.

Statement-2: O has least negative electron gain enthalpy in it's group.

- (1) Both statements are correct
 - (2) Both statements are incorrect
 - (3) Statement-1 is incorrect, Statement-2 is correct
- (4) Statement-1 is correct, Statement-2 is incorrect

GET SCHOLARSHIP FOR NEW ADMISSION

(2) p-nitrophenol

(3) FeCl₃

(4) None of these

(N, (Dmg)2)

- (1) Hard metals
- (2) Paramagnetic in nature
- (3) High enthalpy of atomisation
- (4) Hg shows variable valency where as Zn, Cd does not

	Column-I		Column-II
(A)	Lyman	(P)	IR
(B)	Paschen /	(Q)	UV
(C)	Balmer	(R)	IR
(D)	Pfund /	(S)	Visible

Select correct option:

7. The oxidation state of Fe in the complex formed in brown ring test is:

8. Enthalpy of vapourisation of CCl₄ is 30.5 kJ/mole, then heat required to vaporise 284 gram CCl₄ is ____ kJ. (nearest Integer)

9. Radioactive decay of Br⁸² (Z = 35) isotope has half-life of 36 hours, the fraction of remaining particle in one day is _____× 10⁻² (Nearest integer)
{Given antilog (0.2006) = 1.587, log2 = 0.30}

$$Au^{3+} + 3e^{-} - 3Au$$

$$1979 = 3 \times 96500 C$$

$$\Rightarrow electrochemical Equivalent = \frac{59}{96500}$$

$$\Rightarrow W = Z \times 1 \times 1$$

$$0) |3|8 = \frac{197}{9} \times 0$$

$$3 \times 96500$$

$$\Rightarrow |318 \times 3 \times 96500 C = 0$$

JEE Main (2024)

MEMORY BASED PAPER SOLUTION

29 JAN 2024 (S-02)

CHEMISTRY

- (1) Due to large size, high electronegativity.
- (2) Due to small size, small electronegativity
- (3) Due to small size, high electro negativity, absence of vacant d-orbitals
- (4) Due to large size, high electronegativity presence of vacant d-orbitals

11. On reaction of which of the following Nessler's reagent give Brown precepitate.

(1) NH₃

(2) SO₂

(3) Cl₂

(4) CO₂

NH3 NH2 + K2 [Hg I4] -> Hg O. Hg (NH2) I + kI + 40

[odded Millon's base
(Brown)

Which of the following has highest ionisation enthalpy?

(2) C

(3) Si

- (4) AI

14. How many of the following have zero dipole moment? NH₃, H₂O, HF, CO₂, SO₂, BF₃, CH₄

50 ml of 0.5 M oxyalic acid is neutralize by 25 ml of NaOH, then amount of NaOH in 50 ml of solution is gram (Nearest integer)

$$10-C-C-ON + 2NaON \longrightarrow NaO-C-C-ONa + 2HO$$

$$1eq \qquad 2eq \qquad mlleq = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

$$100 \text{ milleq} = V \times m = 50$$

In a closed container equilibrium concentration of NH₃(g), N₂(g) and H₂(g) is 1.5×10^{-2} M, 2×10^{-2} M and 3×10^{-2} M respectively, then equilibrium constant for formation of NH₃(g) at 500°C is ______(× 10^2. (nearest integer)

$$\frac{1}{2} + \frac{3}{4} = \frac{1}{2} = \frac{2 \times 10^{-2}}{2 \times 10^{-2}} = \frac{2 \times 10^{-2}}{2 \times 27} = \frac{2 \times 27}{2 \times 27} \times 10^{2}$$

$$\frac{1}{2} + \frac{3}{4} = \frac{2 \times 10^{-2}}{2 \times 27} = \frac{2 \times 27}{2 \times 27} \times 10^{2}$$

$$\Rightarrow kq = \frac{2 \times 5 \times 10^{4}}{2 \times 27 \times 10^{8}} = \frac{2 \times 27 \times 10^{4}}{2 \times 27} \times 10^{2}$$

17. Using 2s and 2p orbital intermixing total anithonding molecular orbital _____ are formed.

18. IUPAC name of the compound

(1) Cyclohex-2-en-1-ol

(3) 3-Hydroxycylohexene

(2) Cyclohex-1-en-3-ol

(4) Cyclohex-1-en-3-ol

Cyclohex-2-ene-of

	Column-I		Column-II
(A)	Phenol	₇ (P)	7.1
(B)	Ethanol	(Q)	15.1
(C)	para-Nitrophenol	(R)	10.3
(D)	meta-Nitrophenol —	(S)	8.3

$$(1) A - R, B - Q, C - P, D - S$$

$$(3) A - P, B - Q, C - R, D - S$$

$$(2) A - Q, B - P, C - R, D - S$$

$$(4) A - S, B - R, C - Q, D - P$$

$$A \rightarrow R$$

$$B \rightarrow R$$

$$C \rightarrow P$$

$$D \rightarrow S$$

RANKERS OFFLINE CLASSES VARANASI

GET SCHOLARSHIP FOR NEW ADMISSION FILL THE GOOGLE FORM

20. The correct ascending order of acidic strength of the following compound is:

(C)
$$CH_2=CH_2$$

21. $NH_2 \xrightarrow{(1)HNO_2} A$ $(2)Cu_2Cl_2$

Product A is:

22. Sum of total no. of σ and π bond in 2-formylhexanoic acid is :

23. Correct match is:

	Column-l		Column-II
(A)	Starch	(P)	α-glucose
(B)	Cellulose —	(Q)	β-glucose
(C)	Nucleic acid_	(R)	α-amino acid
(D)	Protein /	(S)	Nucleotide

$$(1) A - P, B - R, C - S, D - R$$

(3)
$$A - P$$
, $B - Q$, $C - R$, $D - S$

(2)
$$A - R$$
, $B - Q$, $C - S$, $D - P$

RANKERS OFFLINE CLASSES VARANASI

GET SCHOLARSHIP FOR NEW ADMISSION

26. Which of the following represent correct reaction

Statement-II: The reagent used to convert alkyl halide to alkyl isocyanide is AgCN.

(1) Statement-I is incorrect & Statement-II is correct.

(2) Statement-I is correct & Statement-II is incorrect.

(3) Both Statements I & II are incorrect.

(4) Both Statements I & II are correct.

29. Different adsorption method used in which type of chromatography.

 $X \rightarrow TLC$ Y→ Column chromatography $Z \rightarrow$ Paper chromatography.

(1) Only X

(2) Only Y

(3) Only X and Y

(4) all X, Y and Z

