\cdots 苏Rankers

CONTENTS

SOLUTIONS OF TRIANGLE

THEORY \& ILLUSTRATIONS
 Page - 01

ELEMENTARYEXERCISE
 Page - 16

EXERCISE (O-1) ... Page - 18
EXERCISE (O-2) ... Page - 20
EXERCISE (S-1) .. Page - 22
EXERCISE (S-2) ... Page - 23
EXERCISE (JA) .. Page - 24
ANSWER KEY ... Page - 26

JEE (ADVANCED) SYLLABUS :
Solutions of Triangle : Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle.

SOLUTIONS OF TRIANGLE

The process of calculating the sides and angles of triangle using given information is called solution of triangle.
In a $\triangle A B C$, the angles are denoted by capital letters A, B and C and the length of the sides opposite these angle are denoted by small letter a, b and c respectively.

1. SINE FORMULAE :

In any triangle ABC
$\frac{\mathrm{a}}{\sin \mathrm{A}}=\frac{\mathrm{b}}{\sin \mathrm{B}}=\frac{\mathrm{c}}{\sin \mathrm{C}}=\lambda=\frac{\mathrm{abc}}{2 \Delta}=2 \mathrm{R}$
where R is circumradius and Δ is area of triangle.

Illustration 1: Angles of a triangle are in 4:1:1 ratio. The ratio between its greatest side and perimeter is
(A) $\frac{3}{2+\sqrt{3}}$
(B) $\frac{\sqrt{3}}{2+\sqrt{3}}$
(C) $\frac{\sqrt{3}}{2-\sqrt{3}}$
(D) $\frac{1}{2+\sqrt{3}}$

Solution: \quad Angles are in ratio 4:1:1.
$\Rightarrow \quad$ angles are $120^{\circ}, 30^{\circ}, 30^{\circ}$.
If sides opposite to these angles are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively, then a will be the greatest side.
Now from sine formula $\frac{a}{\sin 120^{\circ}}=\frac{b}{\sin 30^{\circ}}=\frac{c}{\sin 30^{\circ}}$
$\Rightarrow \quad \frac{a}{\sqrt{3} / 2}=\frac{b}{1 / 2}=\frac{c}{1 / 2}$
$\Rightarrow \quad \frac{\mathrm{a}}{\sqrt{3}}=\frac{\mathrm{b}}{1}=\frac{\mathrm{c}}{1}=\mathrm{k}_{\text {(say) }}$
then $\mathrm{a}=\sqrt{3} \mathrm{k}$, perimeter $=(2+\sqrt{3}) \mathrm{k}$
$\therefore \quad$ required ratio $=\frac{\sqrt{3} k}{(2+\sqrt{3}) k}=\frac{\sqrt{3}}{2+\sqrt{3}}$
Ans. (B)
Illustration 2: In triangle ABC , if $\mathrm{b}=3, \mathrm{c}=4$ and $\angle \mathrm{B}=\pi / 3$, then number of such triangles is -
(A) 1
(B) 2
(C) 0
(D) infinite

Solution: Using sine formulae $\frac{\sin B}{b}=\frac{\sin C}{c}$
$\Rightarrow \frac{\sin \pi / 3}{3}=\frac{\sin C}{4} \Rightarrow \frac{\sqrt{3}}{6}=\frac{\sin C}{4} \Rightarrow \sin C=\frac{2}{\sqrt{3}}>1$ which is not possible.
Hence there exist no triangle with given elements.
Ans. (C)

Illustration 3: The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of the triangle.
Solution:
Let the sides be $\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2 \mathrm{cms}$.
i.e. $\quad \mathrm{AC}=\mathrm{n}, \mathrm{AB}=\mathrm{n}+1, \mathrm{BC}=\mathrm{n}+2$

Smallest angle is B and largest one is A .

Here, $\angle \mathrm{A}=2 \angle \mathrm{~B}$
Also, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \quad 3 \angle \mathrm{~B}+\angle \mathrm{C}=180^{\circ} \Rightarrow \angle \mathrm{C}=180^{\circ}-3 \angle \mathrm{~B}$
We have, sine law as,
$\frac{\sin A}{n+2}=\frac{\sin B}{n}=\frac{\sin C}{n+1} \Rightarrow \frac{\sin 2 B}{n+2}=\frac{\sin B}{n}=\frac{\sin (180-3 B)}{n+1}$
$\Rightarrow \quad \frac{\sin 2 \mathrm{~B}}{\mathrm{n}+2}=\frac{\sin \mathrm{B}}{\mathrm{n}}=\frac{\sin 3 \mathrm{~B}}{\mathrm{n}+1}$
(i) (ii) (iii)
from (i) and (ii);

$$
\begin{equation*}
\frac{2 \sin B \cos B}{n+2}=\frac{\sin B}{n} \Rightarrow \cos B=\frac{n+2}{2 n} \tag{iv}
\end{equation*}
$$

and from (ii) and (iii);

$$
\begin{align*}
\frac{\sin B}{n} & =\frac{3 \sin B-4 \sin ^{3} B}{n+1} \Rightarrow \frac{\sin B}{n}=\frac{\sin B\left(3-4 \sin ^{2} B\right)}{n+1} \\
\Rightarrow \quad \frac{n+1}{n} & =3-4\left(1-\cos ^{2} B\right) \tag{v}
\end{align*}
$$

from (iv) and (v), we get

$$
\begin{aligned}
& \frac{\mathrm{n}+1}{\mathrm{n}}=-1+4\left(\frac{\mathrm{n}+2}{2 \mathrm{n}}\right)^{2} \Rightarrow \frac{\mathrm{n}+1}{\mathrm{n}}+1=\left(\frac{\mathrm{n}^{2}+4 \mathrm{n}+4}{\mathrm{n}^{2}}\right) \\
& \Rightarrow \quad \frac{2 \mathrm{n}+1}{\mathrm{n}}=\frac{\mathrm{n}^{2}+4 \mathrm{n}+4}{\mathrm{n}^{2}} \Rightarrow 2 \mathrm{n}^{2}+\mathrm{n}=\mathrm{n}^{2}+4 \mathrm{n}+4 \\
& \Rightarrow \quad \mathrm{n}^{2}-3 \mathrm{n}-4=0 \quad \Rightarrow \quad(\mathrm{n}-4)(\mathrm{n}+1)=0 \\
& \mathrm{n}=4 \text { or }-1
\end{aligned}
$$

where $\mathrm{n} \neq-1$
$\therefore \quad \mathrm{n}=4$. Hence the sides are $4,5,6$
Ans.
Do yourself - 1 :
(i) If in a $\triangle A B C, \angle A=\frac{\pi}{6}$ and $\mathrm{b}: \mathrm{c}=2: \sqrt{3}$, find $\angle \mathrm{B}$.
(ii) Show that, in any $\triangle A B C$: $a \sin (B-C)+b \sin (C-A)+c \sin (A-B)=0$.
(iii) If in a $\triangle A B C, \frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$, show that a^{2}, b^{2}, c^{2} are in A.P.

Solutions of Triangle

2. COSINE FORMULAE :

(a) $\quad \cos \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}$
(b) $\quad \cos \mathrm{B}=\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ca}}$
(c) $\cos \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}}$ or $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cos \mathrm{A}$

Illustration 4: In a triangle ABC , if $\mathrm{B}=30^{\circ}$ and $\mathrm{c}=\sqrt{3} \mathrm{~b}$, then A can be equal to -
(A) 45°
(B) 60°
(C) 90°
(D) 120°

Solution: \quad We have $\cos \mathrm{B}=\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ca}} \Rightarrow \frac{\sqrt{3}}{2}=\frac{3 \mathrm{~b}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \times \sqrt{3} \mathrm{~b} \times \mathrm{a}}$
$\Rightarrow \quad \mathrm{a}^{2}-3 \mathrm{ab}+2 \mathrm{~b}^{2}=0 \Rightarrow(\mathrm{a}-2 \mathrm{~b})(\mathrm{a}-\mathrm{b})=0$
$\Rightarrow \quad$ Either $\mathrm{a}=\mathrm{b} \Rightarrow \mathrm{A}=30^{\circ}$
or $\quad a=2 b \Rightarrow a^{2}=4 b^{2}=b^{2}+c^{2} \Rightarrow A=90^{\circ}$.
Ans. (C)
Illustration 5: In a triangle $\mathrm{ABC},\left(\mathrm{a}^{2}-\mathrm{b}^{2}-\mathrm{c}^{2}\right) \tan \mathrm{A}+\left(\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{c}^{2}\right) \tan \mathrm{B}$ is equal to -
(A) $\left(a^{2}+b^{2}-c^{2}\right) \tan C$
(B) $\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right) \tan \mathrm{C}$
(C) $\left(b^{2}+c^{2}-a^{2}\right) \tan C$
(D) none of these

Solution: Using cosine law :
The given expression is equal to $-2 \mathrm{bc} \cos \mathrm{A} \tan \mathrm{A}+2 \mathrm{ac} \cos \mathrm{B} \tan \mathrm{B}$

$$
\begin{equation*}
=2 a b c\left(-\frac{\sin A}{a}+\frac{\sin B}{b}\right)=0 \tag{D}
\end{equation*}
$$

Do yourself-2:

(i) If a : b:c $=4: 5: 6$, then show that $\angle \mathrm{C}=2 \angle \mathrm{~A}$.
(ii) In any $\triangle \mathrm{ABC}$, prove that
(a) $\frac{\cos \mathrm{A}}{a}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{\cos \mathrm{C}}{\mathrm{c}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{2 \mathrm{abc}}$
(b) $\frac{\mathrm{b}^{2}}{\mathrm{a}} \cos \mathrm{A}+\frac{\mathrm{c}^{2}}{\mathrm{~b}} \cos \mathrm{~B}+\frac{\mathrm{a}^{2}}{\mathrm{c}} \cos \mathrm{C}=\frac{\mathrm{a}^{4}+\mathrm{b}^{4}+\mathrm{c}^{4}}{2 \mathrm{abc}}$

3. PROJECTION FORMULAE :

(a) $\mathrm{b} \cos \mathrm{C}+\mathrm{c} \cos \mathrm{B}=\mathrm{a}$
(b) $\mathrm{c} \cos \mathrm{A}+\mathrm{a} \cos \mathrm{C}=\mathrm{b}$
(c) $\mathrm{a} \cos \mathrm{B}+\mathrm{b} \cos \mathrm{A}=\mathrm{c}$

Illustration 6: In a $\triangle \mathrm{ABC}, \cos ^{2} \frac{\mathrm{~A}}{2}+\mathrm{a} \cos ^{2} \frac{\mathrm{C}}{2}=\frac{3 \mathrm{~b}}{2}$, then show $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P.
Solution: \quad Here, $\frac{\mathrm{c}}{2}(1+\cos \mathrm{A})+\frac{\mathrm{a}}{2}(1+\cos \mathrm{C})=\frac{3 \mathrm{~b}}{2}$

$$
\left.\begin{array}{ll}
\Rightarrow & a+c+(c \cos A+a \cos C)=3 b \\
\Rightarrow & a+c+b=3 b
\end{array} \quad \text { \{using projection formula }\right\}
$$

which shows a, b, c are in A.P.
Do yourself - 3 :
(i) In a $\triangle A B C$, if $\angle A=\frac{\pi}{4}, \angle B=\frac{5 \pi}{12}$, show that a $+\mathrm{c} \sqrt{2}=2 \mathrm{~b}$.
(ii) In $\triangle A B C$, prove that: (a) $b(a \cos C-c \cos A)=a^{2}-c^{2}$
(b) $2\left(b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}\right)=a+b+c$
4. NAPIER'S ANALOGY (TANGENT RULE) :
(a) $\quad \tan \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)=\frac{\mathrm{b}-\mathrm{c}}{\mathrm{b}+\mathrm{c}} \cot \frac{\mathrm{A}}{2}$
(b) $\tan \left(\frac{\mathrm{C}-\mathrm{A}}{2}\right)=\frac{\mathrm{c}-\mathrm{a}}{\mathrm{c}+\mathrm{a}} \cot \frac{\mathrm{B}}{2}$
(c) $\tan \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cot \frac{\mathrm{C}}{2}$

Illustration 7: In a $\triangle \mathrm{ABC}$, the tangent of half the difference of two angles is one-third the tangent of half the sum of the angles. Determine the ratio of the sides opposite to the angles.
Solution : \quad Here, $\tan \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)=\frac{1}{3} \tan \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right)$
using Napier's analogy, $\tan \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cdot \cot \left(\frac{\mathrm{C}}{2}\right)$
from (i) \& (ii) ;

$$
\begin{aligned}
& \frac{1}{3} \tan \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right)=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cdot \cot \left(\frac{\mathrm{C}}{2}\right) \Rightarrow \frac{1}{3} \cot \left(\frac{\mathrm{C}}{2}\right)=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cdot \cot \left(\frac{\mathrm{C}}{2}\right) \\
& \left\{\operatorname{as~} \mathrm{A}+\mathrm{B}+\mathrm{C}=\pi \quad \therefore \tan \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\tan \left(\frac{\pi}{2}-\frac{\mathrm{C}}{2}\right)=\cot \frac{\mathrm{C}}{2}\right\} \\
& \Rightarrow \quad \frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}=\frac{1}{3} \quad \text { or } \quad 3 \mathrm{a}-3 \mathrm{~b}=\mathrm{a}+\mathrm{b} \\
& \quad 2 \mathrm{a}=4 \mathrm{~b} \quad \text { or } \quad \frac{\mathrm{a}}{\mathrm{~b}}=\frac{2}{1} \Rightarrow \frac{\mathrm{~b}}{\mathrm{a}}=\frac{1}{2}
\end{aligned}
$$

Thus the ratio of the sides opposite to the angles is $\mathrm{b}: \mathrm{a}=1: 2$.
Ans.

Do yourself - 4 :

(i) In any $\triangle A B C$, prove that $\frac{b-c}{b+c}=\frac{\tan \left(\frac{B-C}{2}\right)}{\tan \left(\frac{B+C}{2}\right)}$
(ii) If $\triangle A B C$ is right angled at C, prove that: (a) $\tan \frac{A}{2}=\sqrt{\frac{c-b}{c+b}}$
(b) $\sin (A-B)=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$

5. HALF ANGLE FORMULAE :

$s=\frac{a+b+c}{2}=$ semi-perimeter of triangle.
(a) (i) $\sin \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}}$
(ii) $\sin \frac{\mathrm{B}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{c})(\mathrm{s}-\mathrm{a})}{\mathrm{ca}}}$
(iii) $\sin \frac{\mathrm{C}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\mathrm{ab}}}$
(b)
(i) $\cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}$
(ii) $\cos \frac{\mathrm{B}}{2}=\sqrt{\frac{\mathrm{s}(\mathrm{s}-\mathrm{b})}{\mathrm{ca}}}$
(iii) $\cos \frac{\mathrm{C}}{2}=\sqrt{\frac{\mathrm{s}(\mathrm{s}-\mathrm{c})}{\mathrm{ab}}}$
(c) (i) $\tan \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{s}(\mathrm{s}-\mathrm{a})}}$
(ii) $\tan \frac{\mathrm{B}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{c})(\mathrm{s}-\mathrm{a})}{\mathrm{s}(\mathrm{s}-\mathrm{b})}}$
(iii) $\tan \frac{\mathrm{C}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\mathrm{s}(\mathrm{s}-\mathrm{c})}}$

$$
=\frac{\Delta}{s(s-a)}
$$

$$
=\frac{\Delta}{s(s-b)}
$$

$$
=\frac{\Delta}{s(s-c)}
$$

(d) Area of Triangle

$$
\Delta=\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=\frac{1}{2} \mathrm{bc} \sin \mathrm{~A}=\frac{1}{2} \mathrm{ca} \sin \mathrm{~B}=\frac{1}{2} \mathrm{ab} \sin \mathrm{C}=\frac{1}{2} \mathrm{ap}_{1}=\frac{1}{2} \mathrm{bp}_{2}=\frac{1}{2} \mathrm{cp}_{3},
$$ where p_{1}, p_{2}, p_{3} are altitudes from vertices A, B, C respectively.

Illustration 8: If in a triangle $\mathrm{ABC}, \mathrm{CD}$ is the angle bisector of the angle ACB , then CD is equal to-
(A) $\frac{a+b}{2 a b} \cos \frac{C}{2}$
(B) $\frac{2 a b}{a+b} \sin \frac{C}{2}$
(C) $\frac{2 a b}{a+b} \cos \frac{C}{2}$
(D) $\frac{\mathrm{b} \sin \angle \mathrm{DAC}}{\sin (\mathrm{B}+\mathrm{C} / 2)}$

Solution: $\Delta \mathrm{CAB}=\Delta \mathrm{CAD}+\Delta \mathrm{CDB}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} \mathrm{absin} \mathrm{C}=\frac{1}{2} \mathrm{~b} \cdot \mathrm{CD} \cdot \sin \left(\frac{\mathrm{C}}{2}\right)+\frac{1}{2} \mathrm{a} \cdot \mathrm{CD} \sin \left(\frac{\mathrm{C}}{2}\right) \\
& \Rightarrow \quad \mathrm{CD}(\mathrm{a}+\mathrm{b}) \sin \left(\frac{\mathrm{C}}{2}\right)=\mathrm{ab}\left(2 \sin \left(\frac{\mathrm{C}}{2}\right) \cos \left(\frac{\mathrm{C}}{2}\right)\right)
\end{aligned}
$$

$$
\text { So } \quad \mathrm{CD}=\frac{2 \mathrm{ab} \cos (\mathrm{C} / 2)}{(\mathrm{a}+\mathrm{b})}
$$

$$
\text { and in } \triangle \mathrm{CAD}, \frac{\mathrm{CD}}{\sin \angle \mathrm{DAC}}=\frac{\mathrm{b}}{\sin \angle \mathrm{CDA}} \text { (by sine rule) }
$$

$$
\Rightarrow \quad \mathrm{CD}=\frac{\mathrm{b} \sin \angle \mathrm{DAC}}{\sin (\mathrm{~B}+\mathrm{C} / 2)}
$$

Ans. (C,D)

Illustration 9: If Δ is the area and 2 s the sum of the sides of a triangle, then show $\Delta \leq \frac{\mathrm{s}^{2}}{3 \sqrt{3}}$.
Solution: We have, $2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}, \Delta^{2}=\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$
Now, A.M. \geq G.M.

$$
\begin{aligned}
& \frac{(\mathrm{s}-\mathrm{a})+(\mathrm{s}-\mathrm{b})+(\mathrm{s}-\mathrm{c})}{3} \geq\{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})\}^{1 / 3} \\
& \text { or } \quad \frac{3 \mathrm{~s}-2 \mathrm{~s}}{3} \geq\left(\frac{\Delta^{2}}{\mathrm{~s}}\right)^{1 / 3} \\
& \text { or } \quad \frac{\mathrm{s}}{3} \geq\left(\frac{\Delta^{2}}{\mathrm{~s}}\right)^{1 / 3} \\
& \text { or } \quad \frac{\Delta^{2}}{\mathrm{~s}} \leq \frac{\mathrm{s}^{3}}{27} \quad \Rightarrow \quad \Delta \leq \frac{\mathrm{s}^{2}}{3 \sqrt{3}}
\end{aligned}
$$

Do yourself - 5 :

(i) Given $\mathrm{a}=6, \mathrm{~b}=8, \mathrm{c}=10$. Find
(a) $\sin A$
(b) $\tan \mathrm{A}$
(c) $\sin \frac{A}{2}$
(d) $\cos \frac{\mathrm{A}}{2}$
(e) $\tan \frac{\mathrm{A}}{2}$
(f) Δ
(ii) Prove that in any $\triangle A B C,($ abcs $) \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}=\Delta^{2}$.
6. m-n THEOREM :

$$
\begin{aligned}
& (m+n) \cot \theta=m \cot \alpha-n \cot \beta \\
& (m+n) \cot \theta=n \cot B-m \cot C .
\end{aligned}
$$

7. RADIUS OF THE CIRCUMCIRCLE 'R' :

Circumcentre is the point of intersection of perpendicular bisectors of the sides and distance between circumcentre \& vertex of triangle is called circumradius ' R '.

$$
\mathrm{R}=\frac{\mathrm{a}}{2 \sin \mathrm{~A}}=\frac{\mathrm{b}}{2 \sin \mathrm{~B}}=\frac{\mathrm{c}}{2 \sin \mathrm{C}}=\frac{\mathrm{abc}}{4 \Delta} .
$$

8. RADIUS OF THE INCIRCLE ' \mathbf{r} ' :

Point of intersection of internal angle bisectors is incentre and perpendicular distance of incentre from any side is called inradius ' r '.
$\mathrm{r}=\frac{\Delta}{\mathrm{s}}=(\mathrm{s}-\mathrm{a}) \tan \frac{\mathrm{A}}{2}=(\mathrm{s}-\mathrm{b}) \tan \frac{\mathrm{B}}{2}=(\mathrm{s}-\mathrm{c}) \tan \frac{\mathrm{C}}{2}=4 \mathrm{R} \sin \frac{\mathrm{A}}{2} \sin \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}$.
$=a \frac{\sin \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}}{\cos \frac{\mathrm{~A}}{2}}=b \frac{\sin \frac{\mathrm{~A}}{2} \sin \frac{\mathrm{C}}{2}}{\cos \frac{B}{2}}=c \frac{\sin \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{~A}}{2}}{\cos \frac{C}{2}}$

Solutions of Triangle
Illustration 10: In a triangle ABC , if $\mathrm{a}: \mathrm{b}: \mathrm{c}=4: 5: 6$, then ratio between its circumradius and inradius is-
(A) $\frac{16}{7}$
(B) $\frac{16}{9}$
(C) $\frac{7}{16}$
(D) $\frac{11}{7}$

Solution: $\quad \frac{\mathrm{R}}{\mathrm{r}}=\frac{\mathrm{abc}}{4 \Delta} / \frac{\Delta}{\mathrm{s}}=\frac{(\mathrm{abc}) \mathrm{s}}{4 \Delta^{2}} \Rightarrow \frac{\mathrm{R}}{\mathrm{r}}=\frac{\mathrm{abc}}{4(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \ldots$. .
$\because a: b: c=4: 5: 6 \Rightarrow \frac{a}{4}=\frac{b}{5}=\frac{c}{6}=k$ (say)
$\Rightarrow \quad \mathrm{a}=4 \mathrm{k}, \mathrm{b}=5 \mathrm{k}, \mathrm{c}=6 \mathrm{k}$
$\therefore \quad \mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{15 \mathrm{k}}{2}, \mathrm{~s}-\mathrm{a}=\frac{7 \mathrm{k}}{2}, \mathrm{~s}-\mathrm{b}=\frac{5 \mathrm{k}}{2}, \mathrm{~s}-\mathrm{c}=\frac{3 \mathrm{k}}{2}$
using (i) in these values $\frac{\mathrm{R}}{\mathrm{r}}=\frac{(4 \mathrm{k})(5 \mathrm{k})(6 \mathrm{k})}{4\left(\frac{7 \mathrm{k}}{2}\right)\left(\frac{5 \mathrm{k}}{2}\right)\left(\frac{3 \mathrm{k}}{2}\right)}=\frac{16}{7}$
Ans. (A)

Illustration 11: If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle, prove that : $\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=1+\frac{\mathrm{r}}{\mathrm{R}}$.
Solution: $\quad \cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)+\cos \mathrm{C}$

$$
\begin{aligned}
& =2 \sin \frac{\mathrm{C}}{2} \cdot \cos \left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)+1-2 \sin ^{2} \frac{\mathrm{C}}{2}=1+2 \sin \frac{\mathrm{C}}{2}\left[\cos \left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)-\sin \left(\frac{\mathrm{C}}{2}\right)\right] \\
& =1+2 \sin \frac{\mathrm{C}}{2}\left[\cos \left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)-\cos \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right)\right] \quad\left\{\because \frac{\mathrm{C}}{2}=90^{\circ}-\left(\frac{\mathrm{A}+\mathrm{B}}{2}\right)\right\} \\
& =1+2 \sin \frac{\mathrm{C}}{2} \cdot 2 \sin \frac{\mathrm{~A}}{2} \cdot \sin \frac{\mathrm{~B}}{2}=1+4 \sin \frac{\mathrm{~A}}{2} \cdot \sin \frac{\mathrm{~B}}{2} \cdot \sin \frac{\mathrm{C}}{2} \\
& =1+\frac{\mathrm{r}}{\mathrm{R}} \quad \quad\{\mathrm{as}, \mathrm{r}=4 \mathrm{R} \sin \mathrm{~A} / 2 \cdot \sin \mathrm{~B} / 2 \cdot \sin \mathrm{C} / 2\}
\end{aligned}
$$

$$
\Rightarrow \quad \cos A+\cos B+\cos C=1+\frac{r}{R} . \text { Hence proved. }
$$

Do yourself - 6 :
(i) If in $\triangle \mathrm{ABC}, \mathrm{a}=3, \mathrm{~b}=4$ and $\mathrm{c}=5$, find
(a) Δ
(b) R
(c) r
(ii) In a $\triangle A B C$, show that:
(a) $\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{c}}=2 \mathrm{R} \sin (\mathrm{A}-\mathrm{B})$
(b) $r \cos \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}}{2} \cos \frac{\mathrm{C}}{2}=\frac{\Delta}{4 \mathrm{R}}$
(c) $a+b+c=\frac{a b c}{2 R r}$
(iii) Let $\Delta \& \Delta^{\prime}$ denote the areas of a Δ and that of its incircle. Prove that
$\Delta: \Delta^{\prime}=\left(\cot \frac{\mathrm{A}}{2} \cdot \cot \frac{\mathrm{~B}}{2} \cdot \cot \frac{\mathrm{C}}{2}\right): \pi$
9. RADII OF THE EX-CIRCLES :

Point of intersection of two external angles and one internal angle bisectors is excentre and perpendicular distance of excentre from any side is called exradius. If r_{1} is the radius of escribed circle opposite to $\angle A$ of $\triangle A B C$ and so on, then -

(a) $r_{1}=\frac{\Delta}{s-a}=\operatorname{stan} \frac{A}{2}=4 R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}$
(b) $\mathrm{r}_{2}=\frac{\Delta}{\mathrm{s}-\mathrm{b}}=\mathrm{s} \tan \frac{\mathrm{B}}{2}=4 \mathrm{R} \cos \frac{\mathrm{A}}{2} \sin \frac{\mathrm{~B}}{2} \cos \frac{\mathrm{C}}{2}=\frac{\mathrm{b} \cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{C}}{2}}{\cos \frac{B}{2}}$
(c) $\mathrm{r}_{3}=\frac{\Delta}{\mathrm{s}-\mathrm{c}}=\operatorname{stan} \frac{\mathrm{C}}{2}=4 \mathrm{R} \cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}=\frac{\mathrm{c} \cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{~B}}{2}}{\cos \frac{\mathrm{C}}{2}}$
$\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} are taken as ex-centre opposite to vertex $\mathrm{A}, \mathrm{B}, \mathrm{C}$ repsectively.

Illustration 12: Value of the expression $\frac{\mathrm{b}-\mathrm{c}}{\mathrm{r}_{1}}+\frac{\mathrm{c}-\mathrm{a}}{\mathrm{r}_{2}}+\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r}_{3}}$ is equal to -
(A) 1
(B) 2
(C) 3
(D) 0

Solution :

$$
\begin{aligned}
& \frac{(b-c)}{r_{1}}+\frac{(c-a)}{r_{2}}+\frac{(a-b)}{r_{3}} \\
& \Rightarrow \quad(b-c)\left(\frac{s-a}{\Delta}\right)+(c-a)\left(\frac{s-b}{\Delta}\right)+(a-b) \cdot\left(\frac{s-c}{\Delta}\right) \\
& \Rightarrow \quad \frac{(s-a)(b-c)+(s-b)(c-a)+(s-c)(a-b)}{\Delta} \\
& =\frac{s(b-c+c-a+a-b)-[a b-a c+b c-b a+a c-b c]}{\Delta}=\frac{0}{\Delta}=0
\end{aligned}
$$

Thus, $\frac{\mathrm{b}-\mathrm{c}}{\mathrm{r}_{1}}+\frac{\mathrm{c}-\mathrm{a}}{\mathrm{r}_{2}}+\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r}_{3}}=0$
Ans. (D)

Illustration 13: If $\mathrm{r}_{1}=\mathrm{r}_{2}+\mathrm{r}_{3}+\mathrm{r}$, prove that the triangle is right angled.
Solution: We have, $\mathrm{r}_{1}-\mathrm{r}=\mathrm{r}_{2}+\mathrm{r}_{3}$

$$
\begin{array}{lll}
\Rightarrow & \frac{\Delta}{\mathrm{s}-\mathrm{a}}-\frac{\Delta}{\mathrm{s}}=\frac{\Delta}{\mathrm{s}-\mathrm{b}}+\frac{\Delta}{\mathrm{s}-\mathrm{c}} \quad \Rightarrow & \frac{\mathrm{~s}-\mathrm{s}+\mathrm{a}}{\mathrm{~s}(\mathrm{~s}-\mathrm{a})}=\frac{\mathrm{s}-\mathrm{c}+\mathrm{s}-\mathrm{b}}{(\mathrm{~s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \\
\Rightarrow & \frac{\mathrm{a}}{\mathrm{~s}(\mathrm{~s}-\mathrm{a})}=\frac{2 \mathrm{~s}-(\mathrm{b}+\mathrm{c})}{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} & \{\mathrm{as}, 2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}\} \\
\Rightarrow & \frac{\mathrm{a}}{\mathrm{~s}(\mathrm{~s}-\mathrm{a})}=\frac{\mathrm{a}}{(\mathrm{~s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \quad \Rightarrow & \mathrm{s}^{2}-(\mathrm{b}+\mathrm{c}) \mathrm{s}+\mathrm{bc}=\mathrm{s}^{2}-\mathrm{as}
\end{array}
$$

$$
\begin{array}{lll}
\Rightarrow & \mathrm{s}(-\mathrm{a}+\mathrm{b}+\mathrm{c})=\mathrm{bc} & \Rightarrow \\
\Rightarrow \quad(\mathrm{~b}+\mathrm{c})^{2}-(\mathrm{a})^{2}=2 \mathrm{bc} & \Rightarrow & \mathrm{~b}^{2}+\mathrm{c}^{2}+2 \mathrm{bc}-\mathrm{a}^{2}=2 \mathrm{bc} \\
\Rightarrow & \mathrm{~b}^{2}+\mathrm{c}^{2}=\mathrm{a}^{2} & \\
\therefore \quad \angle \mathrm{~A}+\mathrm{b}+\mathrm{c}) \\
\therefore 0^{\circ} . & &
\end{array}
$$

Do yourself - 7 :

(i) In an equilateral $\triangle \mathrm{ABC}, \mathrm{R}=2$, find
(a) r
(b) r_{1}
(c) a
(ii) In a $\triangle \mathrm{ABC}$, show that
(a) $\mathrm{r}_{1} \mathrm{r}_{2}+\mathrm{r}_{2} \mathrm{r}_{3}+\mathrm{r}_{3} \mathrm{r}_{1}=\mathrm{s}^{2}$
(b) $\frac{1}{4} \mathrm{r}^{2} \mathrm{~s}^{2}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{1}}\right)\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{2}}\right)\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{3}}\right)=\mathrm{R}$
(c) $\sqrt{\mathrm{rr}_{1} \mathrm{r}_{2} \mathrm{r}_{3}}=\Delta$

10. ANGLE BISECTORS \& MEDIANS :

An angle bisector divides the base in the ratio of corresponding sides.

$$
\frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{c}}{\mathrm{~b}} \Rightarrow \mathrm{BD}=\frac{\mathrm{ac}}{\mathrm{~b}+\mathrm{c}} \quad \& \quad \mathrm{CD}=\frac{\mathrm{ab}}{\mathrm{~b}+\mathrm{c}}
$$

If m_{a} and β_{a} are the lengths of a median and an angle bisector from the angle A then,

$$
\mathrm{m}_{\mathrm{a}}=\frac{1}{2} \sqrt{2 \mathrm{~b}^{2}+2 \mathrm{c}^{2}-\mathrm{a}^{2}} \text { and } \beta_{\mathrm{a}}=\frac{2 \mathrm{bc} \cos \frac{\mathrm{~A}}{2}}{\mathrm{~b}+\mathrm{c}}
$$

Note that $\mathrm{m}_{\mathrm{a}}^{2}+\mathrm{m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}=\frac{3}{4}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)$

11. ORTHOCENTRE :

(a) Point of intersection of altitudes is orthocentre \& the triangle KLM which is formed by joining the feet of the altitudes is called the pedal triangle.
(b) The distances of the orthocentre from the angular points of the $\triangle \mathrm{ABC}$
 are $2 R \cos \mathrm{~A}, 2 \mathrm{R} \cos \mathrm{B}, \& 2 \mathrm{R} \cos \mathrm{C}$.
(c) The distance of P from sides are $2 \mathrm{R} \cos \mathrm{B} \cos \mathrm{C}, 2 \mathrm{R} \cos \mathrm{C} \cos \mathrm{A}$ and $2 \mathrm{R} \cos \mathrm{A} \cos \mathrm{B}$.

Do yourself - 8 :

(i) If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the distance of the vertices of $\triangle \mathrm{ABC}$ respectively from the orthocentre, then prove that $\frac{\mathrm{a}}{\mathrm{x}}+\frac{\mathrm{b}}{\mathrm{y}}+\frac{\mathrm{c}}{\mathrm{z}}=\frac{\mathrm{abc}}{\mathrm{xyz}}$
(ii) If $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}$ are respectively the perpendiculars from the vertices of a triangle to the opposite sides, prove that
(a) $\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}=\frac{\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}}{8 \mathrm{R}^{3}}$
(b) $\quad \Delta=\sqrt{\frac{1}{2} R_{1} p_{2} p_{3}}$
(iii) In a $\triangle \mathrm{ABC}, \mathrm{AD}$ is altitude and H is the orthocentre prove that $\mathrm{AH}: \mathrm{DH}=(\tan \mathrm{B}+\tan \mathrm{C})$ $: \tan \mathrm{A}$
(iv) In a $\triangle \mathrm{ABC}$, the lengths of the bisectors of the angle A, B and C are $\mathrm{x}, \mathrm{y}, \mathrm{z}$ respectively. Show that $\frac{1}{x} \cos \frac{A}{2}+\frac{1}{y} \cos \frac{B}{2}+\frac{1}{z} \cos \frac{C}{2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.

12. THE DISTANCES BETWEEN THE SPECIAL POINTS :

(a) The distance between circumcentre and orthocentre is $=R \sqrt{1-8 \cos A \cos B \cos C}$
(b) The distance between circumcentre and incentre is $=\sqrt{\mathrm{R}^{2}-2 \mathrm{Rr}}$
(c) The distance between incentre and orthocentre is $=\sqrt{2 \mathrm{r}^{2}-4 \mathrm{R}^{2} \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}}$
(d) The distances between circumcentre \& excentres are

$$
\mathrm{OI}_{1}=\mathrm{R} \sqrt{1+8 \sin \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}}{2} \cos \frac{\mathrm{C}}{2}}=\sqrt{\mathrm{R}^{2}+2 \mathrm{Rr}_{1}} \text { \& so on. }
$$

Illustration 14: Prove that the distance between the circumcentre and the orthocentre of a triangle ABC is $R \sqrt{1-8 \cos A \cos B \cos C}$.

Solution:
Let O and P be the circumcentre and the orthocentre respectively. If $O F$ is the perpendicular to AB , we have $\angle \mathrm{OAF}=90^{\circ}-\angle \mathrm{AOF}=90^{\circ}-\mathrm{C}$. Also $\angle \mathrm{PAL}=90^{\circ}-\mathrm{C}$.

Hence, $\angle \mathrm{OAP}=\mathrm{A}-\angle \mathrm{OAF}-\angle \mathrm{PAL}=\mathrm{A}-2\left(90^{\circ}-\mathrm{C}\right)=\mathrm{A}+2 \mathrm{C}-180^{\circ}$
$=\mathrm{A}+2 \mathrm{C}-(\mathrm{A}+\mathrm{B}+\mathrm{C})=\mathrm{C}-\mathrm{B}$.
Also $\mathrm{OA}=\mathrm{R}$ and $\mathrm{PA}=2 \mathrm{R} \cos \mathrm{A}$.
Now in $\triangle \mathrm{AOP}$,
$\mathrm{OP}^{2}=\mathrm{OA}^{2}+\mathrm{PA}^{2}-2 \mathrm{OA} . \mathrm{PA} \cos \mathrm{OAP}$

$$
\begin{aligned}
& =R^{2}+4 R^{2} \cos ^{2} A-4 R^{2} \cos A \cos (C-B) \\
& =R^{2}+4 R^{2} \cos A[\cos A-\cos (C-B)] \\
& =R^{2}-4 R^{2} \cos A[\cos (B+C)+\cos (C-B)]=R^{2}-8 R^{2} \cos A \cos B \cos C . \\
& \text { Hence } O P=R \sqrt{1-8 \cos A \cos B \cos C} .
\end{aligned}
$$

13. SOLUTION OF TRIANGLES :

The three sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and the three angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are called the elements of the triangle ABC . When any three of these six elements (except all the three angles) of a triangle are given, the triangle is known completely; that is the other three elements can be expressed in terms of the given elements and can be evaluated. This process is called the solution of triangles.

* If the three sides a, b, c are given, angle A is obtained from $\tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$ or $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} . B$ and C can be obtained in the similar way.
* If two sides b and c and the included angle A are given, then $\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}$ gives $\frac{B-C}{2}$. Also $\frac{B+C}{2}=90^{\circ}-\frac{A}{2}$, so that B and C can be evaluated. The third side is given by $a=b \frac{\sin A}{\sin B}$
or $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cos \mathrm{A}$.
If two sides b and c and an angle opposite the one of them (say B) are given then

$$
\sin C=\frac{c}{b} \sin B, A=180^{\circ}-(B+C) \text { and } a=\frac{b \sin A}{\sin B} \text { given the remaining elements. }
$$

Case I :

$\mathrm{b}<\mathrm{c} \sin \mathrm{B}$.
We draw the side c and angle B. Now it is obvious from the figure that there is no triangle possible.

Case II :

$b=c \sin B$ and B is an acute angle, there is only one triangle possible. and it is right-angled at C .

Case III :

$\mathrm{b}>\mathrm{c} \sin \mathrm{B}, \mathrm{b}<\mathrm{c}$ and B is an acute angle, then there are two triangles possible for two values of angle C .

Case IV :

$\mathrm{b}>\mathrm{c} \sin \mathrm{B}, \mathrm{c}<\mathrm{b}$ and B is an acute angle, then there is only one triangle.

Case V :

$\mathrm{b}>\mathrm{c} \sin \mathrm{B}, \mathrm{c}>\mathrm{b}$ and B is an obtuse angle.
For any choice of point C, b will be greater than c which is a contradication as $\mathrm{c}>\mathrm{b}$ (given). So there is no triangle possible.

Case VI :
$\mathrm{b}>\mathrm{c} \sin \mathrm{B}, \mathrm{c}<\mathrm{b}$ and B is an obtuse angle.
We can see that the circle with A as centre and b as radius will cut the line only in one point. So only one triangle is possible.

Case VII :

$\mathrm{b}>\mathrm{c}$ and $\mathrm{B}=90^{\circ}$.
Again the circle with A as centre and b as radius will cut the line only in one point. So only one triangle is possible.

Case VIII :

$\mathrm{b} \leq \mathrm{c}$ and $\mathrm{B}=90^{\circ}$.
The circle with A as centre and b as radius will not cut the line in any point. So no triangle is possible.

This is, sometimes, called an ambiguous case.

Alternative Method :

By applying cosine rule, we have $\cos B=\frac{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{2 a c}$
$\Rightarrow \quad a^{2}-(2 c \cos B) a+\left(c^{2}-b^{2}\right)=0 \Rightarrow a=c \cos B \pm \sqrt{(c \cos B)^{2}-\left(c^{2}-b^{2}\right)}$
$\Rightarrow \quad \mathrm{a}=\mathrm{c} \cos \mathrm{B} \pm \sqrt{\mathrm{b}^{2}-(\mathrm{c} \sin \mathrm{B})^{2}}$
This equation leads to following cases :
Case-I : If $\mathrm{b}<\mathrm{csin} B$, no such triangle is possible.
Case-II: Let $\mathrm{b}=\mathrm{c} \sin \mathrm{B}$. There are further following case :
(a) B is an obtuse angle $\Rightarrow \cos \mathrm{B}$ is negative. There exists no such triangle.
(b) B is an acute angle $\Rightarrow \cos \mathrm{B}$ is positive. There exists only one such triangle.

Case-III: Let $\mathrm{b}>\mathrm{c} \sin \mathrm{B}$. There are further following cases :
(a) B is an acute angle $\Rightarrow \cos \mathrm{B}$ is positive. In this case triangle will exist if and only if $\mathrm{c} \cos \mathrm{B}>\sqrt{\mathrm{b}^{2}-(\mathrm{c} \sin \mathrm{B})^{2}}$ or $\mathrm{c}>\mathrm{b} \Rightarrow$ Two such triangle is possible. If $\mathrm{c}<\mathrm{b}$, only one such triangle is possible.
(b) B is an obtuse angle $\Rightarrow \cos \mathrm{B}$ is negative. In this case triangle will exist if and only if $\sqrt{\mathrm{b}^{2}-(\mathrm{c} \sin \mathrm{B})^{2}}>|\mathrm{c} \cos \mathrm{B}| \Rightarrow \mathrm{b}>\mathrm{c}$. So in this case only one such triangle is possible. If $\mathrm{b}<\mathrm{c}$ there exists no such triangle.

This is called an ambiguous case.

* If one side a and angles B and C are given, then $A=180^{\circ}-(B+C)$, and $b=\frac{a \sin B}{\sin A}, c=\frac{a \sin C}{\sin A}$.
* If the three angles A, B, C are given, we can only find the ratios of the sides a, b, c by using sine rule (since there are infinite similar triangles possible).

Illustration 15 : In the ambiguous case of the solution of triangles, prove that the circumcircles of the two triangles are of same size.

Solution: Let us say b,c and angle B are given in the ambiguous case. Both the triangles will have b and its opposite angle as B. so $\frac{b}{\sin B}=2 R$ will be given for both the triangles. So their circumradii and therefore their sizes will be same.

Illustration 16: If a, b and A are given in a triangle and $\mathrm{c}_{1}, \mathrm{c}_{2}$ are the possible values of the third side, prove that $\mathrm{c}_{1}{ }^{2}+\mathrm{c}_{2}{ }^{2}-2 \mathrm{c}_{1} \mathrm{c}_{2} \cos 2 \mathrm{~A}=4 \mathrm{a}^{2} \cos ^{2} \mathrm{~A}$.

Solution: $\quad \cos \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}$
$\Rightarrow \mathrm{c}^{2}-2 \mathrm{bc} \cos \mathrm{A}+\mathrm{b}^{2}-\mathrm{a}^{2}=0$.
$\mathrm{c}_{1}+\mathrm{c}_{2}=2 \mathrm{~b} \cos \mathrm{~A}$ and $\mathrm{c}_{1} \mathrm{c}_{2}=\mathrm{b}^{2}-\mathrm{a}^{2}$.
$\Rightarrow \mathrm{c}_{1}{ }^{2}+\mathrm{c}_{2}{ }^{2}-2 \mathrm{c}_{1} \mathrm{c}_{2} \cos 2 \mathrm{~A}=\left(\mathrm{c}_{1}+\mathrm{c}_{2}\right)^{2}-2 \mathrm{c}_{1} \mathrm{c}_{2}(1+\cos 2 \mathrm{~A})$
$=4 b^{2} \cos ^{2} \mathrm{~A}-2\left(\mathrm{~b}^{2}-\mathrm{a}^{2}\right) 2 \cos ^{2} \mathrm{~A}=4 \mathrm{a}^{2} \cos ^{2} \mathrm{~A}$.
Illustration 17: If $\mathrm{b}, \mathrm{c}, \mathrm{B}$ are given and $\mathrm{b}<\mathrm{c}$, prove that $\cos \left(\frac{\mathrm{A}_{1}-\mathrm{A}_{2}}{2}\right)=\frac{\mathrm{c} \sin \mathrm{B}}{\mathrm{b}}$.
Solution: $\quad \angle \mathrm{C}_{2} \mathrm{AC}_{1}$ is bisected by AD .
$\Rightarrow \quad$ In $\Delta \mathrm{AC}_{2} \mathrm{D}, \cos \left(\frac{\mathrm{A}_{1}-\mathrm{A}_{2}}{2}\right)=\frac{\mathrm{AD}}{\mathrm{AC}_{2}}=\frac{\mathrm{c} \sin \mathrm{B}}{\mathrm{b}}$

Hence proved.

Do yourself - 9 :

(i) If b, c, B are given and $b<c$, prove that $\sin \left(\frac{A_{1}-A_{2}}{2}\right)=\frac{a_{1}-a_{2}}{2 b}$
(ii) In a $\triangle A B C, b, c, B(c>b)$ are gives. If the third side has two values a_{1} and a_{2} such that
$a_{1}=3 a_{2}$, show that $\sin B=\sqrt{\frac{4 b^{2}-c^{2}}{3 c^{2}}}$.

14. REGULAR POLYGON :

A regular polygon has all its sides equal. It may be inscribed or circumscribed.
(a) Inscribed in circle of radius r :

(i) $\quad \mathrm{a}=2 \mathrm{~h} \tan \frac{\pi}{\mathrm{n}}=2 \mathrm{r} \sin \frac{\pi}{\mathrm{n}}$
(ii) Perimeter (P) and area (A) of a regular polygon of n sides inscribed in a circle of radius r are given by $P=2 n r \sin \frac{\pi}{n}$ and $A=\frac{1}{2} n r^{2} \sin \frac{2 \pi}{n}$
(b) Circumscribed about a circle of radius r :
(i) $\quad \mathrm{a}=2 \mathrm{r} \tan \frac{\pi}{\mathrm{n}}$
(ii) Perimeter (P) and area (A) of a regular polygon of n sides
 circumscribed about a given circle of radius r is given by $P=2 n r \tan \frac{\pi}{n}$ and $\mathrm{A}=\mathrm{nr}^{2} \tan \frac{\pi}{\mathrm{n}}$

Do yourself - 10 :

(i) If the perimeter of a circle and a regular polygon of n sides are equal, then
prove that $\frac{\text { area of the circle }}{\text { area of polygon }}=\frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}}$.
(ii) The ratio of the area of n-sided regular polygon, circumscribed about a circle, to the area of the regular polygon of equal number of sides inscribed in the circle is $4: 3$. Find the value of n.

15. SOME NOTES :

(a) (i) If a $\cos \mathrm{B}=\mathrm{b} \cos \mathrm{A}$, then the triangle is isosceles.
(ii) If a $\cos \mathrm{A}=\mathrm{b} \cos \mathrm{B}$, then the triangle is isosceles or right angled.
(b) In right angle triangle
(i) $a^{2}+b^{2}+c^{2}=8 R^{2}$
(ii) $\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}=1$
(c) In equilateral triangle
(i) $\mathrm{R}=2 \mathrm{r}$
(ii) $\mathrm{r}_{1}=\mathrm{r}_{2}=\mathrm{r}_{3}=\frac{3 \mathrm{R}}{2}$
(iii) $\mathrm{r}: \mathrm{R}: \mathrm{r}_{1}=1: 2: 3$
(iv) area $=\frac{\sqrt{3} a^{2}}{4}$
(v) $\mathrm{R}=\frac{\mathrm{a}}{\sqrt{3}}$
(d) (i) The circumcentre lies (1) inside an acute angled triangle (2) outside an obtuse angled triangle \& (3) mid point of the hypotenuse of right angled triangle.
(ii) The orthocentre of right angled triangle is the vertex at the right angle.
(iii) The orthocentre, centroid \& circumcentre are collinear \& centroid divides the line segment joining orthocentre \& circumcentre internally in the ratio $2: 1$ except in case of equilateral triangle. In equilateral triangle, all these centres coincide
(e) Area of a cyclic quadrilateral $=\sqrt{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})(\mathrm{s}-\mathrm{d})}$
where a, b, c, d are lengths of the sides of quadrilateral and $s=\frac{a+b+c+d}{2}$.

ANSWERS FOR DO YOURSELF

1: (i) 90°
5 : (i) (a) $\frac{3}{5}$
(c) $\frac{1}{\sqrt{10}}$
(d) $\frac{3}{\sqrt{10}}$
(e) $\frac{1}{3}$
(f) 24

6: (i) (a) 6
(b) $\frac{5}{2}$
(c) 1

7 :
(i) (a) 1
(b) 3
(c) $2 \sqrt{3}$

10: (ii) 6

ELEMENTARY EXERCISE

1. Angles A, B and C of a triangle ABC are in A.P. If $\frac{\mathrm{b}}{\mathrm{c}}=\sqrt{\frac{3}{2}}$, then $\angle \mathrm{A}$ is equal to
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{5 \pi}{12}$
(D) $\frac{\pi}{2}$
2. If K is a point on the side BC of an equilateral triangle ABC and if $\angle \mathrm{BAK}=15^{\circ}$, then the ratio of lengths $\frac{\mathrm{AK}}{\mathrm{AB}}$ is
(A) $\frac{3 \sqrt{2}(3+\sqrt{3})}{2}$
(B) $\frac{\sqrt{2}(3+\sqrt{3})}{2}$
(C) $\frac{\sqrt{2}(3-\sqrt{3})}{2}$
(D) $\frac{3 \sqrt{2}(3-\sqrt{3})}{2}$
3. In a triangle $\mathrm{ABC}, \angle \mathrm{A}=60^{\circ}$ and $\mathrm{b}: \mathrm{c}=(\sqrt{3}+1): 2$ then $(\angle \mathrm{B}-\angle \mathrm{C})$ has the value equal to
(A) 15°
(B) 30°
(C) 22.5°
(D) 45°
4. In an acute triangle $\mathrm{ABC}, \angle \mathrm{ABC}=45^{\circ}, \mathrm{AB}=3$ and $\mathrm{AC}=\sqrt{6}$. The angle $\angle \mathrm{BAC}$, is
(A) 60°
(B) 65°
(C) 75°
(D) 15° or 75°
5. Let ABC be a right triangle with length of side $\mathrm{AB}=3$ and hypotenuse $\mathrm{AC}=5$.

If D is a point on $B C$ such that $\frac{B D}{D C}=\frac{A B}{A C}$, then $A D$ is equal to
(A) $\frac{4 \sqrt{3}}{3}$
(B) $\frac{3 \sqrt{5}}{2}$
(C) $\frac{4 \sqrt{5}}{3}$
(D) $\frac{5 \sqrt{3}}{4}$
6. In a triangle $A B C$, if $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$, the area of the triangle is
(A) 8
(B) 9
(C) 12
(D) $\frac{15}{2}$
7. In $\triangle A B C$, if $a=2 b$ and $A=3 B$, then the value of $\frac{c}{b}$ is equal to
(A) 3
(B) $\sqrt{2}$
(C) 1
(D) $\sqrt{3}$
8. If the sides of a triangle are $\sin \alpha, \cos \alpha, \sqrt{1+\sin \alpha \cos \alpha}, 0<\alpha<\frac{\pi}{2}$, the largest angle is
(A) 60°
(B) 90°
(C) 120°
(D) 150°
9. If the angle A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of expression $E=\left(\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A\right)$, is
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) 1
(D) $\sqrt{3}$
10. If in a triangle $\sin A: \sin C=\sin (A-B): \sin (B-C)$, then a^{2}, b^{2}, c^{2}
(A) are in A.P.
(B) are in G.P.
(C) are in H.P.
(D) none of these
11. In triangle $A B C$, if $\cot \frac{A}{2}=\frac{b+c}{a}$, then triangle $A B C$ must be
[Note: All symbols used have usual meaning in $\triangle \mathrm{ABC}$.]
(A) isosceles
(B) equilateral
(C) right angled
(D) isoceles right angled
12. Consider a triangle ABC and let a, b and c denote the lengths of the sides opposite to vertices A, B and C respectively. If $a=1, b=3$ and $C=60^{\circ}$, then $\sin ^{2} B$ is equal to
(A) $\frac{27}{28}$
(B) $\frac{3}{28}$
(C) $\frac{81}{28}$
(D) $\frac{1}{3}$
13. The ratio of the sides of a triangle ABC is $1: \sqrt{3}: 2$. Then ratio of $\mathrm{A}: \mathrm{B}: \mathrm{C}$ is
(A) $3: 5: 2$
(B) $1: \sqrt{3}: 2$
(C) $3: 2: 1$
(D) $1: 2: 3$
14. In triangle ABC , If $\mathrm{S}=3+\sqrt{3}+\sqrt{2}, 3 \mathrm{~B}-\mathrm{C}=30^{\circ}, \mathrm{A}+2 \mathrm{~B}=120^{\circ}$, then the length of longest side of triangle is
[Note: All symbols used have usual meaning in triangle ABC .]
(A) 2
(B) $2 \sqrt{2}$
(C) $2(\sqrt{3}+1)$
(D) $\sqrt{3}-1$
15. In a triangle $\tan A: \tan B: \tan C=1: 2: 3$, then $\mathrm{a}^{2}: \mathrm{b}^{2}: \mathrm{c}^{2}$ equals
(A) $5: 8: 9$
(B) $5: 8: 12$
(C) $3: 5: 8$
(D) $5: 8: 10$
16. In $\triangle A B C$, if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ (taken in that order) are in A.P. then $\cot \frac{\mathrm{A}}{2} \cot \frac{\mathrm{C}}{2}=$
[Note: All symbols used have usual meaning in triangle ABC .]
(A) 1
(B) 2
(C) 3
(D) 4
17. In $\triangle A B C$ if $a=8, b=9, c=10$, then the value of $\frac{\tan C}{\sin B}$ is
(A) $\frac{32}{9}$
(B) $\frac{24}{7}$
(C) $\frac{21}{4}$
(D) $\frac{18}{5}$
18. In triangle ABC , if $\Delta=\mathrm{a}^{2}-(\mathrm{b}-\mathrm{c})^{2}$, then $\tan \mathrm{A}=$
[Note: All symbols used have usual meaning in triangle ABC.]
(A) $\frac{15}{16}$
(B) $\frac{1}{2}$
(C) $\frac{8}{17}$
(D) $\frac{8}{15}$
19. In a triangle $A B C$, if the sides a, b, c are roots of $x^{3}-11 x^{2}+38 x-40=0$. If $\sum\left(\frac{\cos A}{a}\right)=\frac{p}{q}$, then find the least value of $(p+q)$ where $p, q \in N$.
20. $A B C$ is a triangle such that $\sin (2 A+B)=\sin (C-A)=-\sin (B+2 C)=\frac{1}{2}$. If A, B, C are in A.P., find $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

EXERCISE ($\mathbf{O - 1}$)

1. A triangle has vertices A, B and C, and the respective opposite sides have lengths a, b and c. This triangle is inscribed in a circle of radius R . If $\mathrm{b}=\mathrm{c}=1$ and the altitude from A to side BC has length $\sqrt{\frac{2}{3}}$, then R equals
(A) $\frac{1}{\sqrt{3}}$
(B) $\frac{2}{\sqrt{3}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{\sqrt{3}}{2 \sqrt{2}}$
2. A circle is inscribed in a right triangle ABC , right angled at C . The circle is tangent to the segment AB at D and length of segments AD and DB are 7 and 13 respectively. Area of triangle ABC is equal to
(A) 91
(B) 96
(C) 100
(D) 104
3. In a triangle ABC , if $\mathrm{a}=13, \mathrm{~b}=14$ and $\mathrm{c}=15$, then angle A is equal to
(All symbols used have their usual meaning in a triangle.)
(A) $\sin ^{-1} \frac{4}{5}$
(B) $\sin ^{-1} \frac{3}{5}$
(C) $\sin ^{-1} \frac{3}{4}$
(D) $\sin ^{-1} \frac{2}{3}$
4. In a triangle ABC , if $\mathrm{b}=(\sqrt{3}-1)$ a and $\angle \mathrm{C}=30^{\circ}$, then the value of $(\mathrm{A}-\mathrm{B})$ is equal to (All symbols used have usual meaning in a triangle.)
(A) 30°
(B) 45°
(C) 60°
(D) 75°
5. In triangle ABC , if $\mathrm{AC}=8, \mathrm{BC}=7$ and D lies between A and B such that $\mathrm{AD}=2, \mathrm{BD}=4$, then the length $C D$ equals
(A) $\sqrt{46}$
(B) $\sqrt{48}$
(C) $\sqrt{51}$
(D) $\sqrt{75}$
6. In a triangle ABC , if $\angle \mathrm{C}=105^{\circ}, \angle \mathrm{B}=45^{\circ}$ and length of side $\mathrm{AC}=2$ units, then the length of the side $A B$ is equal to
(A) $\sqrt{2}$
(B) $\sqrt{3}$
(C) $\sqrt{2}+1$
(D) $\sqrt{3}+1$
7. In a triangle $A B C$, if $(a+b+c)(a+b-c)(b+c-a)(c+a-b)=\frac{8 a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}}$, then the triangle is
[Note: All symbols used have usual meaning in triangle ABC.]
(A) isosceles
(B) right angled
(C) equilateral
(D) obtuse angled
8. In triangle ABC , if $2 \mathrm{~b}=\mathrm{a}+\mathrm{c}$ and $\mathrm{A}-\mathrm{C}=90^{\circ}$, then $\sin \mathrm{B}$ equals
[Note: All symbols used have usual meaning in triangle ABC.]
(A) $\frac{\sqrt{7}}{5}$
(B) $\frac{\sqrt{5}}{8}$
(C) $\frac{\sqrt{7}}{4}$
(D) $\frac{\sqrt{5}}{3}$
9. In a triangle $A B C, a^{3}+b^{3}+c^{3}=c^{2}(a+b+c)$
(All symbol used have usual meaning in a triangle.)
Statement-1: The value of $\angle \mathrm{C}=60^{\circ}$.
Statement -2: $\triangle \mathrm{ABC}$ must be equilateral.
(A) Statement -1 is true, statement-2 is true and statement- 2 is correct explanation for statement-1.
(B) Statement- 1 is true, statement- 2 is true and statement- 2 is NOT the correct explanation for statement- 1 .
(C) Statement-1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.
10. The sides of a triangle are three consecutive integers. The largest angle is twice the smallest one. The area of triangle is equal to
(A) $\frac{5}{4} \sqrt{7}$
(B) $\frac{15}{2} \sqrt{7}$
(C) $\frac{15}{4} \sqrt{7}$
(D) $5 \sqrt{7}$
11. The sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ (taken in that order) of triangle ABC are in A.P. If $\cos \alpha=\frac{a}{b+c}, \cos \beta=\frac{b}{c+a}, \cos \gamma=\frac{c}{a+b}$ then $\tan ^{2}\left(\frac{\alpha}{2}\right)+\tan ^{2}\left(\frac{\gamma}{2}\right)$ is equal to
[Note: All symbols used have usual meaning in triangle ABC.]
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{2}{3}$
12. AD and BE are the medians of a triangle ABC . If $\mathrm{AD}=4, \angle \mathrm{DAB}=\frac{\pi}{6}, \angle \mathrm{ABE}=\frac{\pi}{3}$, then area of triangle ABC equals
(A) $\frac{8}{3}$
(B) $\frac{16}{3}$
(C) $\frac{32}{3}$
(D) $\frac{32}{9} \sqrt{3}$
13. In triangle ABC , if $\sin ^{3} \mathrm{~A}+\sin ^{3} \mathrm{~B}+\sin ^{3} \mathrm{C}=3 \sin \mathrm{~A} \cdot \sin \mathrm{~B} \cdot \sin \mathrm{C}$, then triangle is
(A) obtuse angled
(B) right angled
(C) obtuse right angled
(D) equilateral
14. For right angled isosceles triangle, $\frac{r}{R}=$
[Note: All symbols used have usual meaning in triangle ABC.]
(A) $\tan \frac{\pi}{12}$
(B) $\cot \frac{\pi}{12}$
(C) $\tan \frac{\pi}{8}$
(D) $\cot \frac{\pi}{8}$
15. In triangle $A B C$, If $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$ then angle C is equal to
[Note: All symbols used have usual meaning in triangle ABC .]
(A) 30°
(B) 45°
(C) 60°
(D) 90°

EXERCISE (O-2)

Multiple Correct Answer Type :

1. In a triangle ABC , let $2 \mathrm{a}^{2}+4 \mathrm{~b}^{2}+\mathrm{c}^{2}=2 a(2 b+c)$, then which of the following holds good?
[Note: All symbols used have usual meaning in a triangle.]
(A) $\cos \mathrm{B}=\frac{-7}{8}$
(B) $\sin (A-C)=0$
(C) $\frac{\mathrm{r}}{\mathrm{r}_{1}}=\frac{1}{5}$
(D) $\sin \mathrm{A}: \sin \mathrm{B}: \sin \mathrm{C}=1: 2: 1$
2. In a triangle ABC , if $\mathrm{a}=4, \mathrm{~b}=8 \angle \mathrm{C}=60^{\circ}$, then which of the following relations is (are) correct?
[Note: All symbols used have usual meaning in triangle ABC .]
(A) The area of triangle ABC is $8 \sqrt{3}$
(B) The value of $\sum \sin ^{2} \mathrm{~A}=2$
(C) Inradius of triangle ABC is $\frac{2 \sqrt{3}}{3+\sqrt{3}}$
(D) The length of internal angle bisector of angle C is $\frac{4}{\sqrt{3}}$
3. In which of the following situations, it is possible to have a triangle ABC ?
(All symbols used have usual meaning in a triangle.)
(A) $(\mathrm{a}+\mathrm{c}-\mathrm{b})(\mathrm{a}-\mathrm{c}+\mathrm{b})=4 \mathrm{bc}$
(B) $b^{2} \sin 2 C+c^{2} \sin 2 B=a b$
(C) $\mathrm{a}=3, \mathrm{~b}=5, \mathrm{c}=7$ and $\mathrm{C}=\frac{2 \pi}{3}$
(D) $\cos \left(\frac{A-C}{2}\right)=\cos \left(\frac{A+C}{2}\right)$
4. In a triangle ABC , which of the following quantities denote the area of the triangle?
(A) $\frac{a^{2}-b^{2}}{2}\left(\frac{\sin A \sin B}{\sin (A-B)}\right)$
(B) $\frac{\mathrm{r}_{1} \mathrm{r}_{2} \mathrm{r}_{3}}{\sqrt{\sum \mathrm{r}_{1} \mathrm{r}_{2}}}$
(C) $\frac{a^{2}+b^{2}+c^{2}}{\cot \mathrm{~A}+\cot \mathrm{B}+\cot \mathrm{C}}$
(D) $\mathrm{r}^{2} \cot \frac{\mathrm{~A}}{2} \cdot \cot \frac{\mathrm{~B}}{2} \cot \frac{\mathrm{C}}{2}$
5. In $\triangle \mathrm{ABC}$, angle A, B and C are in the ratio $1: 2: 3$, then which of the following is (are) correct? (All symbol used have usual meaning in a triangle.)
(A) Circumradius of $\triangle \mathrm{ABC}=\mathrm{c}$
(B) $\mathrm{a}: \mathrm{b}: \mathrm{c}=1: \sqrt{3}: 2$
(C) Perimeter of $\triangle \mathrm{ABC}=3+\sqrt{3}$
(D) Area of $\triangle \mathrm{ABC}=\frac{\sqrt{3}}{8} \mathrm{c}^{2}$
6. Let one angle of a triangle be 60°, the area of triangle is $10 \sqrt{3}$ and perimeter is 20 cm . If a $>\mathrm{b}>\mathrm{c}$ where a, b and c denote lengths of sides opposite to vertices A, B and C respectively, then which of the following is (are) correct?
(A) Inradius of triangle is $\sqrt{3}$
(B) Length of longest side of triangle is 7
(C) Circumradius of triangle is $\frac{7}{\sqrt{3}}$
(D) Radius of largest escribed circle is $\frac{1}{12}$
7. In triangle ABC , let $\mathrm{b}=10, \mathrm{c}=10 \sqrt{2}$ and $\mathrm{R}=5 \sqrt{2}$ then which of the following statement(s) is (are) correct?
[Note: All symbols used have usual meaning in triangle ABC.]
(A) Area of triangle ABC is 50.
(B) Distance between orthocentre and circumcentre is $5 \sqrt{2}$
(C) Sum of circumradius and inradius of triangle ABC is equal to 10
(D) Length of internal angle bisector of $\angle \mathrm{ACB}$ of triangle ABC is $\frac{5}{2 \sqrt{2}}$
8. In a triangle ABC , let $\mathrm{BC}=1, \mathrm{AC}=2$ and measure of angle C is 30°. Which of the following statement(s) is (are) correct?
(A) $2 \sin A=\sin B$
(B) Length of side AB equals $5-2 \sqrt{3}$
(C) Measure of angle A is less than 30°
(D) Circumradius of triangle $A B C$ is equal to length of side $A B$
9. Given an acute triangle ABC such that $\sin \mathrm{C}=\frac{4}{5}, \tan \mathrm{~A}=\frac{24}{7}$ and $\mathrm{AB}=50$. Then-
(A) centroid, orthocentre and incentre of $\triangle \mathrm{ABC}$ are collinear
(B) $\sin \mathrm{B}=\frac{4}{5}$
(C) $\sin B=\frac{4}{7}$
(D) area of $\triangle \mathrm{ABC}=1200$
10. In a triangle $A B C$, if $\cos A \cos 2 B+\sin A \sin 2 B \sin C=1$, then
(A) A,B,C are in A.P.
(B) B,A,C are in A.P.
(C) $\frac{r}{R}=2$
(D) $\frac{\mathrm{r}}{\mathrm{R}}=\sqrt{2} \sin \frac{\pi}{12}$
11. In $\triangle \mathrm{ABC}$, angle A is $120^{\circ}, \mathrm{BC}+\mathrm{CA}=20$ and $\mathrm{AB}+\mathrm{BC}=21$, then
(A) $\mathrm{AB}>\mathrm{AC}$
(B) $\mathrm{AB}<\mathrm{AC}$
(C) $\triangle \mathrm{ABC}$ is isosceles
(D) area of $\triangle \mathrm{ABC}=14 \sqrt{3}$
12. In a triangle $\mathrm{ABC}, \angle \mathrm{A}=30^{\circ}, \mathrm{b}=6$. Let CB_{1} and CB_{2} are least and greatest integral value of side a for which two triangles can be formed. It is also given angle B_{1} is obtuse and angle B_{2} is acute angle.
(All symbols used have usual meaning in a triangle.)
(A) $\left|\mathrm{CB}_{1}-\mathrm{CB}_{2}\right|=1$
(B) $\mathrm{CB}_{1}+\mathrm{CB}_{2}=9$
(C) area of $\Delta \mathrm{B}_{1} \mathrm{CB}_{2}=6+\frac{3}{2} \sqrt{7}$
(D) area of $\Delta \mathrm{AB}_{2} \mathrm{C}=6+\frac{9}{2} \sqrt{3}$
13. If the lengths of the medians AD, BE and CF of triangle ABC are $6,8,10$ respectively, then-
(A) $\mathrm{AD} \& \mathrm{BE}$ are perpendicular
(B) BE and CF are perpendicular
(C) area of $\triangle \mathrm{ABC}=32$
(D) area of $\triangle \mathrm{DEF}=8$
14. Let P be an interior point of $\triangle \mathrm{ABC}$.

Match the correct entries for the ratios of the Area of $\triangle \mathrm{PBC}$: Area of $\triangle \mathrm{PCA}$: Area of $\triangle \mathrm{PAB}$ depending on the position of the point P w.r.t. $\Delta \mathrm{ABC}$.

Column-I

(A) If P is centroid (G)
(B) If P is incentre (I)
(C) If P is orthocentre (H)
(D) If P is circumcentre

Column-II

(P) $\tan \mathrm{A}: \tan \mathrm{B}: \tan \mathrm{C}$
(Q) $\sin 2 \mathrm{~A}: \sin 2 \mathrm{~B}: \sin 2 \mathrm{C}$
(R) $\sin \mathrm{A}: \sin \mathrm{B}: \sin \mathrm{C}$
(S) $1: 1: 1$
(T) $\cos \mathrm{A}: \cos \mathrm{B}: \cos \mathrm{C}$

EXERCISE (S-1)

1. Given a triangle ABC with sides $\mathrm{a}=7, \mathrm{~b}=8$ and $\mathrm{c}=5$. If the value of the expression $\left(\sum \sin A\right)\left(\sum \cot \frac{A}{2}\right)$ can be expressed in the form $\frac{p}{q}$ where $p, q \in N$ and $\frac{p}{q}$ is in its lowest form find the value of $(p+q)$.
2. If two times the square of the diameter of the circumcircle of a triangle is equal to the sum of the squares of its sides then prove that the triangle is right angled.
3. In acute angled triangle $A B C$, a semicircle with radius r_{a} is constructed with its base on $B C$ and tangent to the other two sides. r_{b} and r_{c} are defined similarly. If r is the radius of the incircle of triangle ABC then prove that, $\frac{2}{\mathrm{r}}=\frac{1}{\mathrm{r}_{\mathrm{a}}}+\frac{1}{\mathrm{r}_{\mathrm{b}}}+\frac{1}{\mathrm{r}_{\mathrm{c}}}$.
4. If the length of the perpendiculars from the vertices of a triangle $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on the opposite sides are $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}$ then prove that $\frac{1}{\mathrm{p}_{1}}+\frac{1}{\mathrm{p}_{2}}+\frac{1}{\mathrm{p}_{3}}=\frac{1}{\mathrm{r}}=\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}+\frac{1}{\mathrm{r}_{3}}$.
5. With usual notations, prove that in a triangle $A B C$ $a \cot A+b \cot B+c \cot C=2(R+r)$
6. With usual notations, prove that in a triangle ABC

$$
\operatorname{Rr}(\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C})=\Delta
$$

7. With usual notations, prove that in a triangle ABC $\cot \frac{\mathrm{A}}{2}+\cot \frac{\mathrm{B}}{2}+\cot \frac{\mathrm{C}}{2}=\frac{\mathrm{s}^{2}}{\Delta}$
8. With usual notations, prove that in a triangle ABC $\cot \mathrm{A}+\cot \mathrm{B}+\cot \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{4 \Delta}$
9. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of triangle ABC satisfying $\log \left(1+\frac{\mathrm{c}}{\mathrm{a}}\right)+\log \mathrm{a}-\log \mathrm{b}=\log 2$.

Also $a\left(1-x^{2}\right)+2 b x+c\left(1+x^{2}\right)=0$ has two equal roots. Find the value of $\sin A+\sin B+\sin C$.
10. With usual notations, prove that in a triangle $A B C$
$\frac{\mathrm{b}-\mathrm{c}}{\mathrm{r}_{1}}+\frac{\mathrm{c}-\mathrm{a}}{\mathrm{r}_{2}}+\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r}_{3}}=0$
11. With usual notations, prove that in a triangle $A B C$
$\frac{r_{1}}{(s-b)(s-c)}+\frac{r_{2}}{(s-c)(s-a)}+\frac{r_{3}}{(s-a)(s-b)}=\frac{3}{r}$
12. With usual notations, prove that in a triangle $A B C$ $\frac{\mathrm{abc}}{\mathrm{s}} \cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{~B}}{2} \cos \frac{\mathrm{C}}{2}=\Delta$
13. With usual notations, prove that in a triangle $A B C$
$\frac{1}{\mathrm{r}^{2}}+\frac{1}{\mathrm{r}_{1}{ }^{2}}+\frac{1}{\mathrm{r}_{2}{ }^{2}}+\frac{1}{\mathrm{r}_{3}{ }^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{\Delta^{2}}$
14. With usual notations, prove that in a triangle $A B C$
$2 \mathrm{R} \cos \mathrm{A}=2 \mathrm{R}+\mathrm{r}-\mathrm{r}_{1}$
15. If $r_{1}=r+r_{2}+r_{3}$ then prove that the triangle is a right angled triangle.

EXERCISE (S-2)

1. With usual notation, if in a $\triangle \mathrm{ABC}, \frac{\mathrm{b}+\mathrm{c}}{11}=\frac{\mathrm{c}+\mathrm{a}}{12}=\frac{\mathrm{a}+\mathrm{b}}{13}$; then prove that, $\frac{\cos \mathrm{A}}{7}=\frac{\cos \mathrm{B}}{19}=\frac{\cos \mathrm{C}}{25}$.
2. Given a triangle ABC with $\mathrm{AB}=2$ and $\mathrm{AC}=1$. Internal bisector of $\angle \mathrm{BAC}$ intersects BC at D . If $\mathrm{AD}=\mathrm{BD}$ and Δ is the area of triangle ABC , then find the value of $12 \Delta^{2}$.
3. For any triangle $A B C$, if $B=3 C$, show that $\cos C=\sqrt{\frac{b+c}{4 c}} \& \sin \frac{A}{2}=\frac{b-c}{2 c}$.
4. In a triangle $A B C$ if $a^{2}+b^{2}=101 c^{2}$ then find the value of $\frac{\cot C}{\cot A+\cot B}$.
5. The two adjacent sides of a cyclic quadrilateral are $2 \& 5$ and the angle between them is 60°. If the area of the quadrilateral is $4 \sqrt{3}$, find the remaining two sides.
6. If in a $\Delta \mathrm{ABC}, \mathrm{a}=6, \mathrm{~b}=3$ and $\cos (\mathrm{A}-\mathrm{B})=4 / 5$ then find its area.
7. In a $\triangle \mathrm{ABC}$,
(i) $\frac{a}{\cos A}=\frac{b}{\cos B}$
(ii) $2 \sin \mathrm{~A} \cos \mathrm{~B}=\sin \mathrm{C}$
(iii) $\tan ^{2} \frac{\mathrm{~A}}{2}+2 \tan \frac{\mathrm{~A}}{2} \tan \frac{\mathrm{C}}{2}-1=0$, prove that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).
8. Two sides of a triangle are of lengths $\sqrt{6}$ and 4 and the angle opposite to smaller side is 30^{0}. How many such triangles are possible? Find the length of their third side and area.
9. The triangle ABC (with side lengths a, b, c as usual) satisfies $\log a^{2}=\log b^{2}+\log c^{2}-\log (2 b c \cos A)$. What can you say about this triangle?
10. The sides of a triangle are consecutive integers $n, n+1$ and $n+2$ and the largest angle is twice the smallest angle. Find n.

EXERCISE (JA)

1. Let ABC and ABC^{\prime} be two non-congruent triangles with sides $\mathrm{AB}=4, \mathrm{AC}=\mathrm{AC}^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is [JEE 2009,5]
2. (a) If the angle A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the length of the sides opposite to A, B and C respectively, then the value of the expression $\frac{\mathrm{a}}{\mathrm{c}} \sin 2 \mathrm{C}+\frac{\mathrm{c}}{\mathrm{a}} \sin 2 \mathrm{~A}$, is -
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) 1
(D) $\sqrt{3}$
(b) Consider a triangle ABC and let a, b and c denote the length of the sides opposite to vertices A, B and C respectively. Suppose $\mathrm{a}=6, \mathrm{~b}=10$ and the area of the triangle is $15 \sqrt{3}$. If $\angle \mathrm{ACB}$ is obtuse and if r denotes the radius of the incircle of the triangle, then r^{2} is equal to
(c) Let ABC be a triangle such that $\angle \mathrm{ACB}=\frac{\pi}{6}$ and let a, b and c denote the lengths of the sides opposite to A, B and C respectively. The value(s) of x for which $a=x^{2}+x+1, b=x^{2}-1$ and $\mathrm{c}=2 \mathrm{x}+1$ is/are
[JEE 2010, 3+3+3]
(A) $-(2+\sqrt{3})$
(B) $1+\sqrt{3}$
(C) $2+\sqrt{3}$
(D) $4 \sqrt{3}$
3. Let PQR be a triangle of area Δ with $\mathrm{a}=2, \mathrm{~b}=\frac{7}{2}$ and $\mathrm{c}=\frac{5}{2}$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2 \sin P-\sin 2 P}{2 \sin P+\sin 2 P}$ equals
[JEE 2012, 3M, -1M]
(A) $\frac{3}{4 \Delta}$
(B) $\frac{45}{4 \Delta}$
(C) $\left(\frac{3}{4 \Delta}\right)^{2}$
(D) $\left(\frac{45}{4 \Delta}\right)^{2}$
4. In a triangle PQR, P is the largest angle and $\cos \mathrm{P}=\frac{1}{3}$. Further the incircle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)
[JEE(Advanced) 2013, 3, (-1)]
(A) 16
(B) 18
(C) 24
(D) 22
5. In a triangle the sum of two sides is x and the product of the same two sides is y. If $x^{2}-c^{2}=y$, where c is a third side of the triangle, then the ratio of the in-radius to the circum-radius of the triangle is -
[JEE(Advanced)-2014, 3(-1)]
(A) $\frac{3 y}{2 x(x+c)}$
(B) $\frac{3 y}{2 c(x+c)}$
(C) $\frac{3 y}{4 x(x+c)}$
(D) $\frac{3 y}{4 c(x+c)}$
6. In a triangle $X Y Z$, let x, y, z be the lengths of sides opposite to the angles X, Y, Z, respectively and $2 s=x+y+z$. If $\frac{s-x}{4}=\frac{s-y}{3}=\frac{s-z}{2}$ and area of incircle of the triangle XYZ is $\frac{8 \pi}{3}$, then-
(A) area of the triangle XYZ is $6 \sqrt{6}$
(B) the radius of circumcircle of the triangle XYZ is $\frac{35}{6} \sqrt{6}$
(C) $\sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2}=\frac{4}{35}$
(D) $\sin ^{2}\left(\frac{X+Y}{2}\right)=\frac{3}{5}$
[JEE(Advanced)-2016, 4(-2)]
7. In a triangle PQR , let $\angle \mathrm{PQR}=30^{\circ}$ and the sides PQ and QR have lengths $10 \sqrt{3}$ and 10 , respectively. Then, which of the following statement(s) is (are) TRUE ?
[JEE(Advanced)-2018, 4(-2)]
(A) $\angle \mathrm{QPR}=45^{\circ}$
(B) The area of the triangle PQR is $25 \sqrt{3}$ and $\angle \mathrm{QRP}=120^{\circ}$
(C) The radius of the incircle of the triangle PQR is $10 \sqrt{3}-15$
(D) The area of the circumcircle of the triangle PQR is 100π.

ANSWERS
 ELEMENTARY EXERCISE

1. C
2. C
3. B
4. C
5. B
6. B
7. D
8. C
9. D
10. A
11. C
12. A
13. D
14. C
15. A
16. C
17. A
18. D
19. 25
20. $45^{\circ}, 60^{\circ}, 75^{\circ}$

EXERCISE (O-1)

1. D
2. A
3. A
4. C
5. C
6. D
7. B
8. C
9. C
10. C
11. D
12. D
13. D
14. C
15. C

EXERCISE (O-2)

1. B, C
2. A, B
3. B, C
4. $\mathrm{A}, \mathrm{B}, \mathrm{D}$
5. B, D
6. A, C 7. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
7. $\mathrm{A}, \mathrm{C}, \mathrm{D}$
8. $\mathrm{A}, \mathrm{B}, \mathrm{D}$
9. B, D
10. A, D
11. $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$
12. A, C,D
13. (A) S; (B) R; (C) P; (D) Q

EXERCISE (S-1)

1. 107
2. $\frac{12}{5}$

EXERCISE (S-2)

2. 9
3. 50
4. $3 \mathrm{cms} \& 2 \mathrm{cms}$
5. 9 sq. unit
6. Two tringle $(2 \sqrt{3}-\sqrt{2}),(2 \sqrt{3}+\sqrt{2}),(2 \sqrt{3}-\sqrt{2}) \&(2 \sqrt{3}+\sqrt{2})$ sq. units
7. triangle is isosceles
8. 4

EXERCISE (JA)

1. 4
2. (a) D, (b) 3 , (c) B
3. C
4. B,D
5. B
6. $\mathrm{A}, \mathrm{C}, \mathrm{D}$
7. $\mathrm{B}, \mathrm{C}, \mathrm{D}$
