

# **CONTENTS**

## STATISTICS

| BASIC CONCEPTS AND ILLUSTRATIONS | Page – 1  |
|----------------------------------|-----------|
| EXERCISE - I                     | Page – 14 |
| EXERCISE - II                    | Page - 18 |
| EXERCISE - III                   | Page – 22 |

## MATHEMATICAL REASONING

| BASIC CONCEPTS AND ILLUSTRATIONS | Page – 24 |
|----------------------------------|-----------|
| EXERCISE - I                     | Page – 33 |
| EXERCISE - II                    | Page – 36 |

JEE (Main) Syllabus :

**MATHEMATICAL REASONING:** Statements, logical operations and, or, implies, implied by, if and only if. Understanding of tautology, contradiction, converse and contrapositive

**STATISTICS :** Measures of Dispersion: Calculation of mean, median, mode of grouped and ungrouped data calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.

**Ex.2** Find the mean of the following freq. dist.

| X                | 5  | 15 | 25 | 35 | 45 | 55 |
|------------------|----|----|----|----|----|----|
| $\mathbf{f}_{i}$ | 12 | 18 | 27 | 20 | 17 | 6  |

**Sol.** Let assumed mean a = 35, h = 10

here N = 
$$\Sigma f_i = 100$$
,  $u_i = \frac{(x_i - 35)}{10}$   
 $\therefore \Sigma f_i u_i = (12 \times -3) + (18 \times -2) + (27 \times -1) + (20 \times 0) + (17 \times 1) + (6 \times 2) = -70$   
 $\therefore \overline{x} = a + \left(\frac{\Sigma f_i u_i}{N}\right) h = 35 + \frac{(-70)}{100} \times 10 = 28$ 

(v) Weighted mean : If w<sub>1</sub>, w<sub>2</sub>, ..... w<sub>n</sub> are the weights assigned to the values x<sub>1</sub>, x<sub>2</sub>, ..... x<sub>n</sub> respectively then their weighted mean is defined as

Weighted mean = 
$$\frac{\mathbf{w}_{1}\mathbf{x}_{1} + \mathbf{w}_{2}\mathbf{x}_{2} + \dots + \mathbf{w}_{n}\mathbf{x}_{n}}{\mathbf{w}_{1} + \dots + \mathbf{w}_{n}} = \frac{\sum_{i=1}^{n} \mathbf{w}_{i}\mathbf{x}_{i}}{\sum_{i=1}^{n} \mathbf{w}_{i}}$$

**Ex.3** Find the weighted mean of first n natural numbers when their weights are equal to their squares respectively

Sol. Weighted Mean = 
$$\frac{1.1^2 + 2.2^2 + .... + n.n^2}{1^2 + 2^2 + .... + n^2} = \frac{1^3 + 2^3 + ..... + n^3}{1^2 + 2^2 + .... + n^2} = \frac{[n(n+1)/2]^2}{[n(n+1)(2n+1)/6]} = \frac{3n(n+1)}{2(2n+1)}$$

(vi) Combined mean : If  $\bar{x}_1$  and  $\bar{x}_2$  be the means of two groups having  $n_1$  and  $n_2$  terms respectively then the mean (combined mean) of their composite group is given by

combined mean =  $\frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$ 

If there are more than two groups then, combined mean =  $\frac{n_1 \overline{x}_1 + n_1 \overline{x}_2 + n_3 \overline{x}_3 + \dots}{n_1 + n_2 + n_3 + \dots}$ 

**Ex.4** The mean income of a group of persons is Rs. 400 and another group of persons is Rs. 480. If the mean income of all the persons of these two groups is Rs. 430 then find the ratio of the number of persons in the groups.

**Sol.** Here 
$$\bar{x}_1 = 400$$
,  $\bar{x}_2 = 480$ ,  $\bar{x} = 430$ 

$$\therefore \quad \overline{\mathbf{x}} = \frac{\mathbf{n}_1 \overline{\mathbf{x}}_1 + \mathbf{n}_2 \overline{\mathbf{x}}_2}{\mathbf{n}_1 + \mathbf{n}_2} \implies 430 = \frac{400 \mathbf{n}_1 + 480 \mathbf{n}_2}{\mathbf{n}_1 + \mathbf{n}_2}$$
$$\implies \frac{\mathbf{n}_1}{\mathbf{n}_2} = \frac{5}{3}$$

#### (vii) Properties of Arithmetic mean :

- Sum of deviations of variate from their A.M. is always zero i.e.  $\Sigma(x_i \overline{x}) = 0$ ,  $\Sigma f_i(x_i \overline{x}) = 0$
- Sum of square of deviations of variate from their A.M. is minimum i.e.  $\Sigma(x_i \overline{x})^2$  is minimum
- If  $\overline{x}$  is the mean of variate x, then A.M. of  $(x_i + \lambda) = \overline{x} + \lambda$

A.M. of 
$$(\lambda x_i) = \lambda \overline{x}$$

A.M. of  $(ax_i + b) = a\overline{x} + b$  (where  $\lambda$ , a, b are constant)

• A.M. is independent of change of assumed mean i.e. it is not effected by any change in assumed mean.

#### 2. MEDIAN :

The median of a series is the value of middle term of the series when the values are written in ascending order. Therefore median, divided an arranged series into two equal parts.

#### Formulae of median :

(i) For ungrouped distribution : Let n be the number of variate in a series then

Median = 
$$\begin{bmatrix} \left(\frac{n+1}{2}\right)^{th} \text{ term }, \text{ (when n is odd)} \\ \text{Mean of } \left(\frac{n}{2}\right)^{th} \text{ and } \left(\frac{n}{2}+1\right)^{th} \text{ terms, (when n is even)} \end{bmatrix}$$

(ii) For ungrouped freq. dist. : First we prepare the cumulative frequency (c.f.) column and Find value of N then

Median = 
$$\begin{bmatrix} \left(\frac{N+1}{2}\right)^{th} \text{ term, (when N is odd)} \\ \text{Mean of } \left(\frac{N}{2}\right)^{th} \text{ and } \left(\frac{N}{2}+1\right)^{th} \text{ terms, (when N is even)} \end{bmatrix}$$

(iii) For grouped freq. dist : Prepare c.f. column and find value of  $\frac{N}{2}$  then find the class which contain value of c.f. is equal or just greater to N/2, this is median class

$$\therefore \text{ Median} = \ell + \frac{\left(\frac{N}{2} - F\right)}{f} \times h$$

where

- $\ell$  lower limit of median class
  - f freq. of median class
  - F c.f. of the class preceeding median class
  - h Class interval of median class
- **Ex.5** Find the median of following freq. dist.

| class | 0-10 | 10 - 20 | 20 - 30 | 30-40 | 40 - 50 |
|-------|------|---------|---------|-------|---------|
| f     | 8    | 30      | 40      | 12    | 10      |
|       |      |         |         |       |         |

| class | $f_i$ | c.f. |
|-------|-------|------|
| 0-10  | 8     | 8    |
| 10-20 | 30    | 38   |
| 20-30 | 40    | 78   |
| 30-40 | 12    | 90   |
| 40-50 | 10    | 100  |

Sol.

Here  $\frac{N}{2} = \frac{100}{2} = 50$  which lies in the value 78 of c.f. hence corresponding class of this c.f. is 20-30 is the median class, so  $\ell = 20$ , f = 40, F = 38, h = 10

$$\therefore \text{ Median} = \ell + \frac{\left(\frac{N}{2} - F\right)}{f} \times h = 20 + \frac{(50 - 38)}{40} \times 10 = 23$$

#### 3. **MODE:**

In a frequency distribution the mode is the value of that variate which have the maximum frequency Method for determining mode :

- (i) For ungrouped dist. : The value of that variate which is repeated maximum number of times
- (ii) For ungrouped freq. dist. : The value of that variate which have maximum frequency.
- (iii) For grouped freq. dist. : First we find the class which have maximum frequency, this is model calss

$$\therefore \text{ Mode} = \ell + \frac{f_0 - f_1}{2f_0 - f_1 - f_2} \times h$$

where

 $\ell$  — lower limit of model class

 $f_0$  — freq. of the model class

- $f_1$  freq. of the class preceeding model class
- $f_2$  freq. of the class succeeding model class
- h class interval of model class

#### **Ex. 6** Find the mode of the following frequecy dist

| class          | 0-10 | 10-20 | 20-30 | 30-40 | 40 - 50 | 50-60 | 60 - 70 | 70-80 |
|----------------|------|-------|-------|-------|---------|-------|---------|-------|
| f <sub>i</sub> | 2    | 18    | 30    | 45    | 35      | 20    | 6       | 3     |

Sol. Here the class 30–40 has maximum freq. so this is the model class

$$\ell = 30, f_0 = 45, f_1 = 30, f_2 = 35, h = 10$$

:. Mode = 
$$\ell + \frac{f_0 - f_1}{2f_0 - f_1 - f_2} \times h = 30 + \frac{45 - 30}{2 \times 45 - 30 - 35} \times 10 = 36$$

#### 4. **RELATION BETWEEN MEAN, MEDIAN AND MODE :**

In a moderately asymmetric distribution following relation between mean, median and mode of a distribution. It is known as imprical formula.

Mode = 3 Median - 2 Mean

Note (i) Median always lies between mean and mode

(ii) For a symmetric distribution the mean, median and mode are coincide.

#### 5. **MEASURES OF DISPERSION :**

The dispersion of a statistical distribution is the measure of deviation of its values about the their average (central) value.

It gives an idea of scatteredness of different values from the average value.

Generally the following measures of dispersion are commonly used.

- (i) Range (ii) Mean deviation (iii) Variance and standard deviation
- (i) Range : The difference between the greatest and least values of variate of a distribution, are called the range of that distribution.

If the distribution is grouped distribution, then its range is the difference between upper limit of the maximum class and lower limit of the minimum class.

Also, coefficient of range =  $\frac{\text{difference of extreme values}}{1}$ 

sum of extreme values

- **Ex.7** Find the range of following numbers 10, 8, 12, 11, 14, 9, 6
- Sol. Here greatest value and least value of the distribution are 14 and 6 resp. therefore

Range = 14 - 6 = 8

(ii) Mean deviation (M.D.): The mean deviation of a distribution is, the mean of absolute value of deviations of variate from their statistical average (Mean, Median, Mode).

If A is any statistical average of a distribution then mean deviation about A is defined as

Mean deviation = 
$$\frac{\sum_{i=1}^{n} |x_i - A|}{n}$$

$$\sum_{i=1}^{n} \mathbf{f}_{i} \mid \mathbf{x}_{i} - \mathbf{A} \mid$$

(for ungrouped dist.)

Mean deviation =  $\frac{\sum_{i=1}^{n} f_i | x_i - A}{N}$ 

(for freq. dist.)

Note :- is minimum when it taken about the median

Coefficient of Mean deviation =  $\frac{\text{Mean deviation}}{A}$ 

- (where A is the central tendency about which Mean deviation is taken)
- **Ex.8** Find the mean deviation of number 3, 4, 5, 6, 7

**Sol.** Here 
$$n = 5$$
,  $\overline{x} = 5$ 

$$\therefore \qquad \text{Mean deviation} = \frac{\sum |\mathbf{x}_i - \overline{\mathbf{x}}|}{n}$$

$$= \frac{1}{5}[|3-5|+|4-5|+|5-5|+|6-5|+|7-5|]$$
$$= \frac{1}{5}[2+1+0+1+2] = \frac{6}{5} = 1.2$$

Ex.9 Find the mean deviation about mean from the following data

|      |                | x <sub>i</sub> 3 | 9  | 17                 | 23             | 27 |                      |                                                 |
|------|----------------|------------------|----|--------------------|----------------|----|----------------------|-------------------------------------------------|
|      |                | $f_i = 8$        | 10 | 12                 | 9              | 5  |                      |                                                 |
|      |                |                  |    |                    |                |    |                      |                                                 |
|      | X <sub>i</sub> | $f_i$            |    | $f_i$              | K <sub>i</sub> | >  | $x_i - \overline{x}$ | $f_i \mid x_i - \overline{x} \mid$              |
|      | 3              | 8                |    | 2                  | 4              |    | 12                   | 96                                              |
|      | 9              | 10               |    | 9                  | 0              |    | 6                    | 60                                              |
|      | 17             | 12               |    | 20                 | )4             |    | 2                    | 24                                              |
| Sol. | 23             | 9                |    | 20                 | )7             |    | 8                    | 72                                              |
|      | 27             | 5                |    | 13                 | 5              |    | 12                   | 60                                              |
|      |                | N = 4            | 1  | $\Sigma f_i X_i =$ | = 660          |    |                      | $\Sigma f_i \mid x_i - \overline{x} \mid = 312$ |

$$Mean(\overline{x}) = \frac{\Sigma f_i x_i}{N} = \frac{660}{44} = 15$$

Mean deviation = 
$$\frac{\Sigma f_i | x_i - \overline{x} |}{N} = \frac{312}{44} = 7.09$$

(iii) Variance and standard deviation : The variance of a distribution is, the mean of squares of deviation of variate from their mean. It is denoted by  $\sigma^2$  or var(x).

The positive square root of the variance are called the standard deviation. It is denoted by  $\sigma$  or S.D.

Hence standard deviation =  $+\sqrt{\text{variance}}$ 

#### Formulae for variance :

(i) for ungrouped dist. :

$$\sigma_x^2 = \frac{\Sigma(x_i - \overline{x})^2}{n}$$

$$\sigma_x^2 = \frac{\Sigma x_i^2}{n} - \overline{x}^2 = \frac{\Sigma x_i^2}{n} - \left(\frac{\Sigma x_i}{n}\right)^2$$

$$\sigma_d^2 = \frac{\Sigma d_i^2}{n} - \left(\frac{\Sigma d_i}{n}\right)^2, \text{ where } d_i = x_i - a$$

(ii) For freq. dist. :

$$\begin{split} \sigma_x^2 &= \frac{\Sigma f_i (x_i - \overline{x})^2}{N} \\ \sigma_x^2 &= \frac{\Sigma f_i x_i^2}{N} - (\overline{x})^2 = \frac{\Sigma f_i x_i^2}{N} - \left(\frac{\Sigma f_i x_i}{N}\right)^2 \\ \sigma_d^2 &= \frac{\Sigma f_i d_i^2}{N} - \left(\frac{\Sigma f_i d_i}{N}\right)^2 \\ \sigma_u^2 &= h^2 \left[\frac{\Sigma f_i u_i^2}{N} - \left(\frac{\Sigma f_i u_i}{N}\right)^2\right] \quad \text{where } u_i = \frac{d_i}{h} \end{split}$$

(iii) Coefficient of S.D. =  $\frac{\sigma}{\overline{\mathbf{v}}}$ 

Coefficient of variation =  $\frac{\sigma}{\overline{x}} \times 100$  (in percentage)

Note :-  $\sigma^2 = \sigma_x^2 = \sigma_d^2 = h^2 \sigma_u^2$ 

**Ex.10** Find the variance of first n natural numbers

**Sol.** 
$$\sigma^2 = \frac{\Sigma x_i^2}{n} - \left(\frac{\Sigma x_i}{n}\right)^2 = \frac{\Sigma n^2}{n} - \left(\frac{\Sigma n}{n}\right)^2 = \frac{n(n+1)(2n+1)}{6n} - \left\{\frac{n(n+1)}{2n}\right\}^2 = \frac{n^2 - 1}{12}$$

**Ex.11** If  $\sum_{i=1}^{18} (x_i - 8) = 9$  and  $\sum_{i=1}^{18} (x_i - 8)^2 = 45$ , then find the standard deviation of  $x_1, x_2, \dots, x_{18}$ 

**Sol.** Let  $(x_i - 8) = d_i$ 

: 
$$\sigma_{x} = \sigma_{d} = \sqrt{\frac{\Sigma d_{i}^{2}}{n} - \left(\frac{\Sigma d_{i}}{n}\right)^{2}} = \sqrt{\frac{45}{18} - \left(\frac{9}{18}\right)^{2}} = \sqrt{\frac{5}{2} - \frac{1}{4}} = \frac{3}{2}$$

**Ex.12** Find the coefficient of variation of first n natural numbers

Sol. For first n natural numbers.

Mean 
$$(\overline{x}) = \frac{n+1}{2}$$
, S.D. $(\sigma) = \sqrt{\frac{n^2 - 1}{12}}$   
 $\therefore$  coefficient of variance  $= \frac{\sigma}{\overline{x}} \times 100 = \sqrt{\frac{n^2 - 1}{12}} \times \frac{1}{\left(\frac{n+1}{2}\right)} \times 100 = \sqrt{\frac{(n-1)}{3(n+1)}} \times 100$ 

#### 6. **MEAN SQUARE DEVIATION :**

The mean square deviation of a distrubution is the mean of the square of deviations of variate from assumed mean. It is denoted by  $S^2$ 

Hence

$$\begin{split} S^2 &= \frac{\Sigma(x_i - a)^2}{n} = \frac{\Sigma d_i^2}{n} & \text{(for ungrouped dist.)} \\ S^2 &= \frac{\Sigma f_i(x_i - a)^2}{N} = \frac{\Sigma f_i d_i^2}{N} & \text{(for freq. dist.), where } d_i = (x_i - a) \end{split}$$

#### 7. **RELATION BETWEEN VARIANCE AND MEAN SQUARE DEVIATION :**

 $\Sigma d^2$ 

$$\because \sigma^{2} = \frac{\Sigma f_{i} d_{i}^{2}}{N} - \left(\frac{\Sigma f_{i} d_{i}}{N}\right)^{2}$$

$$\Rightarrow \sigma^{2} = s^{2} - d^{2}, \quad \text{where } d = \overline{x} - a = \frac{\Sigma f_{i} d_{i}}{N}$$

$$\Rightarrow s^{2} = \sigma^{2} + d^{2} \Rightarrow s^{2} \ge \sigma^{2}$$

Hence the variance is the minimum value of mean square deviation of a distribution **Ex.13** Determine the variance of the following frequency dist.

| class | 0-2 | 2-4 | 4-6 | 6-8 | 8-10 | 10-12 |
|-------|-----|-----|-----|-----|------|-------|
| $f_i$ | 2   | 7   | 12  | 19  | 9    | 1     |

**Sol.** Let a = 7, h = 2

|   |                                                       |                       | <b>b</b>                                 |                                                                           |                                     |                         |
|---|-------------------------------------------------------|-----------------------|------------------------------------------|---------------------------------------------------------------------------|-------------------------------------|-------------------------|
|   | class                                                 | X <sub>i</sub>        | $\mathbf{f}_{i}$                         | $u_i = \frac{x_i - a}{h}$                                                 | $\mathbf{f_i}\mathbf{u_i}$          | $f_i u_i^2$             |
|   | 0-2                                                   | 1                     | 2                                        | -3                                                                        | -6                                  | 18                      |
|   | 2-4                                                   | 3                     | 7                                        | -2<br>-1                                                                  | -14                                 | 28                      |
|   | 4-6                                                   | 5                     | 12                                       | -1                                                                        | -12                                 | 12                      |
|   | 6-8                                                   | 7                     | 19                                       | 0                                                                         | 0                                   | 0                       |
|   | 2-4<br>4-6<br>6-8<br>8-10                             | 9                     | 9                                        | 1                                                                         | 9                                   | 9                       |
|   | 10-12                                                 | 11                    | 1                                        | 2                                                                         | 2                                   | 4                       |
|   |                                                       |                       | N = 50                                   |                                                                           | $\Sigma f_i u_i = -21$              | $\Sigma f_i u_i^2 = 71$ |
| ( | $\sigma^2 = h^2 \left[ \frac{\Sigma}{\Delta} \right]$ | $\frac{df_iu_i^2}{N}$ | $-\left(\frac{\Sigma f_i u_i}{N}\right)$ | $\begin{bmatrix} 2 \\ - \end{bmatrix} = 4 \left[ \frac{71}{50} - \right]$ | $\left(\frac{-21}{50}\right)^2 = 4$ | [1.42 – 0.170           |

#### 8. MATHEMATICAL PROPERTIES OF VARIANCE :

- Var. $(x_i + \lambda) = Var.(x_i)$ Var. $(\lambda x_i) = \lambda^2$ . Var $(x_i)$ Var $(ax_i + b) = a^2$ . Var $(x_i)$ where  $\lambda$ , a, b, are constant
- If means of two series containing  $n_1$ ,  $n_2$  terms are  $\overline{x}_1$ ,  $\overline{x}_2$  and their variance's are  $\sigma_1^2$ ,  $\sigma_2^2$  respectively and their combined mean is  $\overline{x}$  then the variance  $\sigma^2$  of their combined series is given by following formula

$$\sigma^2 = \frac{n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)}{(n_1 + n_2)} \quad \text{where } d_i = \overline{x}_1 - \overline{x}, \, d_2 = \overline{x}_2 - \overline{x}$$

$$\sigma^{2} = \frac{n_{1}\sigma_{1}^{2} + n_{2}\sigma_{2}^{2}}{n_{1} + n_{2}} + \frac{n_{1}n_{2}}{(n_{1} + n_{2})^{2}} (\overline{x}_{1} - \overline{x}_{2})^{2}$$

i.e.

## SOLVED EXAMPLES

Ex.1 If in an examination different weights are assigned to different subjects Physics (2), Chemistry (1), English (1), Mathematics (2) A student scores 60 in Physics, 70 in Chemistry, 70 in English and 80 in Mathematics, then weighted mean is-

Sol.(2) Weighted mean = 
$$\frac{\sum_{i=1}^{n} W_i X_i}{\sum_{i=1}^{n} W_i} = \frac{2 \times 60 + 1 \times 70 + 1 \times 70 + 2 \times 80}{6} = 70$$

**Ex.2** The mean of two groups of sizes 200 and 300 are 25 and 10 respectively. Their standard deviation are 3 and 4 respectively. The variance of combined sample of size 500 is-

$$(1) 64 (2) 65.2 (3) 67.2 (4) 64.2$$

**Sol.(3)** Combined mean  $\overline{\mathbf{x}} = \frac{\mathbf{n}_1 \overline{\mathbf{x}}_1 + \mathbf{n}_2 \overline{\mathbf{x}}_2}{\mathbf{n}_1 + \mathbf{n}_2} = \frac{200 \times 25 + 300 \times 10}{500} = 16$ 

Here  $d_1 = \overline{x}_1 - \overline{x} = 25 - 16 = 9$  and  $d_2 = \overline{x}_2 - \overline{x} = 10 - 16 = -6$ 

We know that 
$$\sigma^2 = \frac{n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)}{n_1 + n_2} = \frac{200(9 + 81) + 300(16 + 36)}{500} = \frac{33600}{500} = 67.2$$

**Ex.3** If the mean of the series  $x_1, x_2, \dots, x_n$  is  $\overline{x}$ , then the mean of the series  $x_i + 2i$ ,  $i = 1, 2, \dots, n$  will be-

(1) 
$$\bar{x} + n$$
 (2)  $\bar{x} + n + 1$  (3)  $\bar{x} + 2$  (4)  $\bar{x} + 2n$ 

**Sol.(2)** As given  $\overline{\mathbf{x}} = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n}{n}$  ....(1)

If the mean of the series  $x_i + 2i$ , i = 1, 2, ...., n be  $\overline{X}$ , then

$$\overline{X} = \frac{(x_1 + 2) + (x_2 + 2.2) + (x_3 + 2.3) + \dots + (x_n + 2.n)}{n}$$
$$= \frac{x_1 + x_2 + \dots + x_n}{n} + \frac{2(1 + 2 + 3 + \dots + n)}{n}$$
$$= \overline{x} + \frac{2n(n+1)}{2n} \qquad \text{from (1)}$$
$$= \overline{x} + n + 1$$

Ex.4 The variance of first 20-natural numbers is-

(1) 
$$\frac{133}{4}$$
 (2)  $\frac{379}{12}$  (3)  $\frac{133}{2}$  (4)  $\frac{399}{4}$ 

Sol.(1) :: 
$$\sigma^2 = \frac{2x_1^2}{n} - \left(\frac{2x_1}{n}\right)^2$$
  
 $= \frac{1}{20} [1^2 + 2^2 + \dots + 20^2] - \left[\frac{1}{20}(1 + 2 + \dots + 20)\right]^2$   
 $= \frac{1}{20} \frac{20 \times 21(2 \times 20 + 1)}{6} - \left[\frac{1}{20} \frac{20 \times 21}{2}\right]^2 = \frac{7 \times 41}{2} - \frac{441}{4} = \frac{133}{4}$ .  
In fact, the variance of first n-natural numbers is  $\frac{n^2 - 1}{12}$   
Ex.5 The mean of the following freq. table is 50 and  $\Sigma f = 120$   
 $\boxed{\frac{(ass)}{f} - 0.20} \frac{20 - 40}{2} \frac{40 - 60}{40} \frac{60 - 80}{60 - 80} \frac{80 - 100}{19}$   
the missing frequencies are-  
(1) 28, 24 (2) 24, 36 (3) 36, 28 (4) None of these  
Sol.(1)  $\Sigma f = 120 = 17 + f_1 + 32 + f_2 + 19$   
 $\Rightarrow f_1 + f_2 = 52 \dots (1)$   
and  $\Sigma fx = (10 \times 17) + (30 \times f_1) + (50 \times 32) + (70 \times f_2) + (90 \times 19) = 30f_1 + 70f_2 + 3480$   
 $\therefore \overline{x} = \frac{\Sigma fx}{2 \cdot f} \Rightarrow 50 = \frac{30f_1 + 70f_2 + 3480}{120}$   
 $\Rightarrow 30f_1 + 70f_2 - 2520 \Rightarrow 3f_1 + 7f_2 = 252 \dots (2)$   
by (1) and (2) we get  $f_1 = 28, f_2 = 24$   
Ex.6 A student obtained 75%, 80%, 85% marks in three subjects. If the marks of another subject are added then his average marks can not be less than-  
(1) 60% (2) 65% (30)  $30 - 57 + 80 + 85 = 240$   
if the marks obtained from three subjects out of  $300 - 75 + 80 + 85 = 240$   
if the marks obtained from three subject is added then total marks obtained out of 400 is greater than 240  
if marks obtained in fourth subject is 0 then  
minimum average marks  $= \frac{240}{400} \times 100 = 60\%$   
Ex.7 The mean and variance of a series containing 5 terms are 8 and 24 respectively. The mean and variance of their

(1) 20 (2) 24 (3) 25 (4) 42

**Sol.(2)** Using 
$$\sigma^2 = \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n_1 + n_2} + \frac{n_1 n_2}{(n_1 + n_2)^2} (\overline{x}_1 - \overline{x}_2)^2 \implies \sigma^2 = \frac{5(24) + 3(24)}{5 + 3} + \frac{5(3)}{(5 + 3)^2} (8 - 8)^2 = 24$$

10

combined series will be-

- Ex.8
   The mean deviation about median from the following data 340, 150, 210, 240, 300, 310, 320, is 

   (1) 52.4
   (2) 52.5
   (3) 52.8
   (4) none of these
- **Sol.(3)** Arranging the observations in ascending order of magnitude, we have 150, 210, 240, 300, 310, 320, 340. Clearly, the middle observation is 300. So, median = 300 Calculation of Mean deviation

 $|x_{i} - 300|$ Xi 40 340 150 150 210 90 240 60 300 0 310 10 320 20  $\sum |\mathbf{x}_{i} - 300| = 370$ Total

Mean deviation from median = 
$$\frac{1}{7}\Sigma |\mathbf{x}_i - 300| = \frac{370}{7} = 52.8$$

**Ex.9** Variance of the data given below is

| Size of item | 3.5 | 4.5  | 5.5  | 6.5   | 7.5 | 8.5  | 9.5 |                   |
|--------------|-----|------|------|-------|-----|------|-----|-------------------|
| Frequency    | 3   | 7    | 22   | 60    | 85  | 32   | 8   |                   |
| (1) 1.29     |     | (2)2 | 2.19 | (3) 1 |     | 1.32 |     | (4) none of these |

**Sol.(3)** Let the assumed mean be a = 6.5

| Calculation | of variance |
|-------------|-------------|
|-------------|-------------|

| X <sub>i</sub> | $\mathbf{f}_{i}$                       | $d_i = x_i - 6.5$ | $\mathbf{f}_{i}\mathbf{d}_{i}$ | $f_i d_i^2$            |
|----------------|----------------------------------------|-------------------|--------------------------------|------------------------|
| 3.5            | 3                                      | -3                | -9                             | 27                     |
| 4.5            | 7                                      | -2                | -14                            | 28                     |
| 5.5            | 22                                     | -1                | -22                            | 22                     |
| 6.5            | 60                                     | 0                 | 0                              | 0                      |
| 7.5            | 85                                     | 1                 | 85                             | 85                     |
| 8.5            | 32                                     | 2                 | 64                             | 128                    |
| 9.5            | 8                                      | 3                 | 24                             | 72                     |
| I              | $\mathbf{N} = \sum \mathbf{f}_i = 21'$ | 7                 | $\sum f_i d_i = 128$           | $\sum f_i d_i^2 = 362$ |

Here N = 217,  $\sum_{i} f_{i}d_{i} = 128 \text{ and } \sum_{i} f_{i}d_{i}^{2} = 362$ 

 $\therefore \quad \text{Var}(\mathbf{X}) = \left(\frac{1}{N}\sum f_i d_i^2\right) - \left(\frac{1}{N}\sum f_i d_i\right)^2 = \frac{362}{217} - \left(\frac{128}{217}\right)^2 = 1.668 - 0.347 = 1.321$ 

**Ex.10** If a variable takes the value 0, 1, 2.....n with frequencies proportional to the bionomial coefficients  ${}^{n}C_{0}$ ,  ${}^{n}C_{1}$ ,...., ${}^{n}C_{n}$  then the mean of the distribution is-

(1) 
$$\frac{n(n+1)}{4}$$
 (2)  $\frac{n}{2}$  (3)  $\frac{n(n-1)}{2}$  (4)  $\frac{n(n+1)}{2}$ 

**Sol.(2)**  $N = \sum f_i = k [{}^{n}C_0 + {}^{n}C_1 + \dots + {}^{n}C_n] = k2^n$ 

$$\sum f_{i} x_{i} = k [1.^{n}C_{1} + 2.^{n}C_{2} + \dots + n^{n}C_{n}] = k \sum_{r=1}^{n} r.^{n}C_{r} = kn \sum_{r=1}^{n} (1-r)C_{r-1} = kn 2^{n-1}$$

Thus  $\overline{x} = \frac{1}{2^n} (n \ 2^{n-1}) = \frac{n}{2}$ .

**Ex.11** The mean and variance of 5 observations of an experiment are 4 and 5.2 respectively. If from these observations three are 1, 2 and 6, then the remaining will be-

$$(1) 2, 9 (2) 5, 6 (3) 4, 7 (4) 3, 8$$

**Sol.(3)** As given  $\bar{x} = 4$ , n = 5 and  $\sigma^2 = 5.2$ . If the remaining observations are  $x_1, x_2$  then

$$\sigma^{2} = \frac{\sum(x_{1} - \overline{x})^{2}}{n} = 5.2$$

$$\Rightarrow \frac{(x_{1} - 4)^{2} + (x_{2} - 4)^{2} + (1 - 4)^{2} + (2 - 4)^{2} + (6 - 4)^{2}}{5} = 5.2$$

$$\Rightarrow (x_{1} - 4)^{2} + (x_{2} - 4)^{2} = 9 \qquad \dots (1)$$
Also  $\overline{x} = 4 \Rightarrow \frac{x_{1} + x_{2} + 1 + 2 + 6}{5} = 4 \Rightarrow x_{1} + x_{2} = 11 \qquad \dots (2)$ 

from eq.(1), (2)  $x_1, x_2 = 4, 7$ 

**Ex.12** The mean deviation of the series  $a, a + d, a + 2d, \dots, a + 2nd$  from its mean is-

(1) 
$$\frac{n+1}{2n+1} |d|$$
 (2)  $\frac{n(n+1)}{2n+1} |d|$  (3)  $\frac{n(n-1)}{2n+1} |d|$  (4) none of these

Sol.(2) Number of terms in the series = 2n + 1

$$\therefore \text{ mean } \overline{\mathbf{x}} = \frac{\mathbf{a} + (\mathbf{a} + \mathbf{d}) + (\mathbf{a} + 2\mathbf{d}) + \dots + (\mathbf{a} + 2\mathbf{nd})}{2\mathbf{n} + 1} = \frac{1}{2\mathbf{n} + 1} \left[ \frac{2\mathbf{n} + 1}{2} (\mathbf{a} + \mathbf{a} + 2\mathbf{nd}) \right] = \mathbf{a} + \mathbf{nd}$$
  
Also  $\sum |\mathbf{x}_i - \overline{\mathbf{x}}| = |-\mathbf{nd}| + |(1 - \mathbf{n})\mathbf{d}| + \dots + |-\mathbf{d}| + \mathbf{0} + |\mathbf{d}| + \dots + |\mathbf{nd}|$ 

$$= 2|d|[n+(n-1) + \dots + 1] = 2|d|\frac{n(n+1)}{2} = n(n+1)|d|$$

 $\therefore \text{ mean deviation from mean} = \frac{\sum |x_i - \overline{x}|}{N} = \frac{n(n+1)}{2n+1} |d|$ 

12

**Ex.13** Let  $x_1, x_2, ..., x_n$  be values taken by a variable X and  $y_1, y_2, ..., y_n$  be the values taken by a variable Y such that  $y_i = ax_i + b$ , i = 1, 2, ..., n. Then-

(1)  $Var(Y) = a^2 Var(X)$  (2)  $Var(Y) = a^2 Var(X) + b$  (3) Var(Y) = Var(X) + b (4) None of these **Sol.(1)** We have,

$$Var(Y) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$[\because y_i = ax_i + b; i = 1, 2, ..., n \Longrightarrow \overline{Y} = a\overline{X} + b]$$

$$\Rightarrow \operatorname{Var}(Y) = \frac{1}{n} \sum_{i=1}^{n} a^{2} (x_{i} - \overline{X})^{2}$$
$$\Rightarrow \operatorname{Var}(Y) = a^{2} \left\{ \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{X})^{2} \right\} = a^{2} \operatorname{Var}(X)$$

**Ex.14** The mean square deviation of a set of n observations  $x_1, x_2, \dots, x_n$  about a point c is defined as

 $\frac{1}{n}\sum_{i=1}^{n} (x_i - c)^2$  The mean square deviation about -2 and 2 are 18 and 10 respectively, then standard

deviation of this set of observations is-

(1) 3 (2) 2 (3) 1 (4) None of these  
**Sol.(1)** 
$$\therefore \frac{1}{n} \Sigma(x_i + 2)^2 = 18 \text{ and } \frac{1}{n} \Sigma(x_i - 2)^2 = 10$$
  
 $\Rightarrow \Sigma(x_i + 2)^2 = 18n \text{ and } \Sigma(x_i - 2)^2 = 10n$   
 $\Rightarrow \Sigma(x_i + 2)^2 + \Sigma(x_i - 2)^2 = 28 \text{ n and } \Sigma(x_i + 2)^2 - \Sigma(x_i - 2)^2 = 8 \text{ n}$   
 $\Rightarrow 2\Sigma x_i^2 + 8n = 28 \text{ n and } 8\Sigma x_i = 8n$   
 $\Rightarrow \Sigma x_i^2 = 10 \text{ n and } \Sigma x_i = n$   
 $\Rightarrow \frac{\Sigma x_i^2}{n} = 10 \text{ and } \frac{\Sigma x_i}{n} = 1$   
 $\therefore \sigma = \sqrt{\frac{\Sigma x_i^2}{n} - \left(\frac{\Sigma x_i}{n}\right)^2} = \sqrt{10 - (1)^2} = 3$ 

| CH | IECK YOUR GRASP                                                                                                                                                                    | STAT | TISTICS EXERCISE-I                                                                                                                                                                                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α  | rithmetic mean, weighted mean, Combined mean                                                                                                                                       | 10.  | The mean of a set of numbers is $\overline{x}$ . If each number is decreased by $\lambda$ , the mean of the new                                                                                      |
| 1. | Mean of the first n terms of the A.P. $a, (a+d), (a+2d), \dots$ is-                                                                                                                |      | set is-<br>(1) $\overline{\mathbf{x}}$ (2) $\overline{\mathbf{x}} + \lambda$ (3) $\lambda - \overline{\mathbf{x}}$ (4) $\overline{\mathbf{x}} - \lambda$                                             |
|    | (1) $a + \frac{nd}{2}$ (2) $a + \frac{(n-1)d}{2}$                                                                                                                                  | 11.  | The mean of 50 observations is 36. If its two observations 30 and 42 are deleted, then the                                                                                                           |
| 2. | (3) $a + (n-1) d$ (4) $a + nd$<br>The A.M. of first n even natural number is -                                                                                                     |      | mean of the remaining observations is-<br>(1) 48 (2) 36                                                                                                                                              |
|    | (1) $n(n+1)(2) \frac{n+1}{2}$ (3) $\frac{n}{2}$ (4) $n+1$                                                                                                                          | 12.  | (3) 38 (4) none of these<br>In a frequency dist. , if d <sub>i</sub> is deviation of variates                                                                                                        |
| 3. | The A.M. of ${}^{n}C_{0}$ , ${}^{n}C_{1}$ , ${}^{n}C_{2}$ ,, ${}^{n}C_{n}$ is -<br>(1) $\frac{2^{n}}{n}$ (2) $\frac{2^{n+1}}{n}$ (3) $\frac{2^{n}}{n+1}$ (4) $\frac{2^{n+1}}{n+1}$ |      | from a number $\ell$ and mean = $\ell + \frac{\Sigma f_i d_i}{\Sigma f_i}$ , then $\ell$                                                                                                             |
| 4. | If the mean of numbers 27, 31, 89, 107, 156 is<br>82, then the mean of numbers 130, 126, 68, 50, 1 will be-                                                                        |      | is :-<br>(1) Lower limit<br>(2) Assumed mean                                                                                                                                                         |
| 5. | (1) 80 (2) 82 (3) 75 (4) 157<br>If the mean of n observations $x_1, x_2, \dots, x_n$ is                                                                                            |      | <ul><li>(3) Number of observation</li><li>(4) Class interval</li></ul>                                                                                                                               |
|    | $\overline{\mathbf{x}}$ , then the sum of deviations of observations from mean is :-                                                                                               | 13.  | The A.M. of n observation is $\overline{x}$ . If the sum of $n - 4$ observations is K, then the mean of                                                                                              |
|    | (1) 0 (2) $n\overline{x}$<br>(3) $\frac{\overline{x}}{n}$ (4) None of these                                                                                                        |      | remaining observations is-<br>(1) $\frac{\overline{x} - K}{4}$ (2) $\frac{n\overline{x} - K}{n-4}$                                                                                                   |
| 6. | The mean of 9 terms is 15. if one new term is added and mean become 16, then the value of                                                                                          |      | (3) $\frac{n\overline{x}-K}{4}$ (4) $\frac{n\overline{x}-(n-4)K}{4}$                                                                                                                                 |
|    | new term is :-<br>(1) 23 (2) 25 (3) 27 (4) 30                                                                                                                                      | 14.  | The mean of values $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$ which have                                                                                                                      |
| 7. | If the mean of first n natural numbers is equal<br>to $\frac{n+7}{3}$ , then n is equal to-<br>(1) 10 (2) 11                                                                       | 15.  | frequencies 1, 2, 3, n resp., is :-<br>(1) $\frac{2n+1}{3}$ (2) $\frac{2}{n}$ (3) $\frac{n+1}{2}$ (4) $\frac{2}{n+1}$<br>The sum of squares of deviation of variates<br>from their A.M. is always :- |
| 8. | (3) 12 (4) none of these<br>The mean of first three terms is 14 and mean<br>of next two terms is 18. The mean of all the<br>five terms is-                                         | 16   | <ul> <li>(1) Zero</li> <li>(2) Minimum</li> <li>(3) Maximum</li> <li>(4) Nothing can be said</li> </ul>                                                                                              |
| 9. | (1) 15.5 (2) 15.0 (3) 15.2 (4) 15.6<br>If the mean of five observations $x, x + 2$ ,<br>x + 4, x + 6 and $x + 8$ is 11, then the mean of                                           | 16.  | If the mean of following feq. dist. is 2.6, then<br>the value of f is :-<br>$x_i$ 1 2 3 4 5                                                                                                          |

x + 4, x + 6 and x + 8 is 11, then the mean of last three observations is-

(1) 11 (2) 13 (3) 15 (4) 17

(1) 1 (2) 3 (3) 8 (4) None of these

f

2

3

5 4

f

**17.** The weighted mean (W.M.) is computed by the formula ?

(1) W.M. = 
$$\frac{\Sigma x_i}{\Sigma w_i}$$
 (2) W.M. =  $\frac{\Sigma w_i}{\Sigma x_i}$   
(3) W.M. =  $\frac{\Sigma w_i x_i}{\Sigma x_i}$  (4) W.M. =  $\frac{\Sigma w_i x_i}{\Sigma w_i}$ 

**18.** The weighted mean of first n natural numbers when their weights are equal to corresponding natural number, is :-

(1) 
$$\frac{n+1}{2}$$
 (2)  $\frac{2n+1}{3}$   
(3)  $\frac{(n+1)(2n+1)}{6}$  (4) None of these

19. The average income of a group of persons is  $\overline{x}$  and that of another group is  $\overline{y}$ . If the number of persons of both group are in the ratio 4 : 3, then average income of combined group is :-

(1) 
$$\frac{\overline{x} + \overline{y}}{7}$$
 (2)  $\frac{3\overline{x} + 4\overline{y}}{7}$   
(3)  $\frac{4\overline{x} + 3\overline{y}}{7}$  (4) None of these

20. In a group of students, the mean weight of boys is 65 kg. and mean weight of girls is 55 kg. If the mean weight of all students of group is 61 kg, then the ratio of the number of boys and girls in the group is :-

(1) 2:3 (2) 3:1 (3) 3:2 (4) 4:3

#### Median, Mode

**21.** The median of an arranged series of n even observations, will be :-

(1) 
$$\left(\frac{n+1}{2}\right)$$
 th term  
(2)  $\left(\frac{n}{2}\right)$  th term  
(3)  $\left(\frac{n}{2}+1\right)$  th term

(4) Mean of  $\left(\frac{n}{2}\right)$  th and  $\left(\frac{n}{2}+1\right)$  th terms

**22.** The median of the numbers 6, 14, 12, 8, 10, 9, 11, is :-

(1) 8 (2) 10 (3) 10.5 (4) 11

23. Median of the following freq. dist.

| X <sub>i</sub>   | 3 | 6 | 10 | 12 | 7   | 15   |
|------------------|---|---|----|----|-----|------|
| $\mathbf{f}_{i}$ | 3 | 4 | 2  | 8  | 13  | 10   |
| (1)7             |   |   |    |    | (2) | ) 10 |

(3) 8.5 (4) None of these

24. Median is independent of change of :-

- (1) only Origin
- (2) only Scale
- (3) Origin and scale both
- (4) Neither origin nor scale
- 25. A series which have numbers three 4's, four 5's, five 6's, eight 7's, seven 8's and six 9's then the mode of numbers is :-
  - (1) 9 (2) 8 (3) 7 (4) 6
- 26. Mode of the following freqency distribution

|   |      |   |      | i  | 1   |   |        |
|---|------|---|------|----|-----|---|--------|
|   | x :  | 4 | 5    | 6  | 7   | 8 |        |
|   | f :  | 6 | 7    | 10 | 8   | 3 |        |
|   |      |   |      |    |     |   |        |
| ( | (1)5 |   | (2)6 | )  | (3) | 8 | (4) 10 |

27. The mode of the following freq. dist is :-

|                  | Class   | 1-10 | 11-20 | 21-30 | 31-40 41-3 |       |  |  |  |  |  |
|------------------|---------|------|-------|-------|------------|-------|--|--|--|--|--|
| f <sub>i</sub> 5 |         |      | 7     | 8     | 6          | 4     |  |  |  |  |  |
| (                | (1) 24  |      |       | (2) 2 | (2) 23.83  |       |  |  |  |  |  |
| (                | (3) 27. | 16   |       | (4) N | None of    | these |  |  |  |  |  |

Symmetric and asymmetric distribution, Range

- **28.** For a normal dist :-
  - (1) mean = median
  - (2) median = mode
  - (3) mean = mode
  - (4) mean = median = mode
- **29.** The relationship between mean, median and mode for a moderately skewed distribution is-
  - (1) mode = median -2 mean
  - (2) mode = 2 median mean
  - (3) mode = 2 median 3 mean
  - (4) mode = 3 median 2 mean

**30.** The range of observations 2, 3, 5, 9, 8, 7, 6, 5, 7, 4, 3 is :-

(1) 6 (2) 7 (3) 5.5 (4) 11 Mean Deviation

**31.** The mean deviation of a frequency dist. is equal to :-

(1) 
$$\frac{\Sigma d_i}{\Sigma f_i}$$
 (2)  $\frac{\Sigma |d_i|}{\Sigma f_i}$ 

(3) 
$$\frac{\Sigma f_i d_i}{\Sigma f_i}$$
 (4)  $\frac{\Sigma f_i |d_i|}{\Sigma f_i}$ 

**32.** Mean deviation from the mean for the observation -1, 0, 4 is-

(1) 
$$\sqrt{\frac{14}{3}}$$
 (2)  $\frac{2}{3}$   
(3) 2 (4) none of these

**33.** Mean deviation of the observations 70, 42, 63, 34, 44, 54, 55, 46, 38, 48 from median is :-

(2) 8.6

(4) 8.8

(2) 0.4

(1) 7.8

- (3) 7.6
- **34.** Mean deviation of 5 observations from their mean 3 is 1.2, then coefficient of mean deviation is :-
  - (1) 0.24

(3) 2.5

(4) None of these

- **35.** The mean deviation from median is
  - (1) greater than the mean deviation from any other central value
  - (2) less than the mean deviation from any other central value
  - (3) equal to the mean deviation from any other central value
  - (4) maximum if all values are positive

## Variance and Standard Deviation

36. The variate x and u are related by  $u = \frac{x-a}{h}$ then correct relation between  $\sigma_x$  and  $\sigma_u$  is :-

(1) 
$$\sigma_x = h\sigma_u$$
  
(2)  $\sigma_x = h + \sigma_u$   
(3)  $\sigma_y = h\sigma_y$   
(4)  $\sigma_y = h + \sigma_y$ 

37. The S.D. of the first n natural numbers is-

(1) 
$$\sqrt{\frac{n^2 - 1}{2}}$$
 (2)  $\sqrt{\frac{n^2 - 1}{3}}$   
(3)  $\sqrt{\frac{n^2 - 1}{4}}$  (4)  $\sqrt{\frac{n^2 - 1}{12}}$ 

**38.** The variance of observations 112, 116, 120, 125, 132 is :-

(3) 61.8

 $(3)\frac{4}{5}$ 

(4) None of these

**39.** If 
$$\sum_{i=1}^{10} (x_i - 15) = 12$$
 and  $\sum_{i=1}^{10} (x_i - 15)^2 = 18$   
then the S D of observations  $x_i - x_j$ 

then the S.D. of observations  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{10}$  is :-

(1) 
$$\frac{2}{5}$$
 (2)  $\frac{3}{5}$ 

- **40.** The S.D. of 7 scored 1, 2, 3, 4, 5, 6, 7 is-(1) 4 (2) 2
  - (3)  $\sqrt{7}$  (4) none of these

**41.** The variance of series a, a + d, a + 2d, ...., a + 2nd is :-

(1) 
$$\frac{n(n+1)}{2}d^2$$
 (2)  $\frac{n(n+1)}{3}d^2$   
(3)  $\frac{n(n+1)}{6}d^2$  (4)  $\frac{n(n+1)}{12}d^2$ 

(1) only origin

- (2) only scale
- (3) origin and scale both
- (4) none of these

|     |                                                    |                                                |     |                                         | Statistics                               |
|-----|----------------------------------------------------|------------------------------------------------|-----|-----------------------------------------|------------------------------------------|
| 43. | If the coefficient of v                            | variation and standard                         | 46. |                                         | of a dist., whose variance is            |
|     |                                                    | ution are 50% and 20                           |     |                                         | y $\lambda$ , then the S.D. of the       |
|     | respectively, then its n                           |                                                |     | new new observatio                      |                                          |
|     | (1) 40                                             | (2) 30                                         |     | (1) σ                                   | $(2) \lambda \sigma$                     |
|     | (3) 20                                             | (4) None of these                              | 47  | (3) $ \lambda \sigma$                   | $(4) \lambda^2 \sigma$                   |
| 44. |                                                    | a dist. whose S.D. is $\sigma$ ,               | 47. |                                         | tion of variate $x_i$ is $\sigma$ . Then |
|     | is increased by $\lambda$ , then observations is - | the variance of the new                        |     |                                         | of the variate $\frac{ax_i + b}{c}$ ,    |
|     | (1) $\sigma$ (2) $\sigma + \lambda$                | $(3)  \sigma^2 \qquad (4)  \sigma^2 + \lambda$ |     | where a , b, c are co                   | onstants is-                             |
| 45. | The variance of 2, 4, 6                            |                                                |     | $(1)\left(\frac{a}{c}\right)\sigma$     | (2) $\left  \frac{a}{c} \right  \sigma$  |
|     | (1) 8                                              | (2) $\sqrt{8}$                                 |     |                                         |                                          |
|     | (3) 6                                              | (4) none of these                              |     | $(3)\left(\frac{a^2}{c^2}\right)\sigma$ | (4) None of these                        |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |
|     |                                                    |                                                |     |                                         |                                          |

| СН   | ECK | K YO | UR | GR/ | ASP |    |    | ANSWER-KEY |    |    |    |    |    |    |    | EXERCISE-I |    |    |    |    |
|------|-----|------|----|-----|-----|----|----|------------|----|----|----|----|----|----|----|------------|----|----|----|----|
| Que. | 1   | 2    | 3  | 4   | 5   | 6  | 7  | 8          | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16         | 17 | 18 | 19 | 20 |
| Ans. | 2   | 4    | 3  | 3   | 1   | 2  | 2  | 4          | 2  | 4  | 2  | 2  | 3  | 4  | 2  | 1          | 4  | 2  | 3  | 3  |
| Que. | 21  | 22   | 23 | 24  | 25  | 26 | 27 | 28         | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36         | 37 | 38 | 39 | 40 |
| Ans. | 4   | 2    | 3  | 4   | 3   | 2  | 2  | 4          | 4  | 2  | 4  | 3  | 2  | 2  | 2  | 1          | 4  | 2  | 2  | 2  |
| Que. | 41  | 42   | 43 | 44  | 45  | 46 | 47 |            | •  |    | -  |    | -  | •  | •  | -          |    |    | -  |    |
| Ans. | 2   | 1    | 1  | 3   | 1   | 3  | 2  |            |    |    |    |    |    |    |    |            |    |    |    |    |

| Br | RAIN TEASERS STA                                                                               | TIST | TICS EXERCISE-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | The A.M. of the series 1, 2, 4, 8, 16,, $2^n$                                                  | 7.   | Product of n positive numbers is unit. The sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | is-                                                                                            |      | of these numbers can not be less than-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | (1) $\frac{2^n - 1}{n}$ (2) $\frac{2^{n+1} - 1}{n+1}$                                          |      | (1) 1 (2) n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | n (                                                                                            |      | (3) $n^2$ (4) none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $2^n$ 1 $2^{n+1}$ 1                                                                            | 8.   | The A.M. of first n terms of the series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | (3) $\frac{2^n - 1}{n+1}$ (4) $\frac{2^{n+1} - 1}{n}$                                          |      | 1.3.5, 3.5.7, 5.7.9,, is-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2. | If the mean of n observations $1^2$ , $2^2$ , $3^2$ ,                                          |      | (1) $3n^3 + 6n^2 + 7n - 1$ (2) $n^3 + 8n^2 + 7n - 1$<br>(2) $2n^3 + 8n^2 - 7n - 2$ (4) $2n^3 + 8n^2 + 7n - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                | 9.   | (3) $2n^3 + 8n^2 - 7n - 2$ (4) $2n^3 + 8n^2 + 7n - 2$<br>The observations 29, 32, 48, 50, x, x + 2, 72,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $n^2$ is $\frac{46n}{11}$ , then n is equal to-                                                | 9.   | 78, 84, 95 are arranged in ascending order and $78$ , $84$ , $95$ are arranged in ascending order and $78$ , $84$ , $95$ are arranged in ascending order and $78$ , $84$ , $95$ are arranged in ascending order and $78$ , $84$ , $95$ are arranged in ascending order and $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ , $80$ |
|    | (1) 11 (2) 12                                                                                  |      | their median is 63 then the value of x is :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | $\begin{array}{c} (1) 11 \\ (3) 23 \\ (4) 22 \end{array}$                                      |      | (1) 61 (2) 62 (3) 62.5 (4) 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3. | The weighted mean of first n natural numbers                                                   | 10.  | If the mode of a distribution is 18 and the mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | whose weights are equal, is :-                                                                 |      | is 24, then median is-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                                                                                |      | (1) 18 (2) 24 (3) 22 (4) 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | (1) $\frac{n+1}{2}$ (2) $\frac{2n+1}{2}$                                                       | 11.  | If the mean and S.D. of n observations $x_1$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | (3) $\frac{2n+1}{3}$ (4) $\frac{(2n+1)(n+1)}{6}$                                               |      | $x_2,,x_n$ are $\overline{x}$ and $\sigma$ resp, then the sum of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _  | 3 0                                                                                            |      | squares of observations is :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4. | The average age of a group of men and women                                                    |      | (1) $n(\sigma^2 + \bar{x}^2)$ (2) $n(\sigma^2 - \bar{x}^2)$<br>(2) $(\sigma^2 - \bar{x}^2)$ (4) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | is 30years. If average age of men is 32 and                                                    | 12   | (3) n ( $\overline{x}^2 - \sigma^2$ ) (4) None of these<br>The surface of the section $\theta$ , 12, 12, 15, 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | that of women is 27, then the percentage of                                                    | 12.  | The variance of observations 8, 12, 13, 15, 22, is :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | women in the group is-                                                                         |      | (1) 21 	(2) 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | (1) 60 (2) 50                                                                                  |      | (3) 21.4 (4) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _  | (3) 40 (4) 30                                                                                  | 13.  | If the mean of a set of observations $x_1, x_2, \dots, x_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5. | Mean and median of four numbers a, b, c and d $(b < a < d < c)$ is 35 and 25 respectively then |      | $x_{10}$ is 20, then the mean of $x_1 + 4$ , $x_2 + 8$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | the value of $b + c - a - d$ will be :-                                                        |      | $x_3 + 12, \dots, x_{10} + 40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | (1) 90 (2) 115 (3) 40 (4) 10                                                                   |      | is- $(1)$ 24 (2) 42 (2) 28 (4) 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6. | Variance of the group $\alpha$ , $\alpha + 2$ , $\alpha + 4$ , $\alpha + 6$ ,                  | 1/   | (1) $34$ (2) $42$ (3) $38$ (4) $40$<br>The mean of values 0, 1, 2,, n when their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | upto n terms ( $\alpha \neq 0$ ) is :-                                                         | 14.  | The mean of values 0, 1, 2,, n when their weights are $1 \ {}^{n}C$ ${}^{n}C$ resp. is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | (1) $\frac{n^2 - 1}{12} + 2n + \alpha$ (2) $\frac{n^2 - 1}{3} + \alpha$                        |      | weights are 1, ${}^{n}C_{1}$ , ${}^{n}C_{2}$ ,, ${}^{n}C_{n}$ , resp., is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | 12 3                                                                                           |      | (1) $\frac{2^n}{n+1}$ (2) $\frac{n+1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | (3) $\frac{n^2 - 1}{3}$ (4) None                                                               |      | 11 + 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | 3                                                                                              |      | (3) $\frac{2^{n+1}}{n(n+1)}$ (4) $\frac{n}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18 |                                                                                                |      | n(n+1) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                                                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- **15.** For 15 observations of x, mean and median were found to be 12 and 20 respectively. Later an observation which was 25 found to be wrong then replaced by its correct value 55, then new mean and median will be :-
  - (1) 14 and 50 respectively
  - (2) 12 and 20 respectively
  - (3) 14 and 20 respectively
  - (4) Mean is 14 but median can't be determined.
- 16. If a variable takes the discrete values  $\alpha + 4$ ,

 $\alpha - \frac{7}{2}, \alpha - \frac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \frac{1}{2}, \alpha - \frac{1}{2}, \alpha + 5(\alpha > 0)$ , then the median of these values-

- (1)  $\alpha \frac{5}{4}$  (2)  $\alpha \frac{1}{2}$ (3)  $\alpha - 2$  (4)  $\alpha + \frac{5}{4}$
- 17. The S.D. of first n odd natural numbers is :-

(1) 
$$\sqrt{\frac{n^2 - 1}{2}}$$
 (2)  $\sqrt{\frac{n^2 - 1}{3}}$   
(3)  $\sqrt{\frac{n^2 - 1}{6}}$  (4)  $\sqrt{\frac{n^2 - 1}{12}}$ 

18. If the sum and sum of squares of 10 observations are 12 and 18 resp., then, The S.D. of observations is :-

(1)  $\frac{1}{5}$  (2)  $\frac{2}{5}$  (3)  $\frac{3}{5}$  (4)  $\frac{4}{5}$ 

19. The mean of n values of a distribution is x̄. If its first value is increased by 1, second by 2, .... then the mean of new values will be-

(1) 
$$\overline{\mathbf{x}} + \mathbf{n}$$
 (2)  $\overline{\mathbf{x}} + \mathbf{n}/2$   
(3)  $\overline{\mathbf{x}} + \left(\frac{\mathbf{n}+1}{2}\right)$  (4) None of these

**20.** The mean of the series  $x_1, x_2, ..., x_n$  is  $\overline{X}$ . If  $x_2$  is replaced by  $\lambda$ , then the new mean is-

(1) 
$$\frac{\overline{X} - x_2 + \lambda}{n}$$
 (2)  $\frac{n\overline{X} + x_2 - \lambda}{n}$   
(3)  $\frac{(n-1)\overline{X} + \lambda}{n}$  (4)  $\frac{n\overline{X} - x_2 + \lambda}{n}$ 

**21.** The mean square deviation about -1 and +1 of a set of observations are 7 and 3 respectively then standard deviation of the set is :-

(1) 
$$\sqrt{2}$$
 (2)  $\sqrt{3}$  (3) 2 (4) None

**22.** The mean deviation of the numbers 1, 2, 3, 4, 5 is-

- 23. If mean = (3 median mode) x, then the value of x is-
  - (1) 1 (2) 2 (3) 1/2 (4) 3/2
- 24. A man spends equal ammount on purchasing three kinds of pens at the rate 5 Rs/pen, 10 Rs/pen, 20 Rs/pen, then average cost of one pen is :-

(1) 10 Rs (2) 
$$\frac{35}{2}$$
 Rs

(3) 
$$\frac{60}{7}$$
 Rs (4) None of

- **25.** The median of 21 observation is 40. if each observations greater than the median are increased by 6, then the median of the observations will be-
  - $\begin{array}{ll} (1) \ 40 & (2) \ 46 \\ (3) \ 46 + \ 40/21 & (4) \ 46 \ 40/21 \end{array}$
- **26.** The coefficient of range of the following distribution 10, 14, 11, 9, 8, 12, 6

| (1) 0.4 | (2) 2.5 |
|---------|---------|
| (3) 8   | (4) 0.9 |

these

| 27. | The S.D. | of the foll | lowing freq | . dist. :- |
|-----|----------|-------------|-------------|------------|
|     | THE D.D. | 01 110 101  | lo ming neq | · unot.    |

| 1 | Class            | 0-10 | 10-20 | 20-30   | 30-40 |
|---|------------------|------|-------|---------|-------|
|   | $\mathbf{f}_{i}$ | 1    | 3     | 4       | 2     |
| ( | (1) 7.8          |      | (     | (2) 9   |       |
| ( | (3) 8.1          |      | (     | (4) 0.9 |       |

**28.** The mean of a dist. is 4. if its coefficient of variation is 58%. Then the S.D. of the dist. is:-

(1) 2.23 (2) 3.23

- (3) 2.32 (4) None of these
- **29.** The mean of a set of observations is  $\overline{x}$ . If each observation is divided by  $\alpha$ , ( $\alpha \neq 0$ ) and then is increased by 10, then the mean of the new set is

(1) 
$$\frac{\overline{x}}{\alpha}$$
 (2)  $\frac{\overline{x}+10}{\alpha}$   
(3)  $\frac{\overline{x}+10\alpha}{\alpha}$  (4)  $\frac{\alpha\overline{x}+10}{\alpha}$ 

**30.** The average age of a teacher and three students is 20 years. If all students are of equal age and the difference between the age of the teacher and that of a student is 20 years, then the age of the teacher is-

| (1) 25 years | (2) 30 years |
|--------------|--------------|
| (3) 35 years | (4) 45 years |

31. Median of 5 observations i.e.

$$3^{\log_{9}4}, 5^{\log_{1/2}8}, e^{2\ell n 3}, \ell n \left(\frac{1}{e}2\right) + 3, e^{2\ell n 3 + \frac{1}{\log_{4}e}} :=$$
(1) 1 (2) 2 (3) 9 (4) 36  
**32.** Median of  ${}^{2n}C_0, {}^{2n}C_1, {}^{2n}C_2, ..., {}^{2n}C_n$   
(when n is even) is-  
(1)  ${}^{2n}C_{\frac{n-1}{2}}$  (2)  ${}^{2n}C_{\frac{n}{2}}$   
(3)  ${}^{2n}C_{\frac{n+1}{2}}$  (4) None of these

- **33.** The mean deviation from mean of observations
  - 5, 10, 15, 20, ......85 is :-(1) 43.71 (2) 21.17
  - (3) 38.7 (4) None of these
- **34.** If standard deviation of variate  $x_i$  is 10, then variance of the variate  $(50 + 5x_i)$  will be-
  - (1) 50 (2) 250
  - (3) 500 (4) 2500
- **35.** The S.D. of the numbers 31, 32, 33, .... 47 is-(1)  $2\sqrt{6}$  (2)  $4\sqrt{3}$

(3) 
$$\sqrt{\frac{47^2 - 1}{12}}$$
 (4) None of these

**36.** The sum of the squares of deviation of 10 observations from their mean 50 is 250, then coefficient of variation is-

- (3) 50%
- (4) None of these
- **37.** The median and standard deviation (S.D.) of a distribution will be, If each term is increased by 2 -
  - (1) median and S.D. will increased by 2
  - (2) median will increased by 2 but S.D. will remain same
  - (3) median will remain same but S.D. will increased by 2
  - (4) median and S.D. will remain same
- **38.** If  $\overline{X}_1$  and  $\overline{X}_2$  are the means of two series such that  $\overline{X}_1 < \overline{X}_2$  and  $\overline{X}$  is the mean of the combined series, then-
  - (1)  $\overline{\mathbf{X}} < \overline{\mathbf{X}}_1$  (2)  $\overline{\mathbf{X}} > \overline{\mathbf{X}}_2$

(3) 
$$\bar{X}_1 < \bar{X} < \bar{X}_2$$
 (4)  $\bar{X} = \frac{\bar{X}_1 + \bar{X}_2}{2}$ 

- **39.** The median of 19 observations of a group is 30. If two observations with values 8 and 32 are further included, then the median of the new group of 21 observation will be
  - (1) 28 (2) 30 (3) 32 (4) 34
- **40.** The coefficient of mean deviation from median of observations 40, 62, 54, 90, 68, 76 is :- (1) 2.16 (2) 0.2
  - (3) 5 (4) None of these
- **41.** A group of 10 observations has mean 5 and S.D.  $2\sqrt{6}$ . another group of 20 observations has mean 5 and S.D.  $3\sqrt{2}$ , then the S.D. of combined group of 30 observations is :-
  - (1)  $\sqrt{5}$  (2)  $2\sqrt{5}$
  - (3)  $3\sqrt{5}$  (4) None of these

- 42. For the values  $x_1$ ,  $x_2$ , ...,  $x_{101}$  of a distribution  $x_1 < x_2 < x_3 < \dots < x_{100} < x_{101}$ . The mean deviation of this distribution with respect to a number k will be minimum when k is equal to (1)  $x_1$ 
  - $(1) x_1$ (2)  $x_{51}$
  - $(3) x_{50}$
  - $(4) \ \frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_{101}}{101}$
- **43.** In any discrete series (when all the value are not same) the relationship between M.D. about mean and S.D. is-
- 44. Median of observations  $x_i$  such that  $(x_i^2 - 7x_i + 12)(x_i^3 - x_i^2 - 4x_i + 4) = 0$  will be :-(1) 1 (2) 2 (3) 3 (4) None

| BR   | AIN | TEA | SE | RS |    |    |    |    | ANS | WE | R-KI | EXERCISE-II |    |    |    |    |    |    |    |    |
|------|-----|-----|----|----|----|----|----|----|-----|----|------|-------------|----|----|----|----|----|----|----|----|
| Que. | 1   | 2   | 3  | 4  | 5  | 6  | 7  | 8  | 9   | 10 | 11   | 12          | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Ans. | 2   | 1   | 1  | 3  | 3  | 3  | 2  | 4  | 2   | 3  | 1    | 2           | 2  | 4  | 3  | 1  | 2  | 3  | 3  | 4  |
| Que. | 21  | 22  | 23 | 24 | 25 | 26 | 27 | 28 | 29  | 30 | 31   | 32          | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| Ans. | 2   | 2   | 3  | 3  | 1  | 1  | 2  | 3  | 3   | 3  | 3    | 2           | 2  | 4  | 1  | 1  | 2  | 3  | 2  | 2  |
| Que. | 41  | 42  | 43 | 44 |    |    |    |    |     |    |      |             |    |    |    |    |    |    |    |    |
| Ans. | 2   | 2   | 3  | 2  |    |    |    |    |     |    |      |             |    |    |    |    |    |    |    |    |

| PR | EVIOUS YEAR QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                     | STA | TISTICS                                                                         | EXERCISE-III                                                                                                                                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | All the students of a class performed poorly in<br>Mathematics. The teacher decided to give<br>grace marks of 10 to each of the students.Which of the following statistical measures will<br>not change even after the grace marks were<br>given?[JEE(Main)-2013](1) mean(2) median(3) mode(4) variance                                                                                                   | 7.  |                                                                                 |                                                                                                                                                             |
| 2. | The variance of first 50 even natural numbers<br>is :- [JEE(Main)-2014]<br>(1) $\frac{833}{4}$ (2) 833<br>(3) 437 (4) $\frac{437}{4}$                                                                                                                                                                                                                                                                     | 8.  | variance is 9.20. If                                                            | (4) 2<br>servations is 5 and their<br>three of the given five<br>and 8, then a ratio of other<br>[JEE(Main)-19]                                             |
| 3. | The mean of the data set comprising of<br>16 observations is 16. If one of the observation<br>valued 16 is deleted and three new<br>observations valued 3, 4 and 5 are added to the<br>data, then the mean of the resultant data, is :<br>[JEE(Main)-2015]<br>(1) 15.8 (2) 14.0<br>(3) 16.8 (4) 16.0<br>If the standard deviation of the numbers 2, 3,<br>a and 11 is 3.5, then which of the following is | 9.  | 10 items gave an outcome $\frac{1}{2}$ e                                        | (2) 6 : 7<br>(4) 10 : 3<br>of 30 items was observed;<br>ome $\frac{1}{2}$ – d each, 10 items<br>ach and the remaining<br>ome $\frac{1}{2}$ + d each. If the |
|    | true ? [JEE(Main)-2016]<br>(1) $3a^2 - 23a + 44 = 0$<br>(2) $3a^2 - 26a + 55 = 0$<br>(3) $3a^2 - 32a + 84 = 0$<br>(4) $3a^2 - 34a + 91 = 0$<br>$a^9 - 5b = 0 = 19^9$                                                                                                                                                                                                                                      |     | variance of this outc<br>equals :-<br>(1) 2                                     | come data is $\frac{4}{3}$ then  d <br><b>[JEE(Main)-19]</b><br>(2) $\frac{\sqrt{5}}{2}$                                                                    |
| 5. | If $\sum_{i=1}^{9} (x_i - 5) = 9$ and $\sum_{i=1}^{9} (x_i - 5)^2 = 45$ , then the<br>standard deviation of the 9 items $x_1, x_2,, x_9$<br>is - [JEE(Main)-2018]<br>(1) 4 (2) 2 (3) 3 (4) 9                                                                                                                                                                                                              | 10. | (3) $\frac{2}{3}$<br>The mean and the varia                                     | (4) $\sqrt{2}$                                                                                                                                              |
| 6. | 5 students of a class have an average height<br>150 cm and variance 18 cm <sup>2</sup> . A new student,<br>whose height is 156 cm, joined them. The<br>variance (in cm <sup>2</sup> ) of the height of these six students<br>is : [JEE(Main)-19]                                                                                                                                                          |     | observations are 3, 4<br>value of the difference<br>observations, is :<br>(1) 1 | tively. If three of the<br>and 4; then then absolute<br>ence of the other two<br>[JEE(Main)-19]<br>(2) 3<br>(4) 5                                           |
| 22 | (1) 22 (2) 20 (3) 16 (4) 18                                                                                                                                                                                                                                                                                                                                                                               |     | (3) 7                                                                           | (4) 5                                                                                                                                                       |

11. The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is :

#### [JEE(Main)-19]

- (1) 40 (2) 49
- (3) 48 (4) 45
- 12. If the standard deviation of the numbers -1, 0, 1, k is  $\sqrt{5}$  where k > 0, then k is equal to
  - (1)  $2\sqrt{\frac{10}{3}}$  (2)  $2\sqrt{6}$
  - (3)  $4\sqrt{\frac{5}{3}}$  (4)  $\sqrt{6}$

13. If for some x ∈ R, the frequency distribution of the marks obtained by 20 students in a test is : [JEE(Main)-19]

| Marks      | 2         | 3    | 5          | 7 |
|------------|-----------|------|------------|---|
| Frequencey | $(x+1)^2$ | 2x-5 | $x^2 - 3x$ | X |

then the mean of the marks is :

| (1) 2.8 | (2) 3.2 |
|---------|---------|
| (3) 3.0 | (4) 2.5 |

14. If both the mean and the standard deviation of 50 observations  $x_1, x_2, ..., x_{50}$  are equal to 16, then the mean of  $(x_1 - 4)^2$ ,  $(x_2 - 4)^2$ ,... $(x_{50} - 4)^2$  is :

[JEE(Main)-19]

(2)380

(4) 400

(1) 525

(3) 480

| PREVIO | US   | YEA | RS ( | QUE | STIC | DNS | A | NSV | VER- | KEY | 7  |    |    | EX | ERCI | SE-III |
|--------|------|-----|------|-----|------|-----|---|-----|------|-----|----|----|----|----|------|--------|
|        | Que. | 1   | 2    | 3   | 4    | 5   | 6 | 7   | 8    | 9   | 10 | 11 | 12 | 13 | 14   |        |
|        | Ans. | 4   | 2    | 2   | 3    | 2   | 2 | 2   | 1    | 4   | 3  | 3  | 2  | 1  | 4    |        |
|        |      |     |      |     |      |     | - |     |      |     |    |    | -  | -  |      |        |

## MATHEMATICAL REASONING

#### 1. STATEMENT :

A sentence which is either true or false but cannot be both are called a statement. A sentence which is an exclamatory or a wish or an imperative or an interrogative can not be a statement.

If a statement is true then its truth value is T and if it is false then its truth value is F

### For ex.

- (i) "New Delhi is the capital of India", a true statement
- (ii) "3 + 2 = 6", a false statement
- (iii) "Where are you going ?" not a statement beasuse

it connot be defined as true or false

Note : A statement cannot be both true and false at a time

#### 2. SIMPLE STATEMENT :

Any statement whose truth value does not depend on other statement are called simple statement

For ex. (i) " $\sqrt{2}$  is an irrational number" (ii) "The set of real number is an infinite set"

### **3.** COMPOUND STATEMENT :

A statement which is a combination of two or more simple statements are called compound statement Here the simple statements which form a compound statement are known as its sub statements

#### For ex.

- (i) "If x is divisible by 2 then x is even number"
- (ii) " $\Delta ABC$  is equilatral if and only if its three sides are equal"

## 4. LOGICAL CONNECTIVES :

The words or phrases which combined simple statements to form a compound statement are called logical connectives.

In the following table some possible connectives, their symbols and the nature of the compound statement formed by them

| • | S.N. | <b>Connectives</b>   | symbol                                 | use                                                                 | operation                     |
|---|------|----------------------|----------------------------------------|---------------------------------------------------------------------|-------------------------------|
|   | 1.   | and                  | ^                                      | $p \land q$                                                         | conjunction                   |
|   | 2.   | or                   | V                                      | $p \lor q$                                                          | disjunction                   |
|   | 3.   | not                  | ~ or '                                 | $\sim p \text{ or } p'$                                             | negation                      |
|   | 4.   | If then              | $\Rightarrow$ or $\rightarrow$         | $p \mathop{\Rightarrow} q \ \mathrm{or} \ p \mathop{\rightarrow} q$ | Implication or conditional    |
|   | 5.   | If and only if (iff) | $\Leftrightarrow$ or $\leftrightarrow$ | $p \Leftrightarrow q \text{ or } p \leftrightarrow q$               | Equivalence or Bi-conditional |

#### **Explanation :**

(i)  $p \land q \equiv$  statement p and q

 $(p \land q \text{ is true only when } p \text{ and } q \text{ both are true otherwise it is false})$ 

(ii)  $p \lor q \equiv$  statement p or q

 $(p \lor q \text{ is true if at least one from p and q is true i.e. } p \lor q \text{ is false only when p and q both are false})$ 

(iii) ~  $p \equiv not$  statement p

(~ p is true when p is false and ~ p is false when p is true)

(iv)  $p \Rightarrow q \equiv$  statement p then statement q

 $(p \Rightarrow q \text{ is false only when } p \text{ is true and } q \text{ is false otherwise it is true for all other cases})$ 

(v)  $p \Leftrightarrow q \equiv$  statement p if and only if statement q

 $(p \Leftrightarrow q \text{ is true only when } p \text{ and } q \text{ both are true or false otherwise it is false})$ 

#### 5. **TRUTH TABLE :**

A table which shows the relationship between the truth value of compound statement S(p, q, r, ...)and the truth values of its sub statements p, q, r, ... is said to be truth table of compound statement S

If p and q are two simple statements then truth table for basic logical connectives are given below

Conjunction

| р | q | $p \wedge q$ |
|---|---|--------------|
| Т | Т | Т            |
| Т | F | F            |
| F | Т | F            |
| F | F | F            |

Conditional

| р | q | $p \rightarrow q$ |
|---|---|-------------------|
| Т | Т | Т                 |
| Т | F | F                 |
| F | Т | Т                 |
| F | F | Т                 |

| р | q | $p \lor q$ |
|---|---|------------|
| Т | Т | Т          |
| Т | F | Т          |
| F | Т | Т          |
| F | F | F          |

Disjunction

Biconditional

Negation

 $\mathbf{p}$ 

F

p

Т

F

| q | $p \rightarrow q$ | р | q | $p \rightarrow q$ | $q \rightarrow p$ | $(p \rightarrow q) \land (q \rightarrow p) \text{ or } p \leftrightarrow q$ |
|---|-------------------|---|---|-------------------|-------------------|-----------------------------------------------------------------------------|
| Т | Т                 | Т | Т | Т                 | Т                 | Т                                                                           |
| F | F                 | Т | F | F                 | Т                 | F                                                                           |
| Т | Т                 | F | Т | Т                 | F                 | F                                                                           |
| F | Т                 | F | F | Т                 | Т                 | Τ                                                                           |

Note : If the compound statement contain n sub statements then its truth table will contain 2<sup>n</sup> rows.

#### 6. **LOGICAL EQUIVALENCE :**

Two compound statements  $S_1(p, q, r...)$  and  $S_2(p, q, r...)$  are said to be logically equivalent or simply equivalent if they have same truth values for all logically possibilities

Two statements  $S_1$  and  $S_2$  are equivalent if they have identical truth table i.e. the entries in the last column of their truth table are same. If statements  $S_1$  and  $S_2$  are equivalent then we write  $S_1 \equiv S_2$ 

For ex. The truth table for  $(p \rightarrow q)$  and  $(\sim p \lor q)$  given as below

| р | q | (~ p) | $p \rightarrow q$ | $\sim p \lor q$ |
|---|---|-------|-------------------|-----------------|
| Т | Т | F     | Т                 | Т               |
| Т | F | F     | F                 | F               |
| F | Т | Т     | Т                 | Т               |
| F | F | Т     | Т                 | Т               |

We observe that last two columns of the above truth table are identical hence compound statements

 $(p \rightarrow q)$  and  $(\sim p \lor q)$  are equivalent

i.e. 
$$p \rightarrow q \equiv p \lor q$$

#### 7. **TAUTOLOGY AND CONTRADICTION:**

(i) **Tautology**: A statement is said to be a tautology if it is true for all logical possibilities i.e. its truth value always T. it is denoted by t.

**For ex.** the statement  $p \lor \sim (p \land q)$  is a tautology

| р | q | $p \wedge q$ | $\sim (p \land q)$ | $p \lor \sim (p \land q)$ |
|---|---|--------------|--------------------|---------------------------|
| Т | Т | Т            | F                  | Т                         |
| Т | F | F            | Т                  | Т                         |
| F | Т | F            | Т                  | Т                         |
| F | F | F            | Т                  | Т                         |

Clearly, The truth value of  $p \lor \sim (p \land q)$  is T for all values of p and q. so  $p \land \sim (p \land q)$  is a tautology

(ii) Contradiction : A statement is a contradiction if it is false for all logical possibilities.

i.e. its truth value always F. It is denoted by c.

**For ex.** The statement  $(p \lor q) \land (\neg p \land \neg q)$  is a contradiction

| p | q | ~ p | ~ q | $p \lor q$ | $(\sim p \land \sim q)$ | $(p \lor q) \land (\sim p \land \sim q)$ |
|---|---|-----|-----|------------|-------------------------|------------------------------------------|
| Т | Т | F   | F   | Т          | F                       | F                                        |
| T | F | F   | Т   | Т          | F                       | F                                        |
| F | Т | Т   | F   | Т          | F                       | F                                        |
| F | F | Т   | Т   | F          | Т                       | F                                        |

Clearly, then truth value of  $(p \lor q) \land (\neg p \land \neg q)$  is F for all value of p and q. So  $(p \lor q) \land (\neg p \land \neg q)$ is a contradiction.

Note: The negation of a tautology is a contradiction and negation of a contradiction is a tautology **DUALITY**:

## 8.

Two compound statements S<sub>1</sub> and S<sub>2</sub> are said to be duals of each other if one can be obtained from the other by replacing  $\land$  by  $\lor$  and  $\lor$  by  $\land$ 

If a compound statement contains the special variable t (tautology) and c (contradiction) then obtain its dual we replaced t by c and c by t in addition to replacing  $\land$  by  $\lor$  and  $\lor$  by  $\land$ .

Note :

(i) the connectives  $\land$  and  $\lor$  are also called dual of each other.

(ii) If  $S^*(p, q)$  is the dual of the compound statement S(p, q) then

(a)  $S^*(\sim p, \sim q) \equiv \sim S(p, q)$  (ii)  $\sim S^*(p, q) \equiv S(\sim p, \sim q)$ 

For ex. The duals of the following statements

(i)  $(p \land q) \lor (r \lor s)$  (ii)  $(p \lor t) \land (p \lor c)$ 

(iii)  $\sim$  (p  $\land$  q)  $\lor$  [p  $\land$   $\sim$ (q  $\lor$   $\sim$ s)]

are as given below

```
(i) (p \lor q) \land (r \land s)
```

(ii) 
$$(p \land c) \lor (p \land t)$$

(iii)  $\sim (p \lor q) \land [p \lor \sim (q \land \sim s)]$ 

# 9. CONVERSE, INVERSE AND CONTRAPOSITIVE OF THE CONDITIONAL STATEMENT $(p \rightarrow q)$ :

(i) **Converse :** The converse of the conditional statement  $p \rightarrow q$  is defined as  $q \rightarrow p$ 

(ii) Inverse : The inverse of the conditional statement  $p \rightarrow q$  is defined as  $\sim p \rightarrow \sim q$ 

(iii) Contrapositive : The contrapositive of conditional statement  $p \rightarrow q$  is defined as  $\sim q \rightarrow \sim p$ 

#### **10. NEGATION OF COMPOUND STATEMENTS :**

If p and q are two statements then

(i) Negation of conjunction :  $\sim (p \land q) \equiv \sim p \lor \sim q$ 

| p | q | ~ p | ~ q | $(p \land q)$ | $\sim (p \land q)$ | $(\sim p \lor \sim q)$ |
|---|---|-----|-----|---------------|--------------------|------------------------|
| Т | Т | F   | F   | Т             | F                  | F                      |
| T | F | F   | Т   | F             | Т                  | Т                      |
| F | Т | Т   | F   | F             | Т                  | Т                      |
| F | F | Т   | Т   | F             | Т                  | Т                      |

#### (ii) Negation of disjunction : $\sim (p \lor q) \equiv \sim p \land \sim q$

| p | q | ~ p | ~ q | $(p \lor q)$ | $(\sim p \lor q)$ | $(\sim p \land \sim q)$ |
|---|---|-----|-----|--------------|-------------------|-------------------------|
| Τ | Т | F   | F   | Т            | F                 | F                       |
| T | F | F   | Т   | Т            | F                 | F                       |
| F | Т | Т   | F   | Т            | F                 | F                       |
| F | F | Т   | Т   | F            | Т                 | Т                       |

(iii) Negation of conditional :  $\sim (p \rightarrow q) \equiv p \land \sim q$ 

| p | q | ~ q | $(p \rightarrow q)$ | $\sim (p \rightarrow q)$ | $(p \land \sim q)$ |
|---|---|-----|---------------------|--------------------------|--------------------|
| Т | Т | F   | Т                   | F                        | F                  |
| Т | F | Т   | F                   | Т                        | Т                  |
| F | Т | F   | Т                   | F                        | F                  |
| F | F | Т   | Т                   | F                        | F                  |
|   |   |     |                     |                          |                    |

(iv) Negation of biconditional :  $\sim (p \leftrightarrow q) \equiv (p \land \neg q) \lor (q \land \neg p)$ 

we know that  $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ 

$$\therefore \quad \sim (p \leftrightarrow q) \equiv \sim [(p \to q) \land (q \to p)]$$
$$\equiv \sim (p \to q) \lor \sim (q \to p)$$
$$\equiv (p \land \sim q) \lor (q \land \sim p)$$

**Note :** The above result also can be proved by preparing truth table for  $\sim (p \leftrightarrow q)$  and  $(p \land \sim q) \lor (q \land \sim p)$ 

#### 11. ALGEBRA OF STATEMENTS :

If p, q, r are any three statements then the some low of algebra of statements are as follow

(i) Idempotent Laws :

(a)  $p \land p \equiv p$  (b)  $p \lor p \equiv p$ i.e.  $p \land p \equiv p \equiv p \lor p$ 

| р | $(p \land p)$ | $(p \lor p)$ |
|---|---------------|--------------|
| Т | Т             | Т            |
| F | F             | F            |

#### (ii) Comutative laws :

(a)  $p \land q \equiv q \land p$  (b)  $p \lor q \equiv q \lor p$ 

| p | q | $(p \land q)$ | $(q \land p)$ | $(p \lor q)$ | $(q \lor p)$ |
|---|---|---------------|---------------|--------------|--------------|
| Т | Т | Т             | Т             | Т            | Т            |
| T | F | F             | F             | Т            | Т            |
| F | Т | F             | F             | Т            | Т            |
| F | F | F             | F             | F            | F            |

#### (iii) Associative laws :

(a) 
$$(p \land q) \land r \equiv p \land (q \land r)$$

(b) 
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

| р | q | r | $(p \land q)$ | $(q \wedge r)$ | $(p \land q) \land r$ | $p \land (q \land r)$ |
|---|---|---|---------------|----------------|-----------------------|-----------------------|
| Т | Т | Т | Т             | Т              | Т                     | Т                     |
| Т | Т | F | Т             | F              | F                     | F                     |
| Т | F | Т | F             | F              | F                     | F                     |
| Т | F | F | F             | F              | F                     | F                     |
| F | Т | Т | F             | Т              | F                     | F                     |
| F | Т | F | F             | F              | F                     | F                     |
| F | F | Т | F             | F              | F                     | F                     |
| F | F | F | F             | F              | F                     | F                     |

Similarly we can proved result (b)

(iv) Distributive laws: (a)  $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$  (c)  $p \land (q \land r) \equiv (p \land q) \land (p \land r)$ 

(b)  $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$  (d)  $p \lor (q \lor r) \equiv (p \lor q) \lor (p \lor r)$ 

|   |   |   | •            | •             |                |                      |                                |
|---|---|---|--------------|---------------|----------------|----------------------|--------------------------------|
| p | q | r | $(q \lor r)$ | $(p \land q)$ | $(p \wedge r)$ | $p \land (q \lor r)$ | $(p \land q) \lor (p \land r)$ |
| Т | Т | Т | Т            | Т             | Т              | Т                    | Т                              |
| T | Т | F | Т            | Т             | F              | Т                    | Т                              |
| T | F | Т | Т            | F             | Т              | Т                    | Т                              |
| T | F | F | F            | F             | F              | F                    | F                              |
| F | Т | Т | Т            | F             | F              | F                    | F                              |
| F | Т | F | Т            | F             | F              | F                    | F                              |
| F | F | Т | Т            | F             | F              | F                    | F                              |
| F | F | F | F            | F             | F              | F                    | F                              |

Similarly we can prove result (b), (c), (d)

## (v) De Morgan Laws : (a) ~ $(p \land q) \equiv \neg p \lor \neg q$

|   | (b) $\sim$ (p $\lor$ q) $\equiv$ $\sim$ p $\land$ $\sim$ q |     |     |               |                      |                        |  |  |  |  |
|---|------------------------------------------------------------|-----|-----|---------------|----------------------|------------------------|--|--|--|--|
| р | q                                                          | ~ p | ~ q | $(p \land q)$ | $\sim$ (p $\land$ q) | $(\sim p \lor \sim q)$ |  |  |  |  |
| Т | Т                                                          | F   | F   | Т             | F                    | F                      |  |  |  |  |
| Т | F                                                          | F   | Т   | F             | Т                    | Т                      |  |  |  |  |
| F | Т                                                          | Т   | F   | F             | Т                    | Т                      |  |  |  |  |
| F | F                                                          | Т   | Т   | F             | Т                    | Т                      |  |  |  |  |

Similarly we can proved resulty (b)

(vi) Involution laws (or Double negation laws) :  $\sim(\sim p) \equiv p$ 

| Ì | p | ~ p | ~ (~ p) |  |
|---|---|-----|---------|--|
|   | Т | F   | Т       |  |
|   | F | Т   | F       |  |

(vii) Identity Laws: If p is a statement and t and c are tautology and contradiction respectively then

| (a) | p ∧ | t≡p | p (b)          | $p \lor t \equiv t$ |               | (c) p ∧      | $c \equiv c$ | (d) $p \lor c \equiv p$ |
|-----|-----|-----|----------------|---------------------|---------------|--------------|--------------|-------------------------|
| р   | t   | c   | $(p \wedge t)$ | $(p \lor t)$        | $(p \land c)$ | $(p \lor c)$ |              |                         |
| Т   | Т   | F   | Т              | Т                   | F             | Т            |              |                         |
| F   | Т   | F   | F              | Т                   | F             | F            |              |                         |

#### (viii) Complement Laws :

(a)  $p \land (\sim p) \equiv c$  (b)  $p \lor (\sim p) \equiv t$  (c)  $(\sim t) \equiv c$  (d)  $(\sim c) \equiv t$ 

| р | ~ p | (p∧ ~ p) | (p∨ ~ p) |
|---|-----|----------|----------|
| Т | F   | F        | Т        |
| F | Т   | F        | Т        |

#### (ix) Contrapositive laws : $p \rightarrow q \equiv \neg q \rightarrow \neg p$

| p | q | ~ p | ~ q | $p \rightarrow q$ | $\sim q \rightarrow \sim p$ |
|---|---|-----|-----|-------------------|-----------------------------|
| Т | Т | F   | F   | Т                 | Т                           |
| T | F | F   | Т   | F                 | F                           |
| F | Т | Т   | F   | Т                 | Т                           |
| F | F | Т   | Т   | Т                 | Т                           |

#### 12. QUANTIFIED STATEMENTS AND QUANTIFIERS :

The words or phrases "All", "Some", "None", "There exists a" are examples of quantifiers. A statement containing one or more of these words (or phrases) is a quantified statement.

- E.g. (1) All dogs are poodles
  - (2) Some books have hard covers
  - (3) There exists an odd number which is prime.

Note : Phrases "There exists a" and "Atleast one" and the word "some" have the same meaning.

#### **NEGATION OF QUANTIFIED STATEMENTS :**

(1) 'None' is the negation of 'at least one' or 'some' or 'few'

Statement : Some dogs are poodles.

Negation : No dogs are poodles.

Similarly negation of 'some' is 'none'

(2) The negation of "some A are B" or "There exist A which is B" is "No A are (is) B" or "There does not exist any A which is B".

Statement-1 : Some boys in the class are smart

Statement-2: There exists a boy in the class who is smart

Statement-3 : Alteast one boy in the class is smart

All the three above statements have same meaning as they all indicate "**existence**" of smart boy in the class.

Negation of these statements is

No boy in the class is smart.

or

There does not exist any boy in the class who is smart.

(3) Negation of "All A are B" is "Some A are not B".

Statement : All boys in the class are smart.

Negation: Some boys in the class are not smart.

or

There exists a boy in the class who is not smart.



**Ex.7** If x = 5 and y = -2 then x - 2y = 9. The contrapositive of this statement is-

(1) If  $x - 2y \neq 9$  then  $x \neq 5$  or  $y \neq -2$ 

- (2) If  $x 2y \neq 9$  then  $x \neq 5$  and  $y \neq -2$
- (3) If x 2y = 9 then x = 5 and y = -2
- (4) None of these

**Sol.**(1) Let p, q, r be the three statements such that

p: x = 5, q: y = -2 and r: x - 2y = 9

Here given statement is  $(p \land q) \rightarrow r$  and its contrapositive is  $\sim r \rightarrow \sim (p \land q)$ 

i.e.  $\sim r \rightarrow (\sim p \lor \sim q)$ 

- i.e. if  $x 2y \neq 9$  then  $x \neq 5$  or  $y \neq -2$
- **Ex.8** Which of the following is wrong ?
  - (1)  $p \rightarrow q$  is logically equivalent to  $\sim p \lor q$
  - (2) If the  $(p \lor q) \land (q \lor r)$  is true then truth values of p, q, r are T, F, T respectively
  - $(3) \sim (p \land (q \lor r)) \equiv (\sim p \lor \sim q) \land (\sim p \lor \sim r)$
  - (4) The truth value of  $p \land \sim (p \lor q)$  is always T
- **Sol.(4)** We know that  $p \rightarrow q \equiv \neg p \lor q$ 
  - If  $(p \lor q) \land (q \lor r)$  is true then

 $(p \lor q)$  and  $(q \lor r)$  both are true.

i.e. truth values of p, q, r may be T, F, T respectively

$$\because ~ ~(p \land (q \lor r)) \equiv ~((p \land q) \lor (p \land r) \equiv ~(p \land q) \land ~(p \land r) \equiv (~p \lor ~q) \land (~p \lor ~r)$$

- If p is true and q is false then  $\sim$ (p  $\vee$  q) is false i.e. p  $\wedge \sim$ (p  $\vee$  q) is false
- **Ex.9** If  $S^*(p, q, r)$  is the dual of the compound statement S(p, q, r) and  $S(p, q, r) = \neg p \land [\neg (q \lor r)]$  then  $S^*(\neg p, \neg q, \neg r)$  is equivalent to-

(1) S(p, q, r) (2)  $\sim S(\sim p, \sim q, \sim r)$  (3)  $\sim S(p, q, r)$  (4)  $S^*(p, q, r)$ 

- **Sol.(3)**  $\therefore$  S(p, q, r) =  $\sim p \land [\sim (q \lor r)]$ 
  - So  $S(\sim p, \sim q, \sim r) \equiv \sim (\sim p) \land [\sim (\sim q \lor \sim r)] \equiv p \land (q \land r)$

 $S^*(p, q, r) \equiv \neg p \lor [\neg (q \land r)]$ 

 $S^*(\sim p, \sim q, \sim r) \equiv p \lor (q \lor r)$ 

Clearly  $S^*(\sim p, \sim q, \sim r) \equiv \sim S(p, q, r)$ 

Ex.10 The negation of the statement "If a quadrilateral is a square then it is a rhombus"

(1) If a quadrilateral is not a square then is a rhombus it

(2) If a quadrilateral is a square then it is not a rhombus

- (3) a quadrilateral is a square and it is not a rhombus
- (4) a quadritateral is not a square and it is a rhombus
- **Sol.(3)** Let p and q be the statements as given below

p : a quadrilateral is a square

q : a quadritateral is a rhombus

the given statement is  $p \rightarrow q$ 

 $\because ~(p \to q) \equiv p \land {\sim} q$ 

Therefore the negation of the given statement is a quadrilateral is a square and it is not a rhombus

# Mathematical Reasoning

| CH | IECK YOUR GRASP MATHEMA                                                                                                                          | TIC | AL REASONING EXERCISE-I                                                                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 1. | The inverse of the statement $(p \land \neg q) \rightarrow r$ is-                                                                                | 10. | The converse of $p \rightarrow (q \rightarrow r)$ is-                                                                       |
|    | $(1) \sim (p \lor \sim q) \to \sim r \qquad (2) (\sim p \land q) \to \sim r$                                                                     |     | $(1) (q \wedge \sim r) \lor p \qquad (2) (\sim q \lor r) \lor p$                                                            |
|    | (3) $(\sim p \lor q) \rightarrow \sim r$ (4) None of these                                                                                       |     | $(3) (q \wedge \mathbf{r}) \wedge \mathbf{p} \qquad (4) (q \wedge \mathbf{r}) \wedge p$                                     |
| 2. | $(\sim p \lor \sim q)$ is logically equivalent to-                                                                                               | 11. | If p and q are two statement then $(p \leftrightarrow \neg q)$ is true when-                                                |
|    | $(1) p \land q \qquad (2) \sim p \to q$                                                                                                          |     | (1) p and q both are true                                                                                                   |
| _  | $(3) p \to \neg q \qquad (4) \neg p \to \neg q$                                                                                                  |     | (2) p and q both are false                                                                                                  |
| 3. | The equivalent statement of $(p \leftrightarrow q)$ is-                                                                                          |     | (3) p is false and q is true                                                                                                |
|    | $(1) (p \land q) \lor (p \lor q)$                                                                                                                |     | (4) None of these                                                                                                           |
|    | $(2) (p \to q) \lor (q \to p)$                                                                                                                   | 12. | Statement $(p \land q) \rightarrow p$ is-                                                                                   |
|    | $(3) (\sim p \lor q) \lor (p \lor \sim q)$                                                                                                       |     | (1) a tautology (2) a contradiction                                                                                         |
|    | $(4) (\sim p \lor q) \land (p \lor \sim q)$                                                                                                      |     | (3) neither (1) nor (2) (4) None of these                                                                                   |
| 4. | If the compound statement $p \rightarrow (\sim p \lor q)$ is                                                                                     | 13  | If statements p, q, r have truth values T, F, T                                                                             |
|    | false then the truth value of p and q are                                                                                                        |     | respectively then which of the following                                                                                    |
|    | respectively-<br>(1) T, T (2) T, F (3) F, T (4) F, F                                                                                             |     | statement is true-                                                                                                          |
| 5. |                                                                                                                                                  |     | (1) $(p \rightarrow q) \wedge r$ (2) $(p \rightarrow q) \vee \sim r$                                                        |
| 3. | The statement $(p \rightarrow \sim p) \land (\sim p \rightarrow p)$ is-                                                                          |     | $(3) (p \land q) \lor (q \land r) \qquad (4) (p \to q) \to r$                                                               |
|    | <ul><li>(1) a tautology</li><li>(2) a contradiction</li></ul>                                                                                    | 14. | If statement $p \rightarrow (q \lor r)$ is true then the truth values of statements p, q, r respectively-                   |
|    | <ul><li>(2) a contradiction</li><li>(3) neither a tautology nor a contradiction</li></ul>                                                        |     | (1) T, F, T (2) F, T, F                                                                                                     |
|    | (4) None of these                                                                                                                                |     | $(3) F, F, F \qquad (4) All of these$                                                                                       |
| 6. | Negation of the statement $(p \land r) \rightarrow (r \lor q)$ is-                                                                               | 15. | Which of the following statement is a contradiction-                                                                        |
| 0. | (1) $\sim$ (p $\land$ r) $\rightarrow$ $\sim$ (r $\lor$ q) (2) ( $\sim$ p $\lor$ $\sim$ r) $\lor$ (r $\lor$ q)                                   |     | (1) $(p \land q) \land (\sim (p \lor q))$ (2) $p \lor (\sim p \land q)$                                                     |
|    | $(1)  (p \land r) \land (r \land q)  (1)  (p \land r) \land (r \land q)  (3)  (p \land r) \land (r \land q)  (4)  (p \land r) \land (r \land q)$ |     | $(3) (p \to q) \to p \qquad (4) \sim p \lor \sim q$                                                                         |
| 7. | The dual of the statement $\sim p \land [\sim q \land (p \lor q) \land \sim r]$                                                                  | 16. | The negative of the statement "If a number is                                                                               |
|    | is-                                                                                                                                              |     | <ul><li>divisible by 15 then it is divisible by 5 or 3"</li><li>(1) If a number is divisible by 15 then it is not</li></ul> |
|    | (1) $\sim p \lor [\sim q \lor (p \lor q) \lor \sim r]$                                                                                           |     | divisible by 5 and 3                                                                                                        |
|    | (2) $\mathbf{p} \vee [\mathbf{q} \vee (\mathbf{p} \wedge \mathbf{q}) \vee \mathbf{r}]$                                                           |     | (2) A number is divisible by 15 and it is not                                                                               |
|    | $(3) \sim p \lor [\sim q \lor (p \land q) \lor \sim r]$                                                                                          |     | divisible by 5 or 3                                                                                                         |
|    | $(4) \sim \mathbf{p} \lor [\sim \mathbf{q} \land (\mathbf{p} \land \mathbf{q}) \land \sim \mathbf{r}]$                                           |     | (3) A number is divisible by 15 or it is not                                                                                |
| 8. | Which of the following is correct-                                                                                                               |     | divisible by 5 and 3                                                                                                        |
|    | $(1) (\sim p \lor \sim q) \equiv (p \land q)$                                                                                                    |     | (4) A number is divisible by 15 and it is not                                                                               |
|    | (2) $(p \rightarrow q) \equiv (\sim q \rightarrow \sim p)$                                                                                       | 17  | divisible by 5 and 3<br>If $y = 5$ and $y = 2$ then $y = 2y = 0$ . The                                                      |
|    | $(3) \sim (p \rightarrow \sim q) \equiv (p \land \sim q)$                                                                                        | 17. | If $x = 5$ and $y = -2$ then $x - 2y = 9$ . The contrapositive of this statement is-                                        |
|    | $(4) \sim (p \leftrightarrow q) \equiv (p \rightarrow q) \lor (q \rightarrow p)$                                                                 |     | (1) If $x - 2y \neq 9$ then $x \neq 5$ or $y \neq -2$                                                                       |
| 9. | The contrapositive of $p \rightarrow (\sim q \rightarrow \sim r)$ is-                                                                            |     | (2) If $x - 2y \neq 9$ then $x \neq 5$ and $y \neq -2$                                                                      |
|    | $(1) (\sim q \wedge r) \rightarrow \sim p \qquad (2) (q \rightarrow r) \rightarrow \sim p$                                                       |     | (3) If $x - 2y = 9$ then $x = 5$ and $y = -2$                                                                               |
|    | (3) $(q \lor \sim r) \rightarrow \sim p$ (4) None of these                                                                                       |     | (4) None of these                                                                                                           |
|    |                                                                                                                                                  |     | 33                                                                                                                          |

18. The negation of the statement "2 + 3 = 5 and 8 < 10" is-(1)  $2 + 3 \neq 5$  and  $8 \neq 10$ (2)  $2 + 3 \neq 5$  or 8 > 10(3)  $2 + 3 \neq 5$  or  $8 \ge 10$ (4) None of these 19. For any three simple statement p, q, r the statement  $(p \land q) \lor (q \land r)$  is true when-(1) p and r true and q is false (2) p and r false and q is true (3) p, q, r all are false (4) q and r true and p is false 20. Which of the following statement is a tautology-(1)  $(\sim p \lor \sim q) \lor (p \lor \sim q)$ (2)  $(\sim p \lor \sim q) \land (p \lor \sim q)$ (3)  $\sim p \land (\sim p \lor \sim q)$ (4)  $\sim q \land (\sim p \lor \sim q)$ Which of the following statement is a 21. contradiction-(1)  $(\sim p \lor \sim q) \lor (p \lor \sim q)$ (2)  $(p \rightarrow q) \lor (p \land \neg q)$ (3)  $(\sim p \land q) \land (\sim q)$  $(4) (\sim p \land q) \lor (\sim q)$ 22. The negation of the statement  $q \lor (p \land \neg r)$  is equivalent to-(1)  $\sim q \land (p \rightarrow r)$ (2)  $\sim q \land \sim (p \rightarrow r)$ (4) None of these (3)  $\sim q \land (\sim p \land r)$ Let Q be a non empty subset of N. and q is a 23. statement as given below :q : There exists an even number  $a \in Q$ . Negation of the statement q will be :-(1) There is no even number in the set Q. (2) Every  $a \in Q$  is an odd number. (3)(1) and (2) both (4) None of these 24. The statement  $\sim (p \rightarrow q) \leftrightarrow (\sim p \lor \sim q)$  is-(1) a tautology (2) a contradiction (3) neither a tautology nor a contradiction (4) None of these 25. Which of the following is equivalent to  $(p \land q)$ (1)  $p \rightarrow \neg q$ (2) ~(~ $p \land ~q$ ) (3)  $\sim$ (p  $\rightarrow$   $\sim$ q) (4) None of these 34

26. The dual of the following statement "Reena is healthy and Meena is beautiful" is-(1) Reena is beaufiful and Meena is healthy (2) Reena is beautiful or Meena is healthy (3) Reena is healthy or Meena is beutiful (4) None of these 27. If p is any statement, t and c are a tautology and a contradiction respectively then which of the following is not correct-(1)  $\mathbf{p} \wedge \mathbf{t} \equiv \mathbf{p}$ (2)  $p \wedge c \equiv c$ (4)  $p \lor c \equiv p$ (3)  $p \lor t \equiv c$ 28. If  $S^*(p, q)$  is the dual of the compound statement S(p, q) then  $S^*(\sim p, \sim q)$  is equivalent to-(1)  $S(\sim p, \sim q)$  $(2) \sim S(p, q)$  $(3) \sim S^{*}(p, q)$ (4) None of these 29. If p is any statement, t is a tautology and c is a contradiction then which fo the following is not correct-(1)  $p \land (\sim c) \equiv p$ (2)  $\mathbf{p} \lor (\sim t) \equiv \mathbf{p}$ (3)  $t \lor c \equiv p \lor t$ (4)  $(p \land t) \lor (p \lor c) \equiv (t \land c)$ 30. If p, q, r are simple statement with truth values T, F, T respectively then the truth value of  $((\sim p \lor q) \land \sim r) \rightarrow p$  is-(1) True (2) False (3) True if r is false (4) True if q is true 31. Which of the following is wrong-(1)  $p \lor \sim p$  is a tautology (2)  $\sim$ ( $\sim$ p)  $\leftrightarrow$  p is a tautology (3)  $p \land \neg p$  is a contradiction (4)  $((p \land p) \rightarrow q) \rightarrow p$  is a tautology

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | Mathematical Reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.        | The statement "If $2^2 = 5$ then I get first class"<br>is logically equivalent to-<br>(1) $2^2 = 5$ and I do not get first class<br>(2) $2^2 = 5$ or I do not get first class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36. | Let p statement "If $2 > 5$ then earth will not<br>rotate" and q be the statement " $2 \ge 5$ or earth<br>will not rotate".<br>Statement-1: p and q are equivalent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33.        | <ul> <li>(3) 2<sup>2</sup> ≠ 5 or I get first class</li> <li>(4) None of these</li> <li>If statement (p ∨ ~r) → (q ∧ r) is false and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | <ul> <li>Statement-2: m→n and ~ m∨n are equivalent.</li> <li>(1) Statement-1 is true, Statement-2 is true;<br/>Statement-2 is not the correct explanation<br/>of Statement-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34.<br>35. | statement q is true then statement p is-<br>(1) true (2) false<br>(3) may be true or false (4) None of these<br>Which of the following statement are not<br>logically equivalent-<br>(1) ~(p $\lor$ ~q) and (~p $\land$ q)<br>(2) ~(p $\rightarrow$ q) and ( $\neg$ p $\land$ q)<br>(3) (p $\rightarrow$ q) and ( $\neg$ p $\land$ q)<br>(4) (p $\rightarrow$ q) and ( $\neg$ p $\land$ q)<br>Consider the following statements<br>p : Virat kohli plays cricket.<br>q : Virat kohli is good at maths<br>r : Virat kohli is successful.<br>then negation of the statement "If virat kohli plays<br>cricket and is not good at maths then he is<br>successful" will be :-<br>(1) ~p $\land$ (q $\land$ r) (2) (~p $\lor$ q) $\land$ r<br>(3) p $\land$ (~q $\land$ ~r) (4) None of these | 37. | <ul> <li>(2) Statement-1.</li> <li>(2) Statement-1 is false, Statement-2 is true.</li> <li>(3) Statement-1 is true, Statement-2 is false.</li> <li>(4) Statement-1 is true, Statement-2 is true;<br/>Statement-2 is the correct explanation of<br/>Statement-1.</li> <li>Which of the following is a tautology :-</li> <li>(1) [(~ p ∧ p) → q] → (p ∧ p)</li> <li>(2) [(~ p ∧ p) → q] → (~ p → p)</li> <li>(3) [(~ p ∧ p) → q] → (p → p)</li> <li>(4) None of these</li> <li>Negation of the statement "No one in the class<br/>is fond of music" is :-</li> <li>(1) everyone in the class is fond of music.</li> <li>(2) Some of the students in the class are fond<br/>of music.</li> <li>(3) There exists a student in the class who is<br/>fond of music.</li> <li>(4) (2) and (3) both</li> </ul> |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | (¬) (2) and (3) both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| CHECK YOUR GRASP |    |    |    |    |    |    |    | A  | ANSWER-KEY |            |    |    |    |    |    |    | EXERCISE-I |    |    |    |  |
|------------------|----|----|----|----|----|----|----|----|------------|------------|----|----|----|----|----|----|------------|----|----|----|--|
| Que.             | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9          | 10         | 11 | 12 | 13 | 14 | 15 | 16 | 17         | 18 | 19 | 20 |  |
| Ans.             | 3  | 3  | 4  | 2  | 2  | 4  | 3  | 2  | 1          | 1          | 3  | 1  | 4  | 4  | 1  | 4  | 1          | 3  | 4  | 1  |  |
| Que.             | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29         | 30         | 31 | 32 | 33 | 34 | 35 | 36 | 37         | 38 |    |    |  |
| Ans.             | 3  | 1  | 3  | 3  | 3  | 3  | 3  | 2  | 4          | 1          | 4  | 3  | 3  | 4  | 3  | 4  | 3          | 4  |    |    |  |
|                  |    | •  | •  | -  | •  | •  |    |    | -          | . <u> </u> | •  | •  | •  |    | •  | -  | •          |    |    | 35 |  |

| DP       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | STA |                                                                                                         | EVEDCISE                                   |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| РК<br>1. | EVIOUS YEAR<br>The negation of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |     |                                                                                                         | EXERCISE-II                                |  |  |  |  |  |  |
| 1.       | The negation of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [JEE(Main)-2012]                                                | 6.  | The following statement                                                                                 |                                            |  |  |  |  |  |  |
|          | "If I become a te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acher, then I will open a                                       |     | $(p \to q) \to [(\sim p \to q)]$                                                                        | $q) \rightarrow q]$ is :                   |  |  |  |  |  |  |
|          | school", is :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |     |                                                                                                         | [JEE(Main)-2017]                           |  |  |  |  |  |  |
|          | (1) I will not becom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ne a teacher or I will open a                                   |     | (1) a fallacy                                                                                           |                                            |  |  |  |  |  |  |
|          | school.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |     | (2) a tautology                                                                                         |                                            |  |  |  |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | teacher and I will not open                                     |     | (3) equivalent to $\sim p$                                                                              | $\rightarrow$ q                            |  |  |  |  |  |  |
|          | a school.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | become a teacher or I will                                      |     | (4) equivalent to p –                                                                                   | →~q                                        |  |  |  |  |  |  |
|          | not open a sch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 | 7.  | The Boolean expression                                                                                  | $on \sim (p \lor q) \lor (\sim p \land q)$ |  |  |  |  |  |  |
|          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecome a teacher nor I will                                      |     | is equivalent to : [JEE(Main)-2018]                                                                     |                                            |  |  |  |  |  |  |
|          | open a school.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 |     | (1) p (2) q                                                                                             |                                            |  |  |  |  |  |  |
| 2.       | Consider :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |     | (3) ~q                                                                                                  | (4) ~p                                     |  |  |  |  |  |  |
|          | Statement-I: (p^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~q) $\land$ (~ p $\land$ q) is a fallacy.                       | 8.  | If the Boolean expression $(p \oplus q) \wedge (\sim p \odot q)$ is                                     |                                            |  |  |  |  |  |  |
|          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\rightarrow$ q) $\leftrightarrow$ (~ q $\rightarrow$ ~p) is a  |     | equivalent to $p \land q$ , where $\oplus$ , $\odot \in \{\land,\lor\}$ , then                          |                                            |  |  |  |  |  |  |
|          | tuatology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [JEE(Main)-2013]                                                |     | the ordered pair $(\oplus, \odot)$ is:                                                                  |                                            |  |  |  |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | true, Statement-II is true;<br>a <b>correct</b> explanation for |     |                                                                                                         | [JEE(Main)-19]                             |  |  |  |  |  |  |
|          | Statement-I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |     | $(1)(\wedge,\vee)$                                                                                      | (2) (∨,∨)                                  |  |  |  |  |  |  |
|          | (2)Statement-I is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | true, Statement-II is true;                                     |     | $(1) (\land, \lor)$ $(3) (\land, \land)$                                                                |                                            |  |  |  |  |  |  |
|          | statement-II is r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ot a correct explanation for                                    |     | (3) (^, ^)                                                                                              | $(4) (\vee, \wedge)$                       |  |  |  |  |  |  |
|          | Statement-I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | 9.  | The logical statement                                                                                   |                                            |  |  |  |  |  |  |
|          | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rue, Statement-II is false.<br>alse, Statement-II is true.      |     | $\left[ \sim (\sim p \lor q) \lor (p \land r) \land (\sim q \land r) \right]$                           |                                            |  |  |  |  |  |  |
| 3.       | The statement ~(p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |     | is equivalent to :                                                                                      | [JEE(Main)-19]                             |  |  |  |  |  |  |
|          | The second secon | [JEE(Main)-2014]                                                |     | (1) $(p \wedge r) \wedge \sim q$                                                                        | , _                                        |  |  |  |  |  |  |
|          | (1) equivalent to p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ↔q                                                              |     | (3) $\sim p \vee r$                                                                                     | $(4) (p \land \neg q) \lor r$              |  |  |  |  |  |  |
|          | (2) equivalent to ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $p \leftrightarrow q$                                           | 10. | Consider the following three statements :                                                               |                                            |  |  |  |  |  |  |
|          | (3) a tautology $(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |     | P : 5 is a prime number.                                                                                |                                            |  |  |  |  |  |  |
|          | (4) a fallacy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |     | Q:7 is a factor of 19                                                                                   | 02.                                        |  |  |  |  |  |  |
| 4.       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $s_{\vee}(\sim r \wedge s)$ is equivalent                       |     | R : L.C.M. of 5 and 7 is 35.<br>Then the truth value of which one of the following statements is true ? |                                            |  |  |  |  |  |  |
|          | to :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [JEE(Main)-2015]                                                |     |                                                                                                         |                                            |  |  |  |  |  |  |
|          | (1) $_{\mathrm{S}\vee}(\mathrm{r}\vee\sim\mathrm{S})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2) $s \wedge r$                                                |     |                                                                                                         |                                            |  |  |  |  |  |  |
|          | (3) s∧ ~ r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (4) $_{s \wedge (r \wedge \sim s)}$                             |     |                                                                                                         | [JEE(Main)-19]                             |  |  |  |  |  |  |
| 5.       | The Boolean Expre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ession $(p \land \neg q) \lor q \lor (\neg p \land q)$ is       |     | $(1) (P^{\wedge}Q) \vee (\sim R)$                                                                       |                                            |  |  |  |  |  |  |
|          | equivalent to :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [JEE(Main)-2016]                                                |     | (2) (~P) ^ (~Q ^ R)                                                                                     |                                            |  |  |  |  |  |  |
|          | (1) p∨~q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) ~p∧q                                                        |     | $(3) (\sim P) \lor (Q \land R)$                                                                         |                                            |  |  |  |  |  |  |
|          | (3) p∧q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4) p∨q                                                         |     | (4) $P \lor (\sim Q \land R)$                                                                           |                                            |  |  |  |  |  |  |
| 36       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |     |                                                                                                         |                                            |  |  |  |  |  |  |

is true, then which 4. 11. If q is false and  $p \land q \leftrightarrow r$ one of the following statements is a tautology?

[JEE(Main)-19]

- (1)  $(p \lor r) \rightarrow (p \land r)$
- (2)  $p \vee r$
- (3) p ^ r

 $(4)(p \land r) \rightarrow (p \lor r)$ 

- 12. Contrapositive of the statement "If two numbers are not equal, then their squares are not equal." is :-[JEE(Main)-19]
  - (1) If the squares of two numbers are equal, then the numbers are equal.
  - (2) If the squares of two numbers are equal, then the numbers are not equal.
  - (3) If the squares of two numbers are not equal, then the numbers are equal.
  - (4) If the squares of two numbers are not equal, then the numbers are not equal.
- 13. The contrapositive of the statement "If you are born in India, then you are a citizen of India", is : [JEE(Main)-19]
  - (1) If you are born in India, then you are not a citizen of India.
  - (2) If you are not a citizen of India, then you are not born in India.
  - (3) If you are a citizen of India, then you are born in India.
  - (4) If you are not born in India, then you are not a citizen of India.

For any two statements p and q, the negation of the expression  $p \lor (\sim p \land q)$  is

#### [JEE(Main)-19]

- (1) p∧q (2)  $p \leftrightarrow q$
- (3) ~p∨~q (4) ~p∧~q
- 15. If the truth value of the statement  $P \rightarrow (\sim p \lor r)$ is false(F), then the truth values of the statements p, q, r are respectively :

|             | [JEE(Main)  | -19] |
|-------------|-------------|------|
| (1) F, T, T | (2) T, F, F |      |
| (3) T, T, F | (4) T, F, T |      |
|             |             |      |

The Boolean expression  $\sim (p \Rightarrow (\sim q))$  is **16**. equivalent to : [JEE(Main)-19]

(3)  $q \Rightarrow \sim p$ 

(1)  $(\sim p) \Rightarrow q$ (2)  $p_{V}q$ (4) p ^ q

| PREVIOUS YEARS QUESTIONS |      |   |   |   |   |   |   | A | ANSWER-KEY EXERCIS |   |    |    |    |    |    |    |    | SE-II |
|--------------------------|------|---|---|---|---|---|---|---|--------------------|---|----|----|----|----|----|----|----|-------|
|                          | Que. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8                  | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |       |
|                          | Ans. | 2 | 2 | 1 | 2 | 4 | 2 | 4 | 1                  | 1 | 4  | 4  | 1  | 2  | 4  | 3  | 4  |       |
|                          |      |   |   |   |   |   |   |   |                    |   |    |    |    |    |    |    |    | ່ວ7   |