

CONTENTS

QUADRATIC EQUATION

THEORY & ILLUSTRATIONS	Page-01
EXERCISE (E-1)	Page-27
EXERCISE (E-2)	Page-28
EXERCISE (S-1)	Page-29
EXERCISE (S-2)	Page – 32
EXERCISE (JM)	Page-32
EXERCISE (JA)	Page-34
ANSWER KEY	Page-35

JEE(Advanced) Syllabus :

Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots.

JEE(Main) Syllabus :

Quadratic equations in real and complex number system and their solutions. Relation between roots and co-efficients, nature of roots, formation of quadratic equations with given roots.

QUADRATIC EQUATION

1. INTRODUCTION :

The algebraic expression of the form $ax^2 + bx + c$, $a \neq 0$ is called a quadratic expression, because the highest order term in it is of second degree. Quadratic equation means, $ax^2 + bx + c = 0$. In general whenever one says zeroes of the expression $ax^2 + bx + c$, it implies roots of the equation $ax^2 + bx + c = 0$, unless specified otherwise.

A quadratic equation has exactly two roots which may be real (equal or unequal) or imaginary.

2. SOLUTION OF QUADRATIC EQUATION & RELATION BETWEEN ROOTS & CO-EFFICIENTS :

(a) The general form of quadratic equation is $ax^2 + bx + c = 0$, $a \neq 0$. The roots can be found in following manner :

$$a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = 0 \qquad \Rightarrow \qquad \left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$
$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a} \qquad \Rightarrow \qquad \left[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right]$$

This expression can be directly used to find the two roots of a quadratic equation.

- (b) The expression $b^2 4$ ac $\equiv D$ is called the discriminant of the quadratic equation.
- (c) If $\alpha \& \beta$ are the roots of the quadratic equation $ax^2 + bx + c = 0$, then :

(i)
$$\alpha + \beta = -b/a$$
 (ii) $\alpha\beta = c/a$ (iii) $|\alpha - \beta| = \sqrt{D}/|a|$

(d) A quadratic equation whose roots are $\alpha \& \beta$ is $(x - \alpha)(x - \beta) = 0$ i.e. $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ i.e. $x^2 - (\text{sum of roots})x + \text{product of roots} = 0$.

Illustration 1 :	If α , β are the roots of a quadratic equation $x^2 - 3x + 5 = 0$, then the equation whose roots
	are $(\alpha^2 - 3\alpha + 7)$ and $(\beta^2 - 3\beta + 7)$ is -
	(A) $x^2 + 4x + 1 = 0$ (B) $x^2 - 4x + 4 = 0$ (C) $x^2 - 4x - 1 = 0$ (D) $x^2 + 2x + 3 = 0$
Solution :	Since α , β are the roots of equation $x^2 - 3x + 5 = 0$
	So $\alpha^2 - 3\alpha + 5 = 0$
	$\beta^2 - 3\beta + 5 = 0$
	$\therefore \alpha^2 - 3\alpha = -5$
	$\beta^2 - 3\beta = -5$
	Putting in $(\alpha^2 - 3\alpha + 7)$ & $(\beta^2 - 3\beta + 7)$ (i)
	-5+7, -5+7
	\therefore 2 and 2 are the roots.
	\therefore The required equation is
	$x^2 - 4x + 4 = 0.$ Ans. (B)
	1

Illustration 2: If α and β are the roots of $ax^2 + bx + c = 0$, find the value of $(a\alpha + b)^{-2} + (a\beta + b)^{-2}$.

Solution: We know that $\alpha + \beta = -\frac{b}{a} & \alpha \beta = \frac{c}{a}$ $(a\alpha + b)^{-2} + (a\beta + b)^{-2} = \frac{1}{(a\alpha + b)^2} + \frac{1}{(a\beta + b)^2}$ $= \frac{a^2\beta^2 + b^2 + 2ab\beta + a^2\alpha^2 + b^2 + 2ab\alpha}{(a^2\alpha\beta + ba\beta + ba^2)^2} = \frac{a^2(\alpha^2 + \beta^2) + 2ab(\alpha + \beta) + 2b^2}{(a^2\alpha\beta + ab(\alpha + \beta) + b^2)^2}$ $(\alpha^2 + \beta^2 \text{ can always be written as } (\alpha + \beta)^2 - 2\alpha\beta)$ $= \frac{a^2\left[(\alpha + \beta)^2 - 2\alpha\beta\right] + 2ab(\alpha + \beta) + 2b^2}{(a^2\alpha\beta + ab(\alpha + \beta) + b^2)^2} = \frac{a^2\left[\frac{b^2 - 2ac}{a^2}\right] + 2ab\left(-\frac{b}{a}\right) + 2b^2}{(a^2\alpha\beta + ab(\alpha + \beta) + b^2)^2} = \frac{b^2 - 2ac}{a^2c^2}$ Alternatively: If $\alpha \& \beta$ are roots of $ax^2 + bx + c = 0$ then, $a\alpha^2 + b\alpha + c = 0$ $\Rightarrow a\alpha + b = -\frac{c}{\alpha}$ same as $a\beta + b = -\frac{c}{\beta}$ $\therefore (a\alpha + b)^{-2} = (\alpha\beta + b)^{-2} = \frac{\alpha^2}{c^2} + \frac{\beta^2}{c^2}$

Do yourself - 1 :

(i) Find the roots of following equations :

 $=\frac{b^2-2ac}{a^2a^2}$

 $=\frac{(\alpha+\beta)^2-2\alpha\beta}{2}$

 $=\frac{(-b/a)^2-2(c/a)}{c^2}$

(a) $x^2 + 3x + 2 = 0$ (b) $x^2 - 8x + 16 = 0$ (c) $x^2 - 2x - 1 = 0$

(ii) Find the roots of the equation $a(x^2 + 1) - (a^2 + 1)x = 0$, where $a \neq 0$.

(iii) Solve:
$$\frac{6-x}{x^2-4} = 2 + \frac{x}{x+2}$$

(iv) If the roots of $4x^2 + 5k = (5k + 1)x$ differ by unity, then find the values of k.

3. NATURE OF ROOTS :

(a) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, $c \in R \& a \neq 0$ then;

$$x = \frac{-b \pm \sqrt{D}}{2a}$$

- (i) $D > 0 \Leftrightarrow$ roots are real & distinct (unequal).
- (ii) $D = 0 \Leftrightarrow$ roots are real & coincident (equal)
- (iii) $D \le 0 \Leftrightarrow$ roots are imaginary.
- (iv) If p + iq is one root of a quadratic equation, then the other root must be the conjugate p iq & vice versa. ($p, q \in R \& i = \sqrt{-1}$).
- (b) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, $c \in Q \& a \neq 0$ then;
 - (i) If D is a perfect square, then roots are rational.
 - (ii) If $\alpha = p + \sqrt{q}$ is one root in this case, (where p is rational & \sqrt{q} is a surd) then other root will be $p \sqrt{q}$.
- **Illustration 3**: If the coefficient of the quadratic equation are rational & the coefficient of x^2 is 1, then find the equation one of whose roots is $\tan \frac{\pi}{9}$.

Solution : We know that $\tan \frac{\pi}{2} = \sqrt{2} - 1$

Irrational roots always occur in conjugational pairs.

Hence if one root is $(-1 + \sqrt{2})$, the other root will be $(-1 - \sqrt{2})$. Equation is

$$(x - (-1 + \sqrt{2}))(x - (-1 - \sqrt{2})) = 0 \implies x^2 + 2x - 1 = 0$$

Illustration 4: Find all the integral values of a for which the quadratic equation (x - a)(x - 10) + 1 = 0 has integral roots.

Solution : Here

Here the equation is $x^2 - (a + 10)x + 10a + 1 = 0$. Since integral roots will always be rational it means D should be a perfect square.

From (i) $D = a^2 - 20a + 96$.

 $\Rightarrow D = (a - 10)^2 - 4 \Rightarrow 4 = (a - 10)^2 - D$

If D is a perfect square it means we want difference of two perfect square as 4 which is possible only when $(a - 10)^2 = 4$ and D = 0.

$$\Rightarrow (a-10) = \pm 2 \Rightarrow a = 12, 8$$
 Ans.

Do yourself - 2 :

- (i) If $2 + \sqrt{3}$ is a root of the equation $x^2 + bx + c = 0$, where $b, c \in Q$, find b, c.
- (ii) For the following equations, find the nature of the roots (real & distinct, real & coincident or imaginary).
 - (a) $x^2 6x + 10 = 0$

(b)
$$x^{2} - (7 + \sqrt{3})x + 6(1 + \sqrt{3}) = 0$$

(c)
$$4x^2 + 28x + 49 = 0$$

(iii) If ℓ , m are real and $\ell \neq m$, then show that the roots of $(\ell - m)x^2 - 5(\ell + m)x - 2(\ell - m) = 0$ are real and unequal.

4. ROOTS UNDER PARTICULAR CASES :

Let the quadratic equation $ax^2 + bx + c = 0$ has real roots and

- If b = 0roots are equal in magnitude but opposite in sign **(a)** \Rightarrow If c = 0one root is zero other is -b/a**(b)** \Rightarrow (c) If a = croots are reciprocal to each other \Rightarrow If $\begin{array}{c} a > 0 c < 0 \\ a < 0 c > 0 \end{array}$ **(d)** roots are of opposite signs If a > 0, b > 0, c > 0a < 0, b < 0, c < 0both roots are negative. \Rightarrow **(e)** $If \begin{cases} a > 0, b < 0, c > 0 \\ a < 0, b > 0, c < 0 \end{cases} \Rightarrow$ (**f**) both roots are positive. If sign of a = sign of b \neq sign of c \Rightarrow Greater root in magnitude is negative. **(g)** If sign of b = sign of c \neq sign of a \Rightarrow Greater root in magnitude is positive. **(h)**
- (i) If $a + b + c = 0 \Rightarrow$ one root is 1 and second root is c/a or (-b-a)/a.

Illustration 5: If equation $\frac{x^2 - bx}{ax - c} = \frac{k - 1}{k + 1}$ has roots equal in magnitude & opposite in sign, then the value of k is -

(A)
$$\frac{a+b}{a-b}$$
 (B) $\frac{a-b}{a+b}$ (C) $\frac{a}{b}+1$ (D) $\frac{a}{b}-1$

Solution :

 $f: \qquad \text{Let the roots are } \alpha \& -\alpha .$ given equation is $(x^2 - bx)(k+1) = (k-1)(ax - c) \quad \{\text{Considering, } x \neq c/a \& k \neq -1\} \\ \Rightarrow \quad x^2(k+1) - bx(k+1) = ax (k-1) - c(k-1) \\ \Rightarrow \quad x^2(k+1) - bx(k+1) - ax (k-1) + c(k-1) = 0 \\ \text{Now sum of roots} = 0 \qquad (\because \ \alpha - \alpha = 0)$

$$\therefore \quad b(k+1) + a(k-1) = 0 \implies k = \frac{a-b}{a+b}$$
 Ans. (B)

*Illustration 6 :	If roots of the equation $(a - b)x$	$x^{2} + (c-a)x + (b-c) = 0$ a	re equal, then a, b, c are in
	(A) A.P. (B) H.P.	(C) G.P.	(D) none of these
Solution :	$(a-b)x^{2} + (c-a)x + (b-c) = 0$		
	As roots are equal so		
	$B^2 - 4AC = 0 \implies (c - a)^2 - 4(a)^2$	$(b-c) = 0 \implies (c-c) = 0$	$a)^2 - 4ab + 4b^2 + 4ac - 4bc = 0$
	$\Rightarrow (c-a)^2 + 4ac - 4b(c+a)$	$+4b^2 = 0 \Longrightarrow (c+a)^2 -$	2. $(2b)(c+a) + (2b)^2 = 0$
	$\Rightarrow [c+a-2b]^2 = 0 \qquad \Rightarrow \qquad$	$c + a - 2b = 0 \implies c + a = 0$	+a=2b
	Hence a, b, c are in A. P.		
	Alternative method :		
	\therefore Sum of the coefficients = 0		
	Hence one root is 1 and other root is $\frac{b-c}{a-b}$.		
	Given that both roots are equal,	u õ	
	$1 = \frac{b-c}{a-b} \implies a-b = b-c \implies 2b = a+c$		
	Hence a, b, c are in A.P.		Ans. (A)
Do yourse (i) Cons (a) (b) (c)	elf - 3: sider $f(x) = x^2 + bx + c$. Find c if $x = 0$ is a root of $f(x)$. Find c if α , $\frac{1}{\alpha}$ are roots of $f(x)$. Comment on sign of b & c, if α) = 0.	re α, β are roots of $f(x) = 0$.
5 IDENTIT	'V •		

5. **IDENTITY** :

An equation which is true for every value of the variable within the domain is called an identity, for example : 5(a-3) = 5a - 15, $(a + b)^2 = a^2 + b^2 + 2ab$ for all $a, b \in \mathbb{R}$.

Note: A quadratic equation cannot have three or more roots & if it has, it becomes an identity.

If $ax^2 + bx + c = 0$ is an identity $\Leftrightarrow a = b = c = 0$

Illustration 7 :	If the equation $(\lambda^2 - 5\lambda + 6)x^2 + (\lambda^2 - 3\lambda + 2)x + (\lambda^2 - 4) = 0$ has more that	an two roots,
	then find the value of λ ?	
Solution :	As the equation has more than two roots so it becomes an identity. Hence	
	$\lambda^2 - 5\lambda + 6 = 0 \qquad \implies \lambda = 2, 3$	
	and $\lambda^2 - 3\lambda + 2 = 0 \implies \lambda = 1, 2$	
	and $\lambda^2 - 4 = 0 \implies \lambda = 2, -2$	
	So $\lambda = 2$	Ans. $\lambda = 2$

6. COMMON ROOTS OF TWO QUADRATIC EQUATIONS :

(a) Only one common root.

Let α be the common root of $ax^2 + bx + c = 0$ & $a'x^2 + b'x + c' = 0$ then

 $a\alpha^2 + b\alpha + c = 0$ & $a'\alpha^2 + b'\alpha + c' = 0$. By Cramer's Rule $\frac{\alpha^2}{bc' - b'c} = \frac{\alpha}{a'c - ac'} = \frac{1}{ab' - a'b}$

Therefore, $\alpha = \frac{ca'-c'a}{ab'-a'b} = \frac{bc'-b'c}{a'c-ac'}$

So the condition for a common root is $(ca' - c'a)^2 = (ab' - a'b) (bc' - b'c)$.

(**b**) If both roots are same then $\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$.

Illustration 8: Find p and q such that $px^2 + 5x + 2 = 0$ and $3x^2 + 10x + q = 0$ have both roots in common.

Solution :

 $a_1 = p, b_1 = 5, c_1 = 2$

 $a_2 = 3, b_2 = 10, c_2 = q$

We know that :

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \implies \frac{p}{3} = \frac{5}{10} = \frac{2}{q} \implies p = \frac{3}{2}; q = 4$$

*Illustration 9: Find the possible value(s) of a for which the equations $x^2 + ax + 1 = 0$ and $x^2 + x + a = 0$ have atleast one common root.

Solution : Let α is a common root

then $\alpha^2 + a\alpha + 1 = 0$

& $\alpha^2 + \alpha + a = 0$

by cramer's rule

$$\frac{\alpha^2}{a^2 - 1} = \frac{\alpha}{1 - a} = \frac{1}{1 - a}$$
$$\Rightarrow \quad (1 - a)^2 = (a^2 - 1)(1 - a)$$
$$\Rightarrow \quad a = 1, -2$$

Do yourself - 4 :

- (i) If $x^2 + bx + c = 0 \& 2x^2 + 9x + 10 = 0$ have both roots in common, find b & c.
- (ii) If $x^2 7x + 10 = 0$ & $x^2 5x + c = 0$ have a common root, find c.
- (iii) Show that $x^2 + (a^2 2)x 2a^2 = 0$ and $x^2 3x + 2 = 0$ have exactly one common root for all $a \in \mathbb{R}$.

7. **REMAINDER THEOREM :**

If we divide a polynomial f(x) by $(x - \alpha)$ the remainder obtained is $f(\alpha)$. If $f(\alpha)$ is 0 then $(x - \alpha)$ is a factor of f(x).

Consider $f(x) = x^3 - 9x^2 + 23x - 15$ If $f(1) = 0 \implies (x-1)$ is a factor of f(x). If $f(x) = (x-2)(x^2 - 7x + 9) + 3$. Hence f(2) = 3 is remainder when f(x) is divided by (x-2).

Illustrations 10: A polynomial in x of degree greater than three, leaves remainders 2, 1 and -1 when divided, respectively, by (x - 1), (x + 2) and (x + 1). What will be the remainder when it is divided by (x - 1)(x + 2)(x + 1).

Solution: Let required polynomial be $f(x) = p(x) (x - 1) (x + 2) (x + 1) + a_0 x^2 + a_1 x + a_2$ By remainder theorem, f(1) = 2, f(-2) = 1, f(-1) = -1.

$$\Rightarrow a_{0} + a_{1} + a_{2} = 2$$

$$4a_{0} - 2a_{1} + a_{2} = 1$$

$$a_{0} - a_{1} + a_{2} = -1$$
Solving we get, $a_{0} = \frac{7}{6}$, $a_{1} = \frac{3}{2}$, $a_{2} = \frac{2}{3}$

Remainder when f(x) is divided by (x - 1)(x + 2)(x + 1)

will be
$$\frac{7}{6}x^2 + \frac{3}{2}x + \frac{2}{3}$$

8. SOLUTION OF RATIONAL INEQUALITIES :

Let $y = \frac{f(x)}{g(x)}$ be an expression in x where f(x) & g(x) are polynomials in x. Now, if it is given that y > 0 (or < 0 or ≥ 0 or ≤ 0), this calls for all the values of x for which y satisfies the constraint. This

solution set can be found by following steps :

Step I : Factorize f(x) & g(x) and generate the form :

$$V = \frac{(x - a_1)^{n_1} (x - a_2)^{n_2} \dots (x - a_k)^{n_k}}{(x - b_1)^{m_1} (x - b_2)^{m_2} \dots (x - b_p)^{m_p}}$$

where $n_1n_2....n_k$, $m_1,m_2....m_p$ are natural numbers and $a_1,a_2....a_k$, $b_1,b_2....b_p$ are real numbers. Clearly, here $a_1,a_2....a_k$ are roots of f(x) = 0 & $b_1,b_2,...b_p$ are roots of g(x) = 0.

Step II :

Here y vanishes (becomes zero) for
$$a_1, a_2, \dots, a_k$$
. These points are marked on the number line with a black dot. They are solution of $y = 0$.

If g(x) = 0, $y = \frac{f(x)}{g(x)}$ attains an undefined form, hence b_1, b_2, \dots, b_k are excluded from the

solution. These points are marked with white dots.

e.g.
$$f(x) = \frac{(x-1)^3 (x+2)^4 (x-3)^5 (x+6)}{x^2 (x-7)^3}$$

- **Step-III :** Check the value of y for any real number greater than the right most marked number on the number line. If it is positive, then y is positive for all the real numbers greater than the right most marked number and vice versa.
- **Step-IV :** If the exponent of a factor is odd, then the point is called simple point and if the exponent of a factor is even, then the point is called double point

$$\frac{(x-1)^{3}(x+2)^{4}(x-3)^{5}(x+6)}{x^{2}(x-7)^{3}}$$

Here 1,3,–6 and 7 are simple points and -2 & 0 are double points.

From right to left, beginning above the number line (if y is positive in step 3 otherwise from below the line), a wavy curve should be drawn which passes through all the marked points so that when passing through a simple point, the curve intersects the number line and when passing through a double point, the curve remains on the same side of number line.

$$f(x) = \frac{(x-1)^3(x+2)^4(x-3)^5(x+6)}{x^2(x-7)^3}$$

As exponents of (x + 2) and x are even, the curve does not cross the number line. This method is called wavy curve method.

Step-V: The intervals where the curve is above number line, y will be positive and the intervals where the curve is below the number line, y will be negative. The appropriate intervals are chosen in accordance with the sign of inequality & their union represents the solution of inequality.

Note :

- (i) Points where denominator is zero will never be included in the answer.
- (ii) If you are asked to find the intervals where f(x) is non-negative or non-positive then make the intervals closed corresponding to the roots of the numerator and let it remain open corresponding to the roots of denominator.
- (iii) Normally we cannot cross-multiply in inequalities. But we cross multiply if we are sure that quantity in denominator is always positive.
- (iv) Normally we cannot square in inequalities. But we can square if we are sure that both sides are non negative.
- (v) We can multiply both sides with a negative number by changing the sign of inequality.
- (vi) We can add or subtract equal quantity to both sides of inequalities without changing the sign of inequality.

Illustration 11:Find x such that $3x^2 - 7x + 6 < 0$ Solution:D = 49 - 72 < 0As D < 0, $3x^2 - 7x + 6$ will always be positive. Hence $x \in \phi$.

Illustration 12: $(x^2 - x - 6)(x^2 + 6x) \ge 0$

Solution :

 $(x-3)(x+2)(x)(x+6) \ge 0$

Consider E = x(x-3)(x+2)(x+6), $E = 0 \Rightarrow x = 0, 3, -2, -6$ (all are simple points)

For
$$x \ge 3$$
 $E = x$ $(x-3)$ $(x+2)$ $(x+6)$
+ve +ve +ve +ve +ve

= positive

Hence for $x(x-3)(x+2)(x+6) \ge 0$

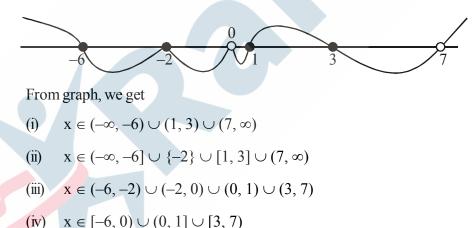
$$x \in (-\infty, -6] \cup [-2, 0] \cup [3, \infty)$$

Illustration 13: Let $f(x) = \frac{(x-1)^3(x+2)^4(x-3)^5(x+6)}{x^2(x-7)^3}$. Solve the following inequality

(i) f(x) > 0 (ii) $f(x) \ge 0$ (iii) f(x) < 0 (iv) $f(x) \le 0$

Solution :

We mark on the number line zeros of the function : 1, -2, 3 and -6 (with black circles) and the points of discontinuity 0 and 7 (with white circles), isolate the double points : -2 and 0 and draw the wavy curve :



Do yourself - 5 :

(e)

(i) Find range of x such that

7x - 17

(a)
$$(x-2)(x+3) \ge 0$$
 (b)

(c)
$$\frac{3x-1}{4x+1} \le 0$$
 (d) $\frac{(2x-1)(x+3)(2-x)(1-x)^2}{x^4(x+6)(x-9)(2x^2+4x+9)} < 0$

$$\frac{1}{4} \ge 1$$
 (f) $x^2 + 2 \le 3x \le 2x^2 - 5$

 $\frac{x}{x+1} > 2$

9. QUADRATIC EXPRESSION AND IT'S GRAPHS :

Consider the quadratic expression, $y = ax^2 + bx + c$, $a \neq 0$ & a, b, $c \in R$ then;

(a) The graph between x, y is always a parabola. If a > 0 then the shape of the parabola is concave upwards & if a < 0 then the shape of the parabola is concave downwards.

Fig. 2

a > 0

D = 0

 $\left(\frac{-b}{2a}, \frac{-D}{4a}\right)$

x x

Roots are coincident

 $ax^2 + bx + c > 0 \forall x \in \mathbf{R} - \{\alpha\}$

 $ax^2 + bx + c = 0$ for $x = \alpha = \beta$

<u>-b</u>, <u>-D</u> 2a 4a

a < 0

 $\mathbf{D} = \mathbf{0}$

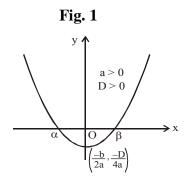
Roots are coincident

 $ax^2+bx+c < 0 \forall x \in R-\{\alpha\}$

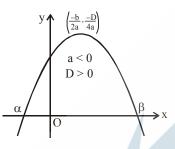
 $ax^2 + bx + c = 0$ for $x = \alpha = \beta$

Fig. 5

(b) The graph of $y = ax^2 + bx + c$ can be divided in 6 broad categories which are as follows : (Let the real roots of quadratic equation $ax^2 + bx + c = 0$ be $\alpha \& \beta$ where $\alpha \le \beta$).



Roots are real & distinct $ax^{2} + bx + c > 0 \forall x \in (-\infty, \alpha) \cup (\beta, \infty)$ $ax^{2} + bx + c < 0 \forall x \in (\alpha, \beta)$



Roots are real & distinct $ax^2 + bx + c > 0 \forall x \in (\alpha, \beta)$ $ax^2 + bx + c < 0 \forall x \in (-\infty, \alpha) \cup (\beta, \infty)$

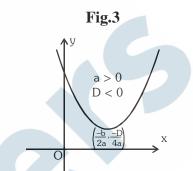
Important Note :

- (i) The quadratic expression $ax^2 + bx + c > 0$ for each $x \in R \Rightarrow a > 0$, D < 0 & vice-versa (Fig. 3)
- (ii) The quadratic expression $ax^2 + bx + c < 0$ for each $x \in R \Rightarrow a < 0$, D < 0 & vice-versa (Fig. 6)

10. MAXIMUM & MINIMUM VALUES OF QUADRATIC EXPRESSIONS : $y = ax^2 + bx + c$:

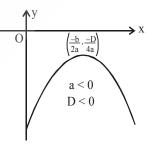
We know that $y = ax^2 + bx + c$ takes following form : $y = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{(b^2 - 4ac)}{4a^2} \right]$, which is a parabola. \therefore vertex = $\left(\frac{-b}{2a}, \frac{-D}{4a} \right)$ When a > 0, y will take a minimum value at vertex ; $x = \frac{-b}{2a}$; $y_{min} = \frac{-D}{4a}$

When a < 0, y will take a maximum value at vertex; $x = \frac{-b}{2a}$; $y_{max} = \frac{-D}{4a}$. If quadratic expression ax^2+bx+c is a perfect square, then a > 0 and D = 0

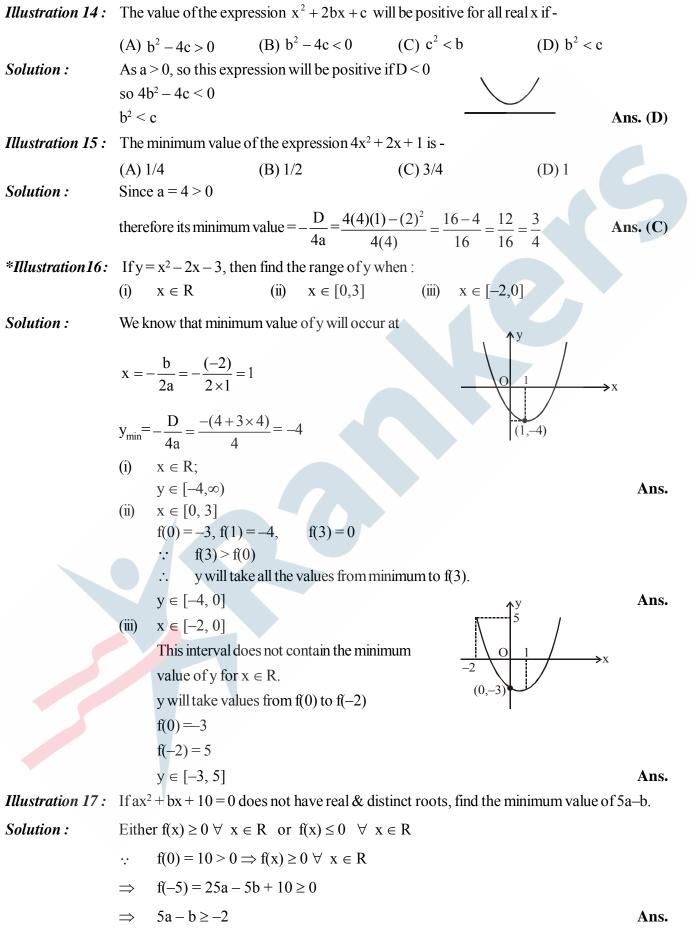


Roots are complex conjugate $ax^2 + bx + c > 0 \forall x \in R$

Fig.6



Roots are complex conjugate $ax^2 + bx + c < 0 \forall x \in R$



Do yourself - 6 Find the minimum value of: **(i)** $y = x^2 + 2x + 2$ (b) $y = 4x^2 - 16x + 15$ (a) For following graphs of $y = ax^2 + bx + c$ with $a,b,c \in R$, comment on the sign of : **(ii)** (i) a (ii)b (iii) c (iv)D (v) $\alpha + \beta$ (vi) $\alpha\beta$ β (2) y $y \land \alpha = \beta = 0$ (3) (1)(iii) Given the roots of equation $ax^2 + bx + c = 0$ are real & distinct, where $a,b,c \in \mathbb{R}^+$, then the vertex of the graph will lie in which quadrant. *(iv) Find the range of 'a' for which : (b) $ax^2 + 4x - 2 < 0 \quad \forall x \in \mathbb{R}$ $ax^2 + 3x + 4 > 0 \quad \forall \ x \in R$ (a) **INEQUALITIES INVOLVING MODULUS FUNCTION :** 11. **Properties of modulus function :** (i) $|\mathbf{x}| \ge a \implies \mathbf{x} \ge a \text{ or } \mathbf{x} \le -a$, where a is positive. (ii) $|\mathbf{x}| \le a \Rightarrow \mathbf{x} \in [-a, a]$, where a is positive (iii) $|\mathbf{x}| > |\mathbf{y}| \Rightarrow \mathbf{x}^2 > \mathbf{y}^2$ (iv) $||a| - |b|| \le |a \pm b| \le |a| + |b|$ (v) $|\mathbf{x} + \mathbf{y}| = |\mathbf{x}| + |\mathbf{y}| \Rightarrow \mathbf{x}\mathbf{y} \ge 0$ (vi) $|\mathbf{x} - \mathbf{y}| = |\mathbf{x}| + |\mathbf{y}| \Longrightarrow \mathbf{x}\mathbf{y} \le 0$ *Illustration 18:* If x satisfies $|x - 1| + |x - 2| + |x - 3| \ge 6$, then (A) $0 \le x \le 4$ (B) $x \le -2$ or $x \ge 4$ (C) $x \le 0$ or $x \ge 4$ (D) none of these $x \leq 1$, then Solution : Case I : $1 - x + 2 - x + 3 - x \ge 6 \Longrightarrow x \le 0$ Hence x < 0...(i) **Case II :** $1 < x \le 2$, then $x - 1 + 2 - x + 3 - x \ge 6 \implies x \le -2$ But $1 < x < 2 \Rightarrow$ No solution. ...(ii) **Case III** : $2 < x \le 3$, then $x - 1 + x - 2 + 3 - x \ge 6 \Rightarrow x \ge 6$ But $2 < x \le 3 \Rightarrow$ No solution. ...(iii) **Case IV :** x > 3, then $x - 1 + x - 2 + x - 3 \ge 6 \Longrightarrow x \ge 4$ Hence $x \ge 4$...(iv) From (i), (ii), (iii) and (iv) the given inequality holds for $x \le 0$ or $x \ge 4$.

Illustration 19: Solve for x : (a) $||x-1|+2| \le 4$. (b) $\frac{x-4}{x+2} \le \left|\frac{x-2}{x-1}\right|$ Solution : (a) $||x-1|+2| \le 4 \implies -4 \le |x-1|+2 \le 4$ $\Rightarrow -6 \le |x-1| \le 2$ $\Rightarrow |x-1| \le 2 \Rightarrow -2 \le x-1 \le 2$ $\Rightarrow -1 \le x \le 3 \Rightarrow x \in [-1, 3]$ (b) **Case 1 :** Given inequation will be statisfied for all x such that $\frac{\mathbf{x}-4}{\mathbf{x}+2} \le 0 \qquad \Rightarrow \qquad \mathbf{x} \in (-2, 4] - \{1\}$(i) (Note : {1} is not in domain of RHS) Case 2: $\frac{x-4}{x+2} > 0 \implies x \in (-\infty, -2) \cup (4, \infty)$(ii) Given inequation becomes or $\frac{x-2}{x-1} \le -\frac{x-4}{x+2}$ $\frac{x-2}{x-1} \ge \frac{x-4}{x+2}$ on solving we get on solving we get $x \in (-2, 4/5) \cup (1, \infty)$ $x \in (-2, 0] \cup (1, 5/2]$ taking intersection with (ii) we get taking intersection with (ii) we get \dots (iii) $x \in \phi$ $x \in (4, \infty)$ Hence, solution of the original inequation : $x \in (-2,\infty) - \{1\}$ (taking union of (i) & (iii)) The equation $|x| + \left| \frac{x}{x-1} \right| = \frac{x^2}{|x-1|}$ is always true for x belongs to Illustration 20: (C) (-1, 1) (D) $(-\infty, \infty)$ (A) $\{0\}$ (B) $(1, \infty)$ $\frac{\mathbf{x}^2}{|\mathbf{x}-1|} = \left|\mathbf{x} + \frac{\mathbf{x}}{|\mathbf{x}-1|}\right|$ Solution : $\therefore |\mathbf{x}| + \left| \frac{\mathbf{x}}{\mathbf{x} - 1} \right| = \left| \mathbf{x} + \frac{\mathbf{x}}{\mathbf{x} - 1} \right| \text{ is true only if } \left(\mathbf{x} \cdot \frac{\mathbf{x}}{\mathbf{x} - 1} \right) \ge 0 \Rightarrow \mathbf{x} \in \{0\} \cup (1, \infty). \text{ Ans } (\mathbf{A}, \mathbf{B})$

12. **IRRATIONAL INEQUALITIES :**

Illustration 21: Solve for x, if
$$\sqrt{x^2 - 3x + 2} > x - 2$$

Solution:

$$\begin{cases} x^2 - 3x + 2 \ge 0 \\ x - 2 \ge 0 \\ (x^2 - 3x + 2) > (x - 2)^2 \\ \text{or} \qquad \Rightarrow \\ \begin{cases} x^2 - 3x + 2 \ge 0 \\ x - 2 < 0 \end{cases} \qquad \begin{cases} (x - 1)(x - 2) \ge 0 \\ (x - 2) \ge 0 \\ x - 2 > 0 \end{cases} \Rightarrow x > 2$$

Hence, solution set of the original inequation is $x \in R - (1,2]$

Do yourself - 7 :

i) Solve for x if
$$\frac{|x^2 - 4|}{x^2 + x - 2} > 1$$

(ii) Solve for x if $\sqrt{x^2 - x} > (x - 1)$

13. LOGARITHMIC INEQUALITIES :

Points to remember :

(i)	$\log_a x < \log_a y \iff$	$\begin{bmatrix} x < y & \text{if } a > 1 \\ x > y & \text{if } 0 < a < 1 \end{bmatrix}$
(ii)	If $a > 1$, then	(a) $\log_a x$
(iii)	If $0 < a < 1$, then	(a) $\log_a x a^p$

(b) $\log_a x > p \Longrightarrow x > a^p$

(b) $\log_a x > p \Longrightarrow 0 < x < a^p$

Illustration 22: Solve for x : (a) $\log_{10.5}(x^2 - 5x + 6) \ge -1$ (b) $\log_{10.5}(\log_{10.5}(x^2 - 5)) > 0$ $\log_{0.5}(x^2 - 5x + 6) \ge -1 \implies 0 < x^2 - 5x + 6 \le (0.5)^{-1}$ Solution : (a) $\Rightarrow 0 < x^2 - 5x + 6 < 2$ $\begin{cases} x^2 - 5x + 6 > 0\\ x^2 - 5x + 6 < 2 \end{cases} \Rightarrow x \in [1, 2) \cup (3, 4] \end{cases}$ Hence, solution set of original inequation : $x \in [1,2) \cup (3,4]$ $\log_{1/3}(\log_4(x^2-5)) > 0 \implies 0 < \log_4(x^2-5) < 1$ (b) $\begin{cases} 0 < \log_4(x^2 - 5) \implies x^2 - 5 > 1 \\ \log_4(x^2 - 5) < 1 \implies 0 < x^2 - 5 < 4 \end{cases} \implies 1 < (x^2 - 5) < 4 \end{cases}$ $\Rightarrow \quad 6 < x^2 < 9 \quad \Rightarrow \quad x \in \left(-3, -\sqrt{6}\right) \cup \left(\sqrt{6}, 3\right)$ Hence, solution set of original inequation : $x \in (-3, -\sqrt{6}) \cup (\sqrt{6}, 3)$ *Illustration 23*: Solve for $\mathbf{x} : \log_2 \mathbf{x} \le \frac{2}{\log_2 \mathbf{x} - 1}$. Solution : Let $\log_2 x = t$ $t \leq \frac{2}{t-1} \Rightarrow t - \frac{2}{t-1} \leq 0$ $\frac{t^2 - t - 2}{t - 1} \le 0 \implies \frac{(t - 2)(t + 1)}{(t - 1)} \le 0$ \Rightarrow $t \in (-\infty, -1] \cup (1, 2]$ \Rightarrow $\log_{2} x \in (-\infty, -1] \cup (1, 2]$ or

Illustration 24: Solve the inequation : $\log_{2x+3} x^2 < \log_{2x+3}(2x+3)$

Solution : This inequation is equivalent to the collection of the systems

$$\begin{bmatrix} 2x+3>1\\ 0 < x^{2} < 2x+3\\ \text{or}\\ 0 < 2x+3 < 1\\ x^{2} > 2x+3 > 0 \end{bmatrix} \begin{bmatrix} x>-1\\ (x-3)(x+1) < 0 & \text{\& } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\ -1 < x < 3 & \text{if } x \neq 0\\ \text{or}\\$$

Hence, solution of the original inequation is $x \in \left(-\frac{3}{2}, -1\right) \cup (-1, 0) \cup (0, 3)$

14. EXPONENTIAL INEQUATIONS :

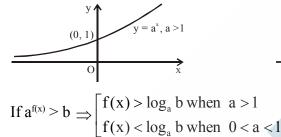


Illustration 25: Solve for x :
$$2^{x+2} > \left(\frac{1}{4}\right)^{\frac{1}{x}}$$

Solution: We have $2^{x+2} > 2^{-2/x}$. Since the base 2 > 1, we have $x + 2 > -\frac{2}{x}$ (the sign of the inequality is retained).

Now
$$x + 2 + \frac{2}{x} > 0 \implies \frac{x^2 + 2x + 2}{x} > 0$$

$$\Rightarrow \frac{(x+1)^2 + 1}{x} > 0 \implies x \in (0, \infty)$$

Illustration 26: Solve for $x : (1.25)^{1-x} < (0.64)^{2(1+\sqrt{x})}$

W

Solution :

e have
$$\left(\frac{5}{4}\right)^{1-x} < \left(\frac{16}{25}\right)^{2(1+\sqrt{x})}$$
 or $\left(\frac{4}{5}\right)^{x-1} < \left(\frac{4}{5}\right)^{4(1+\sqrt{x})}$

Since the base $0 < \frac{4}{5} < 1$, the inequality is equivalent to the inequality $x - 1 > 4(1 + \sqrt{x})$

$$\Rightarrow \frac{x-5}{4} > \sqrt{x}$$

Now, R.H.S. is positive

$$\Rightarrow \quad \frac{x-5}{4} > 0 \quad \Rightarrow \quad x > 5 \qquad \dots \dots \dots (i)$$

we have $\frac{x-5}{4} > \sqrt{x}$

both sides are positive, so squaring both sides

$$\Rightarrow \frac{(x-5)^2}{16} > x \quad \text{or} \quad \frac{(x-5)^2}{16} - x > 0$$

or $x^2 - 26x + 25 > 0 \quad \text{or} \quad (x-25)(x-1) > 0$
$$\Rightarrow x \in (-\infty, 1) \cup (25, \infty) \quad \dots \dots (ii)$$

interpreting (i) & (ii) since (25, a)

intersection (i) & (ii) gives $x \in (25, \infty)$

Do yourself-8 :

- (i) Solve for x : (a) $\log_{0.3} (x^2 + 8) > \log_{0.3} (9x)$ (b) $\log_7 \left(\frac{2x 6}{2x 1}\right) > 0$
- (ii) Solve for x : $\left(\frac{2}{3}\right)^{|x|-1} > 1$

15. MAXIMUM & MINIMUM VALUES OF RATIONAL ALGEBRAIC EXPRESSIONS :

$$\mathbf{y} = \frac{\mathbf{a}_1 \mathbf{x}^2 + \mathbf{b}_1 \mathbf{x} + \mathbf{c}_1}{\mathbf{a}_2 \mathbf{x}^2 + \mathbf{b}_2 \mathbf{x} + \mathbf{c}_2}, \frac{1}{\mathbf{a} \mathbf{x}^2 + \mathbf{b} \mathbf{x} + \mathbf{c}}, \frac{\mathbf{a}_1 \mathbf{x} + \mathbf{b}_1}{\mathbf{a}_2 \mathbf{x}^2 + \mathbf{b}_2 \mathbf{x} + \mathbf{c}_2}, \frac{\mathbf{a}_1 \mathbf{x}^2 + \mathbf{b}_1 \mathbf{x} + \mathbf{c}_1}{\mathbf{a}_2 \mathbf{x} + \mathbf{b}_2}:$$

Sometime we have to find range of expression of form $\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2}$

The following procedure is used :

Step 1: Equate the given expression to y i.e.
$$y = \frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2}$$

Step 2: By cross multiplying and simplifying, obtain a quadratic equation in x. $(a_1 - a_2y)x^2 + (b_1 - b_2y)x + (c_1 - c_2y) = 0$

Step 3: Put Discriminant ≥ 0 and solve the inequality for possible set of values of y.

Illustration 27: For $x \in \mathbb{R}$, find the set of values attainable by $\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$.

Solution :

Let
$$y = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$$

 $x^2(y - 1) + 3x(y + 1) + 4(y - 1) = 0$
Case-I: $y \neq 1$
For $y \neq 1$ above equation is a quadratic equation.
So for $x \in \mathbb{R}$, $D \ge 0$
 $\Rightarrow 9(y + 1)^2 - 16(y - 1)^2 \ge 0 \Rightarrow 7y^2 - 50y + 7 \le 0$
 $\Rightarrow (7y - 1)(y - 7) \le 0 \Rightarrow y \in \left[\frac{1}{7}, 7\right] - \{1\}$

Case II : when y = 1 $\Rightarrow \quad 1 = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$ \Rightarrow $x^2 + 3x + 4 = x^2 - 3x + 4$ $\Rightarrow x = 0$ Hence y = 1 for real value of x. so range of y is $\left[\frac{1}{7}, 7\right]$ **Illustration 28**: Find the values of a for which the expression $\frac{ax^2 + 3x - 4}{3x - 4x^2 + a}$ assumes all real values for real values of x. Let $y = \frac{ax^2 + 3x - 4}{3x - 4x^2 + a}$ Solution : $x^{2}(a+4y) + 3(1-y)x - (4+ay) = 0$ If $x \in R$, D > 0 $\Rightarrow 9(1-y)^2 + 4(a+4y)(4+ay) \ge 0 \Rightarrow (9+16a)y^2 + (4a^2+46)y + (9+16a) \ge 0$ for all $y \in R$, $(9 + 16a) > 0 \& D \le 0$ $\Rightarrow 4(a^2 - 8a + 7)(a^2 + 8a + 16) \le 0$ \Rightarrow $(4a^2 + 46)^2 - 4(9 + 16a)(9 + 16a) \le 0$ \Rightarrow $a^2 - 8a + 7 \le 0 \Rightarrow 1 \le a \le 7$ $9 + 16a > 0 \& 1 \le a \le 7$ Taking intersection, $a \in [1, 7]$ Now, checking the boundary values of a For a = 1 $y = \frac{x^2 + 3x - 4}{3x - 4x^2 + 1} = -\frac{(x - 1)(x + 4)}{(x - 1)(4x + 1)}$ $\therefore x \neq 1 \Rightarrow y \neq -1$ \Rightarrow a = 1 is not possible. if a = 7 $y = \frac{7x^2 + 3x - 4}{3x - 4x^2 + 7} = \frac{(7x - 4)(x + 1)}{(7 - 4x)(x + 1)} \qquad \because x \neq -1 \implies y \neq -1$ So y will assume all real values for some real values of x. $a \in (1,7)$ So **Do yourself - 9 :**

(i) Prove that the expression $\frac{8x-4}{x^2+2x-1}$ cannot have values between 2 and 4, in its domain. (ii) Find the range of $\frac{x^2+2x+1}{x^2+2x+7}$, where x is real

16. LOCATION OF ROOTS :

This article deals with an elegant approach of solving problems on quadratic equations when the roots are located / specified on the number line with variety of constraints :

Consider the quadratic equation $ax^2 + bx + c = 0$ with a > 0 and let $f(x) = ax^2 + bx + c$

Type-1: Both roots of the quadratic equation are greater than a specific number (say d). The necessary and sufficient condition for this are :

(i)
$$D \ge 0$$
; (ii) $f(d) > 0$; (iii) $-\frac{b}{2a} > d$

Note : When both roots of the quadratic equation are less than a specific number d than the necessary and sufficient condition will be :

(i)
$$D \ge 0$$
; (ii) $f(d) > 0$; (iii) $-\frac{b}{2a} < d$

Type-2:

Both roots lie on either side of a fixed number say (d). Alternatively one root is greater than 'd' and other root less than 'd' or 'd' lies between the roots of the given equation.

The necessary and sufficient condition for this are : f(d) < 0

Note : Consideration of discriminant is not needed.

Type-3:

Exactly one root lies in the interval (d, e).

The necessary and sufficient condition for this are :

 $f(d) \cdot f(e) < 0$

Note : The extremes of the intervals found by given

conditions give 'd' or 'e' as the root of the equation.

Hence in this case also check for end points.

Type-4:

When both roots are confined between the number d and e (d < e). The necessary and sufficient condition for this are :

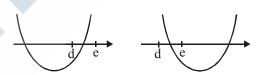
(i)
$$D \ge 0$$
; (ii) $f(d) > 0$; (iii) $f(e) > 0$
(iv) $d < -\frac{b}{2a} < e$

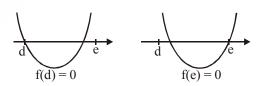
Type-5:

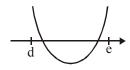
One root is greater than e and the other roots is less than d (d < e).

The necessary and sufficient condition for this are : f(d) < 0 and f(e) < 0

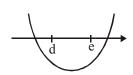
Note : If a < 0 in the quadratic equation $ax^2 + bx + c = 0$ then we divide the whole equation by 'a'. Now assume $x^2 + \frac{b}{a}x + \frac{c}{a}$ as f(x). This makes the coefficient of x^2 positive and hence above cases are applicable.







1



	· · · · · · · · · · · · · · · · · · ·		
Illustration 29 :			
	$x^{2} + 2(a - 1)x + a + 5 = 0$ are		
	(i) real and distinct	(ii) equal	
	(iii) opposite in sign	(iv) equal in magnitude but opposite in sign	
	(v) positive	(vi) negative	
	(vii) greater than 3	(viii) smaller than 3	
	(ix) such that both the roots lie in the in	nterval (1, 3)	
Solution :	Let $f(x) = x^2 + 2(a - 1)x + a + 5 = Ax^2 + 3x^2 $	-Bx + C (say)	
	$\Rightarrow A = 1, B = 2(a - 1), C = a + 5.$		
	Also $D = B^2 - 4AC = 4(a - 1)^2 - 4(a + 5) = 4(a + 1)(a - 4)$		
	(i) $D > 0$		
	$\Rightarrow (a+1)(a-4) > 0 \Rightarrow a \in (a+1)(a-4)(a-4) > 0 \Rightarrow a \in (a+1)(a-4)(a-4) > 0 \Rightarrow a \in (a+1)(a-4)(a-4) > 0 \Rightarrow a \in (a+1)(a-4)(a-4)(a-4)(a-4)(a-4)(a-4)(a-4)(a-4$	$-\infty, -1)\cup(4,\infty).$	
	(ii) $D = 0$		
	$\Rightarrow (a+1)(a-4) = 0 \Rightarrow a = -$	-1, 4.	
	(iii) This means that 0 lies between the	roots of the given equation.	
	\Rightarrow f(0) < 0 and D > 0 i.e. a \in (-	$-\infty, -1) \cup (4, \infty)$	
	$\Rightarrow \mathbf{a} + 5 < 0 \Rightarrow \mathbf{a} < -5 \Rightarrow \mathbf{a} \in$	$(-\infty, -5).$	
	(iv) This means that the sum of the roo	ts is zero	
	\Rightarrow -2(a - 1) = 0 and D > 0 i.e. a	$a \in -(-\infty, -1) \cup (4, \infty) \implies a = 1$	
	which does not belong to $(-\infty, -1)$	$\cup(4,\infty)$	
	$\Rightarrow a \in \phi.$		
	(v) This implies that both the roots are	greater than zero	
	$\Rightarrow -\frac{B}{A} > 0, \frac{C}{A} > 0, D \ge 0 \Rightarrow$	$-(a-1) > 0, a+5 > 0, a \in (-\infty, -1] \cup [4, \infty)$	
	$\Rightarrow a < 1, -5 < a, a \in (-\infty, -1] \cup$		
	(vi) This implies that both the roots are	e less than zero	
	$\Rightarrow -\frac{B}{A} < 0, \frac{C}{A} > 0, D \ge 0 \Rightarrow$	$-(a-1) < 0, a+5 > 0, a \in (-\infty, -1] \cup [4, \infty)$	
	$\Rightarrow a > 1, a > -5, a \in (-\infty, -1] \cup$	$[4,\infty) \implies a \in [4,\infty).$	
	(vii) In this case		
*	$-\frac{B}{2a} > 3$, A.f(3) > 0 and D ≥ 0.		
	\Rightarrow -(a-1) > 3, 7a + 8 > 0 and a	$a \in (-\infty, -1] \cup [4, \infty)$	
	$\Rightarrow (a^{-1}) \neq 5, \forall a + 0 \neq 0 \text{ and } a \in (-\infty, -1] \cup [4, \infty)$ $\Rightarrow a < -2, a > -8/7 \text{ and } a \in (-\infty, -1] \cup [4, \infty)$		
		ese conditions simultaneously, there can be no	
	value of a for which both the roots		

(viii) In this case

 $-\frac{B}{2a} < 3$, A.f(3) > 0 and D ≥ 0. \Rightarrow a > -2, a > -8/7 and a $\in (-\infty, -1] \cup [4, \infty) \Rightarrow$ a $\in (-8/7, -1] \cup [4, \infty)$ (ix) In this case $1 < -\frac{B}{2A} < 3$, A.f(1) > 0, A.f(3) > 0, D ≥ 0. $\Rightarrow 1 < -1(a-1) < 3, 3a+4 > 0, 7a+8 > 0, a \in (-\infty, -1] \cup [4, \infty)$ $\Rightarrow -2 < a < 0, a > -4/3, a > -8/7, a \in (-\infty, -1] \cup [4, \infty) \Rightarrow a \in \left(-\frac{8}{7}, -1\right)$ **Illustration 30**: Find value of k for which one root of equation $x^2 - (k+1)x + k^2 + k - 8 = 0$ exceeds 2 & other is less than 2. Solution : $4-2(k+1) + k^2 + k - 8 < 0 \implies k^2 - k - 6 < 0$ $(k-3)(k+2) < 0 \implies -2 < k < 3$ Taking intersection, $k \in (-2, 3)$. **Illustration 31**: Find all possible values of a for which exactly one root of $x^2 - (a+1)x + 2a = 0$ lies in interval (0,3). Solution : $f(0) \cdot f(3) < 0$ \Rightarrow 2a (9-3(a+1)+2a) < 0 \Rightarrow 2a (-a+6) < 0 $a(a-6) > 0 \implies a < 0 \text{ or } a > 6$ \Rightarrow Checking the extremes. If a = 0, $x^2 - x = 0$ x = 0, 1 $1 \in (0, 3)$ If a = 6, $x^2 - 7x + 12 = 0$ x = 3, 4 But $4 \notin (0, 3)$ Hence solution set is $a \in (-\infty, 0] \cup (6, \infty)$ Do yourself - 10 : If α , β are roots of $7x^2 + 9x - 2 = 0$, find their position with respect to following ($\alpha < \beta$): (i) (a) -3(b) 0 (c) 1

- (ii) If a > 1, roots of the equation $(1 a)x^2 + 3ax 1 = 0$ are -
 - (A) one positive one negative (B) both negative
 - (C) both positive (D) both non-real
- (iii) Find the set of value of a for which the roots of the equation $x^2 2ax + a^2 + a 3 = 0$ are less than 3.
- (iv) If α , β are the roots of $x^2 3x + a = 0$, $a \in \mathbb{R}$ and $\alpha < 1 < \beta$, then find the values of a.
- (v) If α , β are roots of $4x^2 16x + \lambda = 0$, $\lambda \in \mathbb{R}$ such that $1 < \alpha < 2$ and $2 < \beta < 3$, then find the range of λ .

17. GENERAL QUADRATIC EXPRESSION IN TWO VARIABLES :

 $f(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ may be resolved into two linear factors if;

 $\Delta = abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0 \quad OR \quad \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$

Illustration 32: If $x^2 + 2xy + 2x + my - 3$ have two linear factor then m is equal to -

Here a = 1, h = 1, b = 0, g = 1, f = m/2, c = -3

So $\Delta = 0 \implies \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & m/2 \\ 1 & m/2 & -3 \end{vmatrix} = 0$

(B) - 6, 2

Solution :

$$\Rightarrow -\frac{m^2}{4} - (-3 - m/2) + m/2 = 0 \Rightarrow -\frac{m^2}{4} + m + 3 = 0$$

$$\Rightarrow m^2 - 4m - 12 = 0 \Rightarrow m = -2, 6$$
 Ans. (C)

(C) 6, -2

Do yourself - 11 :

(i) Find the value of k for which the expression $x^2 + 2xy + ky^2 + 2x + k = 0$ can be resolved into two linear factors.

18. THEORY OF EQUATIONS :

(A) 6, 2

Let $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are roots of the equation, $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$, where a_0, a_1, \dots, a_n are constants and $a_0 \neq 0$. $f(x) = a_0 (x - \alpha_1)(x - \alpha_2)(x - \alpha_3) \dots (x - \alpha_n)$ $\therefore \quad a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = a_0 (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$ Comparing the coefficients of like powers of x, we get $\sum \alpha_n = -\frac{a_1}{2} = S_n$ (say)

or
$$S_1 = -\frac{coefficient of x^{n-1}}{coefficient of x^n}$$

 $S_2 = \sum_{i \neq j} \alpha_i \alpha_j = (-1)^2 \frac{a_2}{a_0}$
 $S_3 = \sum_{i \neq j \neq k} \alpha_i \alpha_j \alpha_k = (-1)^3 \frac{a_3}{a_0}$
:
 $S_n = \alpha_1 \alpha_2 \dots \alpha_n = (-1)^n \frac{a_n}{a_0} = (-1)^n \frac{constant term}{coefficient of x^n}$

where S_k denotes the sum of the product of root taken k at a time.

Quadratic equation : If α , β are the roots of the quadratic equation $ax^2 + bx + c = 0$,

then
$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha\beta = \frac{c}{a}$

Cubic equation : If α , β , γ are roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$, then

$$\alpha + \beta + \gamma = -\frac{b}{a}, \ \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} \text{ and } \alpha\beta\gamma = -\frac{d}{a}$$

Note :

- (i) If α is a root of the equation f(x) = 0, then the polynomial f(x) is exactly divisible by $(x-\alpha)$ or $(x-\alpha)$ is a factor of f(x) and conversely.
- (ii) Every equation of nth degree (n ≥ 1) has exactly n root & if the equation has more than n roots, it is an identity.
- (iii) If the coefficients of the equation f(x) = 0 are all real and $\alpha + i\beta$ is its root, then $\alpha i\beta$ is also a root. i.e. **imaginary roots occur in conjugate pairs.**
- (iv) If the coefficients in the equation are all rational & $\alpha + \sqrt{\beta}$ is one of its roots, then $\alpha \sqrt{\beta}$ is also a root where $\alpha, \beta \in Q \& \beta$ is not a perfect square.
- (v) If there be any two real numbers 'a' & 'b' such that f(a) & f(b) are of opposite signs, then f(x) = 0 must have atleast one real root between 'a' and 'b'.
- (vi) Every equation f(x) = 0 of degree odd has at least one real root of a sign opposite to that of its last term.

Illustration 33: If two roots are equal, find the roots of $4x^3 + 20x^2 - 23x + 6 = 0$. Let roots be α , α and β $\therefore \quad \alpha + \alpha + \beta = -\frac{20}{4} \qquad \Rightarrow \qquad 2\alpha + \beta = -5 \qquad(i)$ $\therefore \quad \alpha \cdot \alpha + \alpha\beta + \alpha\beta = -\frac{23}{4} \qquad \Rightarrow \qquad \alpha^2 + 2\alpha\beta = -\frac{23}{4} & \alpha^2\beta = -\frac{6}{4}$ from equation (i) $\alpha^2 + 2\alpha (-5 - 2\alpha) = -\frac{23}{4} \Rightarrow \alpha^2 - 10\alpha - 4\alpha^2 = -\frac{23}{4} \Rightarrow 12\alpha^2 + 40\alpha - 23 = 0$ $\therefore \quad \alpha = 1/2, -\frac{23}{6}$ when $\alpha = \frac{1}{2}$ $\alpha^2\beta = \frac{1}{4}(-5-1) = -\frac{3}{2}$ when $\alpha = -\frac{23}{6} \Rightarrow \alpha^2\beta = \frac{23 \times 23}{36} \left(-5 - 2x \left(-\frac{23}{6}\right)\right) \neq -\frac{3}{2} \Rightarrow \quad \alpha = \frac{1}{2} \qquad \beta = -6$

Hence roots of equation
$$= \frac{1}{2}, \frac{1}{2}, -6$$
 Ans.

Illustration 34: If α , β , γ are the roots of $x^3 - px^2 + qx - r = 0$, find :

(i)
$$\sum \alpha^3$$
 (ii) $\alpha^2(\beta+\gamma)+\beta^2(\gamma+\alpha)+\gamma^2(\alpha+\beta)$

Solution :

We know that
$$\alpha + \beta + \gamma = p$$

 $\alpha\beta + \beta\gamma + \gamma\alpha = q$
 $\alpha\beta\gamma = r$
(i) $\alpha^{3} + \beta^{3} + \gamma^{3} = 3\alpha\beta\gamma + (\alpha + \beta + \gamma)\{(\alpha + \beta + \gamma)^{2} - 3(\alpha\beta + \beta\gamma + \gamma\alpha)\}$
 $= 3r + p\{p^{2} - 3q\} = 3r + p^{3} - 3pq$
(ii) $\alpha^{2}(\beta + \gamma) + \beta^{2}(\alpha + \gamma) + \gamma^{2}(\alpha + \beta) = \alpha^{2}(p - \alpha) + \beta^{2}(p - \beta) + \gamma^{2}(p - \gamma)$

$$= p(\alpha^{2} + \beta^{2} + \gamma^{2}) - 3r - p^{3} + 3pq = p(p^{2} - 2q) - 3r - p^{3} + 3pq = pq - 3$$

Illustration 35: If $b^2 < 2ac$ and $a, b, c, d \in \mathbb{R}$, then prove that $ax^3 + bx^2 + cx + d = 0$ has exactly one real root.

Solution : Let α , β , γ be the roots of $ax^3 + bx^2 + cx + d = 0$

Then
$$\alpha + \beta + \gamma = -\frac{b}{a}$$

 $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$
 $\alpha\beta\gamma = \frac{-d}{a}$
 $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = \frac{b^2}{a^2} - \frac{2c}{a} = \frac{b^2 - 2ac}{a^2}$

 $\Rightarrow \alpha^2 + \beta^2 + \gamma^2 < 0$, which is not possible if all α , β , γ are real. So atleast one root is non-real, but complex roots occurs in pair. Hence given cubic equation has two non-real and one real roots.

Do yourself - 12 : (i) Let α , β be two of the roots of the equation $x^3 - px^2 + qx - r = 0$. If $\alpha + \beta = 0$, then show that

- (ii) If two roots of $x^3 + 3x^2 9x + c = 0$ are equal, then find the value of c.
- (iii) If α , β , γ be the roots of $ax^3 + bx^2 + cx + d = 0$, then find the value of

(a)
$$\sum \alpha^2$$
 (b) $\sum \frac{1}{\alpha}$ (c) $\sum \alpha^2 (\beta + \gamma)$

19. TRANSFORMATION OF THE EQUATION :

Let $ax^2 + bx + c = 0$ be a quadratic equation with two roots α and β . If we have to find an equation whose roots are $f(\alpha)$ and $f(\beta)$, i.e. some expression in $\alpha \& \beta$, then this equation can be found by finding α in terms of y. Now as α satisfies given equation, put this α in terms of y directly in the equation.

 $y = f(\alpha)$

pq = r

By transformation, $\alpha = g(y)$

$$a(g(y))^2 + b(g(y)) + c = 0$$

This is the required equation in y.

Illustration 36: If the roots of $ax^2 + bx + c = 0$ are α and β , then find the equation whose roots are :

(a)
$$\frac{-2}{\alpha}, \frac{-2}{\beta}$$
 (b) $\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$ (c) α^2, β^2
Solution:
(a) $\frac{-2}{\alpha}, \frac{-2}{\beta}$
 $put, y = \frac{-2}{\alpha} \Rightarrow \alpha = \frac{-2}{y}$
 $a\left(-\frac{2}{y}\right)^2 + b\left(\frac{-2}{y}\right) + c = 0 \Rightarrow cy^2 - 2by + 4a = 0$
Required equation is $cx^2 - 2bx + 4a = 0$
(b) $\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$
 $put, y = \frac{\alpha}{\alpha+1} \Rightarrow \alpha = \frac{y}{1-y}$
 $\Rightarrow a\left(\frac{y}{1-y}\right)^2 + b\left(\frac{y}{1-y}\right) + c = 0 \Rightarrow (a + c - b)y^2 + (-2c + b)y + c = 0$
Required equation is $(a + c - b)x^2 + (b - 2c)x + c = 0$
(c) α^2, β^2
 $put y = \alpha^2 \Rightarrow \alpha = \sqrt{y}$
 $ay + b\sqrt{y} + c = 0$
 $b^2y = a^2y^2 + (2a - b^2)y + c^2 = 0$
Required equation is $a^3x^2 + (2a - b^2)x + c^2 = 0$
Required equation is $a^3x^2 + (2a - b^2)x + c^2 = 0$
Illustration 37: If the roots of $ax^3 + bx^2 + cx + d = 0$ are α, β, γ then find equation whose roots are $\frac{1}{\alpha}\beta, \frac{1}{\beta\gamma}, \frac{1}{\gamma\alpha}$.
Solution:
Put $y = \frac{1}{\alpha\beta} = \frac{\gamma}{\alpha\beta\gamma} - \frac{a\gamma}{d} (\because \alpha\beta\gamma = -\frac{d}{a})$
Put $x = \frac{dy}{a}$
 $\Rightarrow a\left(-\frac{dy}{a}\right)^3 + b\left(-\frac{dy}{a}\right)^2 + c\left(-\frac{dy}{a}\right) + d = 0$
Required equation is $d^2x^3 - bdx^2 + ax - a^2 = 0$
Do yourself - 13:
(i) If α, β are the roots of $ax^2 + bx + c = 0$, then find the equation whose roots are

(a) $\frac{1}{\alpha^2}, \frac{1}{\beta^2}$ (b) $\frac{1}{a\alpha+b}, \frac{1}{a\beta+b}$ (c) $\alpha+\frac{1}{\beta}, \beta+\frac{1}{\alpha}$ (ii) If α , β are roots of $x^2 - px + q = 0$, then find the quadratic equation whose root are $(\alpha^2 - \beta^2)(\alpha^3 - \beta^3)$ and $\alpha^2\beta^3 + \alpha^3\beta^2$.

Miscellaneous Illustrations :

Illustrations 38 :	If α , β are the roots of $x^2 + px + q = 0$, and γ , δ are the roots of $x^2 + rx + s = 0$, evaluate $(\alpha - \gamma) (\alpha - \delta) (\beta - \gamma) (\beta - \delta)$ in terms of p, q, r and s. Deduce the condition that the equations have a common root.		
Solution :	α , β are the roots of $x^2 + px + q = 0$		
	$\therefore \alpha + \beta = -p, \ \alpha\beta = q \qquad \qquad \dots \dots$		
	and γ , δ are the roots of $x^2 + rx + s = 0$		
	$\therefore \gamma + \delta = -\mathbf{r}, \gamma \delta = \mathbf{s} \qquad \dots $		
	Now, $(\alpha - \gamma) (\alpha - \delta) (\beta - \gamma) (\beta - \delta)$		
	$= [\alpha^2 - \alpha(\gamma + \delta) + \gamma \delta] [\beta^2 - \beta(\gamma + \delta) + \gamma \delta]$		
	$= (\alpha^2 + r\alpha + s) (\beta^2 + r\beta + s)$		
	$= \alpha^{2}\beta^{2} + r\alpha\beta(\alpha + \beta) + r^{2}\alpha\beta + s(\alpha^{2} + \beta^{2}) + sr(\alpha + \beta) + s^{2}$		
	$= \alpha^{2}\beta^{2} + r\alpha\beta(\alpha + \beta) + r^{2}\alpha\beta + s((\alpha + \beta)^{2} - 2\alpha\beta)) + sr(\alpha + \beta) + s^{2}$		
	$= q^{2} - pqr + r^{2}q + s(p^{2} - 2q) + sr (-p) + s^{2}$		
	$= (q - s)^2 - rpq + r^2q + sp^2 - prs$		
	$= (q - s)^2 - rq (p - r) + sp (p - r)$		
	$= (q - s)^{2} + (p - r) (sp - rq)$		
	For a common root (Let $\alpha = \gamma$ or $\beta = \delta$)(3)		
	then $(\alpha - \gamma) (\alpha - \delta) (\beta - \gamma) (\beta - \delta) = 0$ (4)		
	from (3) and (4), we get		
	$(q - s)^2 + (p - r) (sp - rq) = 0$		
	\Rightarrow $(q - s)^2 = (p - r) (rq - sp)$, which is the required condition.		
Illustrations 39:	If $(y^2 - 5y + 3) (x^2 + x + 1) \le 2x$ for all $x \in R$, then find the interval in which y lies.		
Solution :	$(y^2 - 5y + 3) (x^2 + x + 1) < 2x, \forall x \in R$		
	$\Rightarrow y^2 - 5y + 3 < \frac{2x}{x^2 + x + 1}$		
	Let $\frac{2x}{x^2 + x + 1} = P$		
	$\Rightarrow px^2 + (p-2) x + p = 0$		
	(1) Since x is real, $(p-2)^2 - 4p^2 \ge 0$		
	\rightarrow 2 c $n \in \frac{2}{3}$		
	$\Rightarrow -2 \le p \le \frac{2}{3}$		
	(2) The minimum value of $2x/(x^2 + x + 1)$ is -2.		
	So, $y^2 - 5y + 3 < -2 \implies y^2 - 5y + 5 < 0$		
	$\Rightarrow \mathbf{y} \in \left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)$		

ANSWERS FOR DO YOURSELF

1:	(i)	(a) $-1, -2;$ (b) 4; (c) $1 \pm \sqrt{2};$ (ii) $a, \frac{1}{a};$ (iii) $\frac{7}{3}$ (iv) $3, -\frac{1}{5}$
2:	(i)	b = -4, $c = 1$; (ii) (a) imaginary; (b) real & distinct; (c) real & coincident
3:	(i)	(a) $c = 0$; (b) $c = 1$; (c) $b \rightarrow$ negative, $c \rightarrow$ negative
4 :	(i)	$b = \frac{9}{2}, c = 5;$ (ii) $c = 0, 6$
5:	(i)	(a) $x \in (-\infty, -3] \cup [2, \infty);$ (b) $x \in (-2, -1);$ (c) $\left(-\frac{1}{4}, \frac{1}{3}\right];$
		(d) $x \in (-6, -3) \cup \left(\frac{1}{2}, 2\right) - \{1\} \cup (9, \infty);$ (e) [3,7]; (f) ϕ
6:		(a) 1 (b) -1
	(ii)	(1) (i) $a < 0$ (ii) $b < 0$ (iii) $c < 0$ (iv) $D > 0$ (v) $\alpha + \beta < 0$ (vi) $\alpha\beta > 0$
		(2) (i) $a < 0$ (ii) $b > 0$ (iii) $c = 0$ (iv) $D > 0$ (v) $\alpha + \beta > 0$ (vi) $\alpha\beta = 0$
		(3) (i) $a < 0$ (ii) $b = 0$ (iii) $c = 0$ (iv) $D = 0$ (v) $\alpha + \beta = 0$ (vi) $\alpha\beta = 0$
	(iii)	Third quadrant
	(iv)	(a) $a > 9/16$ (b) $a < -2$
7:		$x \in (-\infty, -2) \cup (1, 3/2)$ (ii) $x \in R - (0, 1]$
8:	(i)	(a) $x \in (1,8)(b)$ $x \in (-\infty, 1/2)$ (ii) $x \in (-1,1)$
9:		least value = 0 , greatest value = 1 .
10:		$-3 < \alpha < 0 < \beta < 1;$ (ii) C; (iii) $a < 2;$ (iv) $a < 2;$ (v) $12 < \lambda < 16$
11:		
12:	(ii)	-27, 5; (iii) (a) $\frac{1}{a^2}(b^2-2ac)$, (b) $-\frac{c}{d}$, (c) $\frac{1}{a^2}(3ad-bc)$
13 :	(i)	(a) $c^2y^2 + y(2ac - b^2) + a^2 = 0$; (b) $acx^2 - bx + 1 = 0$; (c) $acx^2 + (a + c)bx + (a + c)^2 = 0$
	(ii)	$x^{2} - p(p^{4} - 5p^{2}q + 5q^{2})x + p^{2}q^{2}(p^{2} - 4q)(p^{2} - q) = 0$

EXERCISE (E-1)

- 1. For what values of a does the equation $9x^2 2x + a = 6 ax$ posses equal roots ?
- 2. Find the value of k for which the equation $(k 1)x^2 + (k + 4)x + k + 7 = 0$ has equal roots.
- 3. Find the values of a for which the roots of the equation $(2a 5)x^2 2(a 1)x + 3 = 0$ are equal.

4. Form a quadratic equation whose roots are the numbers $\frac{1}{10 - \sqrt{72}}$ and $\frac{1}{10 + 6\sqrt{2}}$.

- 5. For what values of a is the sum of the roots of the equation $x^2 + (2 a a^2)x a^2 = 0$ equal to zero?
- 6. For what values of a is the ratio of the roots of the equation $ax^2 (a + 3)x + 3 = 0$ equal to 1.5?
- 7. The roots x_1 and x_2 of the equation $x^2 + px + 12 = 0$ are such that $x_2 x_1 = 1$. Find p.
- 8. Find k in the equation $5x^2 kx + 1 = 0$ such that the difference between the roots of the equation is unity.
- 9. Find p in the equation $x^2 4x + p = 0$ if it is know that the sum of the squares of its roots is equal to 16.
- 10. For what values of a is the difference between the roots of the equation $2x^2 (a + 1)x + (a 1) = 0$ equal to their product ?
- 11. Express $x_1^3 + x_2^3$ in terms of the coefficients of the equation $x^2 + px + q = 0$, where x_1 and x_2 are the roots of the equation.
- **12.** Assume that x_1 and x_2 are roots of the equation $3x^2 ax + 2a 1 = 0$. Calculate $x_1^3 + x_2^3$.
- 13. Without solving the equation $3x^2 5x 2 = 0$, find the sum of the cubes of its roots.
- 14. For what values of m does the equation $x^2 x + m = 0$ possess no real roots ?
- **15.** For what values of c does the equation $(c 2)x^2 + 2(c 2)x + 2 = 0$ possess no real roots ?
- 16. Find integral values of k for which the quadratic equation $(k 12)x^2 + 2(k 12)x + 2 = 0$ possess no real roots ?
- 17. For what values of k is the inequality $x^2 (k-3)x k + 6 > 0$ valid for all real x?
- 18. For what integral k is the inequality $x^2 2(4k 1)x + 15k^2 2k 7 > 0$ valid for any real x?
- 19. Find the least integral value of k for which the equation $x^2 2(k+2)x + 12 + k^2 = 0$ has two different real roots.
- **20.** Find all values of a for which the inequality $(a + 4)x^2 2ax + 2a 6 < 0$ is satisfied for all $x \in \mathbb{R}$.
- **21.** Find all values of a for which the inequality $(a 3)x^2 2ax + 3a 6 > 0$ is satisfied for all values of x.
- 22. Find all values of a for which the inequality $(a 1)x^2 (a + 1)x + a + 1 > 0$ is satisfied for all real x.
- 23. For what values of a do the equations $x^2 + ax + 1 = 0$ and $x^2 + x + a = 0$ have exactly one root in common ?
- 24. The trinomial $ax^2 + bx + c$ has no real roots, a + b + c < 0. Find the sign of the number c.
- 25. For what values of a do the graphs of the functions y = 2ax + 1 and $y = (a 6)x^2 2$ not intersect?

EXERCISE (E-2)

- 1. For what values of 'a' does the quadratic equation $x^2 + (2a\sqrt{a^2 3})x + 4 = 0$ possess equal roots ?
- 2. Find the value of a for which one root of the equation $x^2 + (2a 1)x + a^2 + 2 = 0$ is twice as large as the other.
- 3. For what values of a is the ratio of the roots of the equation $x^2 + ax + a + 2 = 0$ equal to 2?
- 4. For what values of a do the roots x_1 and x_2 of the equation $x^2 (3a + 2)x + a^2 = 0$ satisfy the relation $x_1 = 9x_2$? Find the roots.
- 5. Find a such that one of the roots of the equation $x^2 \frac{15}{4}x + a = 0$ is the square of the other.
- 6. For what value of a is the difference between the roots of the equation $(a 2)x^2 (a 4)x 2 = 0$ equal to 3 ?
- 7. Find all the values of a for which the sum of the roots of the equation $x^2 2a(x 1) 1 = 0$ is equal to the sum of the squares of its roots.
- 8. Find the coefficients of the equation $x^2 + px + q = 0$ such that its roots are equal to p and q.
- 9. Calculate $\frac{1}{x_1^3} + \frac{1}{x_2^3}$, where x_1 and x_2 are roots of the equation $2x^2 3ax 2 = 0$.
- 10. For what values of m does the equation $x^2 x + m^2 = 0$ possess no real roots ?
- 11. For what values of m does the equation $mx^2 (m + 1)x + 2m 1 = 0$ possess no real roots ?
- 12. For what values of a is the inequality $ax^2 + 2ax + 0.5 > 0$ valid throughout the entire number axis ?
- 13. For what values of a does the equation (2 x)(x + 1) = a posses real and positive roots?
- 14. For what least integral k is the quadratic trinomial $(k-2)x^2 + 8x + k + 4$ positive for all values of x?
- 15. Given two quadratic equations $x^2 x + m = 0$ and $x^2 x + 3m = 0$, $m \neq 0$. Find the value of m for which one of the roots of the second equation is equal to double the root of the first equation.
- 16. For what values of p does the vertex of the parabola $y = x^2 + 2px + 13$ lie at a distance of 5 from the origin ?
- 17. If the roots of the equation $x^2 5x + 16 = 0$ are α , β and the roots of the equation $x^2 + px + q = 0$ are

	$(\alpha^2 + \beta^2)$ and $\frac{\alpha\beta}{2}$, then-			[AIEEE-2002]
	(1) $p = 1$ and $q = 56$		(2) $p = 1$ and $q = -3$	56
	(3) $p = -1$ and $q = 56$		(4) $p = -1$ and $q = -1$	-56
•	If α and β be the roots of the	ne equation (x –	a) $(x - b) = c$ and $c \neq$	0, then roots of the equation
	$(x - \alpha) (x - \beta) + c = 0$ are	-		[AIEEE-2002]
	(1) a and c (2) b	and c	(3) a and b	(4) $a + b$ and $b + c$
•	If $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$	3 then the value	of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is-	[AIEEE-2002]

(1) 19/3 (2) 25/3 (3) -19/3 (4) none of these

19.

18.

20.	The value of a for wh	nich one roots of the c	quadrati	ic equation $(a^2 - 5a)$	$(+3) x^{2} + ($	(3a-1)x+2=0
	is twice as large as the	he other is				[AIEEE-2003]
	(1) - 2/3	(2) 1/3) - 1/3	(4) 2/3	
21.	The number of real s		tion x^2	-3 x +2=0,	is-	[AIEEE-2003]
	(1) 4	(2) 1	() 3	(4) 2	
22.	If $(1 - p)$ is a root	of quadratic equat	ion x ²	+ px + (1 - p) = 0	then its roo	ots are-
	(1) 0, -1	(2) – 1, 1	(3) 0, 1	(4) -1, 2	[AIEEE-2004]
23.	If one root of the equation then the value of 'q' is) is 4, w	while the equation x ²	+ px + q = [AIEEE-	
	(1) 3	(2) 12	(3) 49/4	(4) 4	
24.	If value of a for which the least value is-	the sum of the squares	of the r	oots of the equation	$x^2 - (a - 2)x$	a − a − 1=0 assume [AIEEE-2005]
	(1) 2	(2) 3	(3) 0	(4) 1	
25.	If the roots of the eq	uation $x^2 - bx + c =$	= 0 be 1	two consecutive int	egers, then	$b^2 - 4c$ equals-
	(1) 1	(2) 2	(3) 3	(4) -2	[AIEEE-2005]
26.	If both the roots of the interval-	he quadratic equatior	$1 x^2 - 2$	$2kx + k^2 + k - 5 =$	0 are less t	han 5, then k lies [AIEEE-2005]
	(1) [4, 5]	(2) (-∞, 4)	(3) (6, ∞)	(4) (5, 6)	
27.	If $x^2 + 2ax + 10 - 3a >$	> 0 for all $x \in R$, then			[JEE 2	004 (Screening)]
	(1) - 5 < a < 2	(2) a < - 5	(3) a > 5	(4) $2 < a$	< 5
		EXER	CISI	E (S-1)		
1.	Solve following Ineq	ualities over the set (of real	numbers -		
	(i) $\frac{x^2 + 2x - 3}{x^2 + 1} < 0$		(ii)	$\frac{(x-1)(x+2)^2}{-1-x} < 0$		
	(iii) $x^4 - 2x^2 - 63$	≤ 0	(iv)	$\frac{x+1}{\left(x-1\right)^2} < 1$		
	(v) $\frac{x^2 - 7x + 12}{2x^2 + 4x + 5} >$	0	(vi)	$\frac{x^2 + 6x - 7}{x^2 + 1} \le 2$		
	(vii) $\frac{x^4 + x^2 + 1}{x^2 - 4x - 5} < 0$	I	(viii)	$\frac{x+7}{x-5} + \frac{3x+1}{2} \ge 0$		
	(ix) $\frac{1}{x+2} < \frac{3}{x-3}$		(x)	$\frac{14x}{x+1} - \frac{9x-30}{x-4} < 0$)	
	(xi) $\frac{x^2-5x+12}{x^2-4x+5} >$	3	(xii)	$\frac{x^2+2}{x^2-1} < -2$		
	(xiii) $\frac{(2-x^2)(x-3)}{(x+1)(x^2-3x)}$	$\frac{3)^3}{-4)} \ge 0$	(xiv)	$\frac{5-4x}{3x^2-x-4} < 4$		

$$(\mathbf{xv}) \quad \frac{(x+2)(x^2-2x+1)}{4+3x-x^2} \ge 0 \qquad (\mathbf{xvi}) \quad \frac{x^4-3x^3+2x^2}{x^2-x-30} > 0$$

$$(\mathbf{xvii}) \quad \frac{2x}{x^2-9} \le \frac{1}{x+2} \qquad (\mathbf{xviii}) \quad \frac{1}{x-2} + \frac{1}{x-1} > \frac{1}{x}$$

$$(\mathbf{xix}) \quad \frac{20}{(x-3)(x-4)} + \frac{10}{x-4} + 1 > 0 \qquad (\mathbf{xx}) \quad \frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)} >$$

$$(\mathbf{xxi}) \quad (x^2-2x)(2x-2) - 9\frac{2x-2}{x^2-2x} \le 0 \qquad (\mathbf{xxii}) \quad \frac{|x+2|-x}{x} < 2$$

$$(\mathbf{xxiii}) \quad \left|\frac{x^2-5x+4}{x^2-4}\right| \le 1 \qquad (\mathbf{xxiv}) \quad \frac{1}{x-2} - \frac{1}{x} \le \frac{2}{x+2}$$

2. α, β are the roots of the equation $K(x^2 - x) + x + 5 = 0$. If $K_1 & K_2$ are the two values of K for which the roots α, β are connected by the relation $(\alpha/\beta) + (\beta/\alpha) = 4/5$. Find the value of $(K_1/K_2) + (K_2/K_1)$.

1

- 3. Let a, b be arbitrary real numbers. Find the smallest natural number 'b' for which the equation $x^2 + 2(a+b)x + (a-b+8) = 0$ has unequal real roots for all $a \in \mathbb{R}$.
- 4. Find the range of values of a, such that $f(x) = \frac{ax^2 + 2(a+1)x + 9a + 4}{x^2 8x + 32}$ is always negative.
- 5. Let the quadratic equation $x^2 + 3x k = 0$ has roots a, b and $x^2 + 3x 10 = 0$ has roots c, d such that modulus of difference of the roots of the first equation is equal to twice the modulus of the difference of the roots of the second equation. If the value of 'k' can be expressed as rational number in the lowest form as m/n then find the value of (m + n).
- 6. When $y^2 + my + 2$ is divided by (y 1) then the quotient is f (y) and the remainder is R₁. When $y^2 + my + 2$ is divided by (y + 1) then quotient is g (y) and the remainder is R₂. If R₁ = R₂ then find the value of *m*.
- 7. If the quadratic equations, $x^2 + bx + c = 0$ and $bx^2 + cx + 1 = 0$ have a common root then prove that either b + c + 1 = 0 or $b^2 + c^2 + 1 = bc + b + c$.
- 8. Find the value of *m* for which the quadratic equations $x^2 11x + m = 0$ and $x^2 14x + 2m = 0$ may have common root.
- 9. If α , β are the roots of $ax^2 + bx + c = 0$, $(a \neq 0)$ and $\alpha + \delta$, $\beta + \delta$ are the roots of $Ax^2 + Bx + C = 0$, $(A \neq 0)$ for some constant δ , then prove that, $\frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2}$.
- 10. If α , β are the roots of the quadratic equation $ax^{2}+bx+c=0$ then which of the following expressions in α , β will denote the symmetric functions of roots. Give proper reasoning.
 - (i) $f(\alpha, \beta) = \alpha^2 \beta$ (ii) $f(\alpha, \beta) = \alpha^2 \beta + \alpha \beta^2$
 - (iii) $f(\alpha, \beta) = ln \frac{\alpha}{\beta}$ (iv) $f(\alpha, \beta) = \cos(\alpha \beta)$

- 11. Let $P(x) = 4x^2 + 6x + 4$ and $Q(y) = 4y^2 12y + 25$. Find the unique pair of real numbers (x, y) that satisfy $P(x) \cdot Q(y) = 28$.
- 12. Find the product of the real roots of the equation, $x^2 + 18x + 30 = 2\sqrt{x^2 + 18x + 45}$
- 13. We call 'p' a good number if the inequality $\frac{2x^2 + 2x + 3}{x^2 + x + 1} \le p$ is satisfied for any real x. Find the smallest integral good number.
- 14. Find the values of 'a' for which $-3 < [(x^2+ax-2)/(x^2+x+1)] < 2$ is valid for all real x.
- **15.** Suppose a, b, $c \in I$ such that greatest common divisor of $x^2 + ax + b$ and $x^2 + bx + c$ is (x + 1) and the least common multiple of $x^2 + ax + b$ and $x^2 + bx + c$ is $(x^3 4x^2 + x + 6)$. Find the value of (a + b + c).
- 16. If roots of the equation $(x \alpha)(x 4 + \beta) + (x 2 + \alpha)(x + 2 \beta) = 0$ are p and q then find the absolute value of the sum of the roots of the equations $2(x p)(x q) (x \alpha)(x 4 + \beta) = 0$ and $2(x p)(x q) (x 2 + \alpha)(x + 2 \beta) = 0$.
- 17. If the roots of $x^2 ax + b = 0$ are real & differ by a quantity which is less than c (c > 0), prove that b lies between $(1/4)(a^2 c^2) \& (1/4)a^2$.
- **18.** Find all values of p for which the roots of the equation $(p-3)x^2 2px + 5p = 0$ are real and positive.
- 19. Find all the values of the parameter 'a' for which both roots of the quadratic equation $x^2 ax + 2 = 0$ belong to the interval (0, 3).
- 20. At what values of 'a' do all the zeroes of the function $f(x) = (a 2)x^2 + 2ax + a + 3$ lie on the interval (-2, 1)?
- **21.** Consider the quadratic polynomial $f(x) = x^2 4ax + 5a^2 6a$
 - (a) Find the smallest positive integral value of 'a' for which f(x) positive for every real x.
 - (b) Find the largest distance between the roots of the equation f(x) = 0
 - (c) Find the set of values of 'a' for which range of f(x) is $[-8, \infty)$
- 22. Solve the inequality. Where ever base is not given take it as 10.

(i)
$$\left(\log_2 x\right)^4 - \left(\log_\frac{1}{2} \frac{x^5}{4}\right)^2 - 20\log_2 x + 148 < 0$$
. (ii) $\left(\log 100 x\right)^2 + (\log 10 x)^2 + \log x \le 14$

- (iii) $\log_{1/2}(x+1) > \log_2(2-x)$. (iv) $\log_x 2 \cdot \log_{2x} 2 \cdot \log_2 4x > 1$.
- (v) $\log_{1/5} (2x^2 + 5x + 1) < 0.$
- (vii) $\log_{x^2}(2+x) < 1$
- (ix) $\log_x \frac{4x+5}{6-5x} < -1$

- (vi) $\log_{1/2} x + \log_3 x > 1$.
- (viii) $(\log_{|x+6|} 2) \cdot \log_2 (x^2 x 2) \ge 1$

(x)
$$\log_3 \frac{|x^2 - 4x| + 3}{|x^2 + |x - 5|} \ge 0$$

EXERCISE (S-2)

- 1. Solve the following where $x \in R$.
 - (a) $(x-1)|x^2-4x+3|+2x^2+3x-5=0$ (b) $3|x^2-4x+2|=5x-4$
 - (c) $|x^3+1| + x^2 x 2 = 0$ (d) $2^{|x+2|} |2^{x+1} 1| = 2^{x+1} + 1$

2. Let α , β and γ are the roots of the cubic $x^3 - 3x^2 + 1 = 0$. Find a cubic whose roots are $\frac{\alpha}{\alpha - 2}$, $\frac{\beta}{\beta - 2}$ and $\frac{\gamma}{\gamma - 2}$. Hence or otherwise find the value of $(\alpha - 2)(\beta - 2)(\gamma - 2)$.

3. Suppose a cubic polynomial $f(x) = x^3 + px^2 + qx + 72$ is divisible by both $x^2 + ax + b$ and $x^2 + bx + a$ (where a, b, p, q are constants and $a \neq b$). Find the sum of the squares of the roots of the cubic polynomial.

4. Given x, $y \in R$, $x^2 + y^2 > 0$. If the maximum and minimum value of the expression $E = \frac{x^2 + y^2}{x^2 + xy + 4y^2}$

are M and m, and A denotes the average value of M and m, compute (2016)A.

5. Find the complete set of real values of 'a' for which both roots of the quadratic equation $\sqrt{2}$

 $(a^2-6a+5)x^2-\sqrt{a^2+2a}x+(6a-a^2-8)=0$ lie on either side of the origin.

- 6. Find the values of K so that the quadratic equation $x^2 + 2(K-1)x + K + 5 = 0$ has at least one positive root.
- 7. Let P (x) = x^2 + bx + c, where b and c are integer. If P(x) is a factor of both x^4 + $6x^2$ + 25 and $3x^4$ + $4x^2$ + 28x + 5, find the value of P(1).
- 8. Let α , β , γ be distinct real numbers such that $a\alpha^2 + b\alpha + c = (\sin\theta)\alpha^2 + (\cos\theta)\alpha$

$$a\beta^2 + b\beta + c = (\sin\theta)\beta^2 + (\cos\theta)\beta$$

$$a\gamma^2 + b\gamma + c = (\sin\theta)\gamma^2 + (\cos\theta)\gamma$$

(where a, b, $c \in R$)

(a) Find the maximum value of the expression $\frac{a^2 + b^2}{a^2 + 3ab + 5b^2}$

- (b) If $\vec{V}_1 = a\hat{i} + b\hat{j} + c\hat{k}$ makes an angle $\frac{\pi}{3}$ with $\vec{V}_2 = \hat{i} + \hat{j} + \sqrt{2}\hat{k}$, then find the number of values of $\theta \in [0, 2\pi]$
- 9. Find the product of uncommon real roots of the two polynomials $P(x) = x^4 + 2x^3 8x^2 6x + 15$ and $Q(x) = x^3 + 4x^2 x 10$.
- 10. If $ax^{17} + bx^{16} + 1$ is divisible by $x^2 x 1$, then find the integral value of a.

EXERCISE (JM)

- 1. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression
 $3b^2x^2 + 6bcx + 2c^2$ is :-[AIEEE-2009](1) Greater than -4ab(2) Less than -4ab(3) Greater than 4ab(4) Less than 4ab
- 2. Let for $a \neq a_1 \neq 0$, $f(x) = ax^2 + bx + c$, $g(x) = a_1x^2 + b_1x + c_1$ and p(x) = f(x) g(x). If p(x) = 0 only for x = -1 and p(-2) = 2, then the value of p(2) is: [AIEEE-2011] (1) 18 (2) 3 (3) 9 (4) 6

3.	Sachin and Dahul att	compted to solve a guedre	tic equation Sachin ma	la a miataka in writing down the
э.	Sachin and Rahul attempted to solve a quadratic equation. Sachin made a mistake in writing down the constant term and ended up in roots (4, 3). Rahul made a mistake in writing down coefficient of x to get			
		rect roots of equation are		[AIEEE-2011]
	(1) -4, -3	(2) 6, 1	(3) 4, 3	(4) -6, -1
4.	The equation e^{sinx} –			[AIEEE-2012]
	(1) exactly four real		(2) infinite number of	freal roots.
	(3) no real roots.		(4) exactly one real r	root.
5.	If the equations x ² a : b : c is :	$+ 2x + 3 = 0$ and $ax^2 +$	$bx + c = 0$, a, b, c \in	R, have a common root, then [JEE-MAIN-2013]
	(1) 1 : 2 : 3	(2) 3 : 2 : 1	(3) 1 : 3 : 2	(4) 3 : 1 : 2
6.	Let α and β be the	roots of equation $x^2 - 6$	$x - 2 = 0$. If $a_n = \alpha^n - \alpha^n$	β^n , for $n \ge 1$, then the value of
	$\frac{a_{10} - 2a_8}{2a_9}$ is equal to):		[JEE-MAIN-2015]
	(1) 3	(2) – 3	(3) 6	(4) – 6
7.	The sum of all real	values of x satisfying the	e equation $(x^2 - 5x + 5)^x$	$x^{2}+4x-60 = 1$ is :-
				[JEE-MAIN-2016]
	(1) 5	(2) 3	(3) –4	(4) 6
		EXER	CISE (JA)	
1.	The smallest value of			$k^{2} - 8kx + 16(k^{2} - k + 1) = 0$ are
1.		ve values at least 4, is	oots of the equation, x	[JEE 2009, 4 (-1)]
2.			$p, p^3 \neq q \text{ and } p^3 \neq -q.$ If	$f\alpha$ and β are nonzero complex
	numbers satisfying	$\alpha + \beta = -p \text{ and } \alpha^3 + \beta$	$d^3 = q$, then a quadratic	equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as
	its roots is			[JEE 2010, 3]
	(A) $(p^3 + q)x^2 - (p^3)$	$(+2q)x + (p^3 + q) = 0$	(B) $(p^3 + q)x^2 - (p^3 - q)x^2 - $	$(-2q)x + (p^3 + q) = 0$
	(C) $(p^3 - q)x^2 - (5p^3)$	$(a^{3}-2q)x + (p^{3}-q) = 0$	(D) $(p^3 - q)x^2 - (5p^3)$	$(y^{3} + 2q)x + (p^{3} - q) = 0$
3.	Let α and β be the	roots of $x^2 - 6x - 2 = 0$	with $\alpha > \beta$ If $a = \alpha^{r}$	$\beta^n - \beta^n$ for $n \ge 1$, then the value
			,	
	of $\frac{a_{10} - 2a_8}{2a_9}$ is			[JEE 2011]
	(A) 1	(B) 2	(C) 3	(D) 4
4.	A value of b for w	-		
		$x^2 + bx - 1 = 0$		
	have ()	$\mathbf{x}^2 + \mathbf{x} + \mathbf{b} = 0,$		
	have one root in co	Dilimon 1s -		[JEE 2011]
	(A) $-\sqrt{2}$	(B) $-i\sqrt{3}$	(C) i√5	(D) $\sqrt{2}$
				00

- 5. Let S be the set of all non-zero numbers α such that the quadratic equation $\alpha x^2 x + \alpha = 0$ has two distinct real roots x_1 and x_2 satisfying the inequality $|x_1 x_2| < 1$. Which of the following intervals is(are) a subset(s) of S ? [JEE 2015, 4M, -0M]
 - (A) $\left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$ (B) $\left(-\frac{1}{\sqrt{5}}, 0\right)$ (C) $\left(0, \frac{1}{\sqrt{5}}\right)$ (D) $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

6. Let $-\frac{\pi}{6} < \theta < -\frac{\pi}{12}$. Suppose α_1 and β_1 are the roots of the equation $x^2 - 2x \sec \theta + 1 = 0$ and α_2 and β_2 are the roots of the equation $x^2 + 2x \tan \theta - 1 = 0$. If $\alpha_1 > \beta_1$ and $\alpha_2 > \beta_2$, then $\alpha_1 + \beta_2$ equals [JEE(Advanced)-2016, 3(-1)]

(A) $2(\sec\theta - \tan\theta)$ (B) $2\sec\theta$ (C) $-2\tan\theta$

PARAGRAPH

Let p,q be integers and let α,β be the roots of the equation, $x^2 - x - 1 = 0$, where $\alpha \neq \beta$. For n = 0,1,2,..., let $a_n = p\alpha^n + q\beta^n$.

(D) 0

FACT : If a and b are rational numbers and $a + b\sqrt{5} = 0$, then a = 0 = b.

7.	If $a_4 = 28$, then p	+ 2q =		[JEE(Advanced)-2017, 3(-1)]
	(A) 14	(B) 7	(C) 12	(D) 21
8.	a ₁₂ =			[JEE(Advanced)-2017, 3(-1)]
	(A) $2a_{11} + a_{10}$	(B) $a_{11} - a_{10}$	(C) $a_{11} + a_{10}$	(D) $a_{11} + 2a_{10}$

ANSWER KEY

EXERCISE (E-1)

1. $a = 20 \pm 6\sqrt{5}$ **2.** $k_1 = \frac{-22}{3}, k_2 = 2$ **3.** a = 4 **4.** $28x^2 - 20x + 1 = 0$ **5.** $a_1 = -2, a_2 = 1$ **6.** $a_1 = 2, a_2 = 9/2$ **7.** $p = \pm 7$ **8.** $k = \pm 3\sqrt{5}$ **9.** p = 0**10.** a = 2 **11.** $x_1^3 + x_2^3 = 3pq - p^3$ **12.** $x_1^3 + x_2^3 = \frac{a(a^2 - 18a + 9)}{27}$ **13.** $\frac{215}{27}$ **14.** For all $m \in \left(\frac{1}{4}, +\infty\right)$ **15.** For all $c \in [2, 4)$ **16.** k = 13 **17.** (-3, 5) **18.** k = 3 **19.** k = 3 **20.** For all $a \in (-\infty, -6)$ **21.** For all $a \in (6, +\infty)$ **22.** For all $a \in \left(\frac{5}{3}, +\infty\right)$ **23.** a = -2 **24.** c < 0 **25.** For all $a \in (-6, 3)$ **EXERCISE (E-2) 1.** $a = \pm 2$ **2.** a = -4 **3.** $a_1 = -\frac{3}{2}, a_2 = 6$. **4.** {2, 18} for $a = 6, \left\{\frac{2}{19}, \frac{18}{19}\right\}$ for $a = -\frac{6}{19}$ 5. $a_1 = -\frac{125}{8}, a_2 = \frac{27}{8}$ 6. $a_1 = 3/2, a_2 = 3$ 7. $a_1 = 1/2, a_2 = 1$ **8.** $p_1 = 0, q_1 = 0, p_2 = 1, q_2 = -2$ **9.** $\frac{1}{x_1^3} + \frac{1}{x_2^3} = -\frac{27a^3 + 36a}{8}$ **10.** For all $m \in \left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$ **11.** For all $m \in \left(-\infty, -\frac{1}{7}\right) \cup \left(1, +\infty\right)$ **12.** $\left[0, \frac{1}{2}\right]$ **13.** For all $a \in \left(2, \frac{9}{4}\right)$ **14.** k = 5 **15.** m = -2 **16.** $\{-4, -3, 3, 4\}$ **20.** 4 **21.** 1 **22.** 1 **23.** 3 **24.** 4 **18.** 3 **19.** 1 **17.** 4 **25.** 1 **26.** 2 **27.** 1 **EXERCISE (S-1) 1.** (i) (-3, 1) (ii) $(-\infty, -2) \cup (-2, -1) \cup (1, +\infty)$ (iii) [-3, 3] (iv) $(-\infty, 0) \cup (3, +\infty)$ (v) $(-\infty, 3) \cup (4, +\infty)$ (vi) $(-\infty, +\infty)$ (vii) (-1, 5) (viii) $[1, 3] \cup (5, +\infty)$

 $\begin{aligned} &(\mathbf{ix}) \ (-9/2, -2) \cup (3, +\infty) &(\mathbf{x}) \ (-1, 1) \cup (4, 6) &(\mathbf{xi}) \ (1/2, 3) &(\mathbf{xii}) \ (-1, 0) \cup (0, 1) \\ &(\mathbf{xiii}) \ [-\sqrt{2}, -1) \cup (-1, \sqrt{2}] \cup [3, 4) &(\mathbf{xiv}) &(-\infty, -\sqrt{7}/2) \cup (-1, \sqrt{7}/2) \cup (4/3, +\infty) \\ &(\mathbf{xv}) \ (-\infty, -2] \cup (-1, 4) &(\mathbf{xvi}) \ (-\infty, -5) \cup (1, 2) \cup (6, +\infty) &(\mathbf{xvii}) \ (-\infty, -3) \cup (-2, 3) \\ &(\mathbf{xviii}) \ (-\sqrt{2}, 0) \cup (1, \sqrt{2}) \cup (2, +\infty) &(\mathbf{xix}) &(-\infty, -2) \cup (-1, 3) \cup (4, +\infty) \\ &(\mathbf{xx}) \ (-\infty, -7) \cup (-4, -2) &(\mathbf{xxi}) &(-\infty, -1] \cup (0, 1] \cup (2, 3] &(\mathbf{xxii}) \ (-\infty, 0) \cup (1, +\infty) \end{aligned}$

(xxiii) $[0, 8/5] \cup [5/2, +\infty)$	(xxiv) $\left(-2,\frac{(3-\sqrt{17})}{2}\right] \cup (0,2) \cup \left[\frac{(3+\sqrt{17})}{2},+\infty\right)$
2. 254 3. 5 4.	$a \in \left(-\infty, -\frac{1}{2}\right)$ 5. 191 6. 0 8. 0 or 24
9. $2x^2 + 2x\cos(A - B) - 2$	10. (ii) and (iv) 11. $\left(-\frac{3}{4}, \frac{3}{2}\right)$ 12. 20 13. 4
14. $-2 < a < 1$ 15. -6	16. 4 18. For all $p \in \left[3, \frac{15}{4}\right]$ 19. $2\sqrt{2} \le a < \frac{11}{3}$
20. $\left(-\infty, -\frac{1}{4}\right) \cup \{2\} \cup \{5, 6\}$	21. (a) 7, (b) 6, (c) 2 or 4
22. (i) $x \in \left(\frac{1}{16}, \frac{1}{8}\right) \cup (8, 16)$	(ii) $\frac{1}{\sqrt{10^9}} \le x \le 10$ (iii) $-1 \le x \le \frac{1-\sqrt{5}}{2}$ or $\frac{1+\sqrt{5}}{2} \le x \le 2$
(iv) $2^{-\sqrt{2}} < x < 2^{-1}$; $1 < x < 2^{\sqrt{2}}$ (v) $(-\infty, -2.5) \cup (0, \infty)$ (vi) $0 < x < 3^{1/1 - \log 3}$ (where base of log is 2) (vii) $-2 < x < -1$, $-1 < x < 0$, $0 < x < 1$, $x > 2$	
(viii) $x < -7$, $-5 < x \le -2$, x	≥ 4 (ix) $\frac{1}{2} < x < 1$ (x) $x \le -\frac{2}{3}$; $\frac{1}{2} \le x \le 2$
EXERCISE (S-2)	
	$x = -1 \text{ or } 1;$ (d) $x \ge -1 \text{ or } x = -3$
2. $3y^3 - 9y^2 - 3y + 1 = 0; (\alpha - 2)$	
	(5, ∞) 6. K ≤ -1 7. P(1) = 4 8. (a) 2, (b) 3
9. 6 10. 987	
	EXERCISE (JM)
1. 1 2. 1 3. 2	4. 3 5. 1 6. 1 7. 2
EXERCISE (JA)	
1. 2 2. B 3. C	4. B 5. A,D 6. C 7. C 8. C