~音Rankers

CONTENTS

Elasticity, Thermal Expansion, Calorimetry \& Heat Transfer

- Key-Concepts : Formulae and Basic Theory 1
- Exercise (S-1) : Conceptual Subjective Problems 35
- Exercise (S-2) : Challenging Subjective Problems 39
- Exercise (O-1) : Miscellaneous Type Problems 41
- Exercise (O-2) : Miscellaneous Type Problems 51
- Exercise (JM) : Previous 10 years AIEEE Problems 56
- Exercise (JA) : Previous 10 years IIT-JEE Problems 59
- Answer Key 63

ELASTICITY

A body is said to be rigid if the relative positions of its constituent particles remains unchanged when external deforming forces are applied to it. The nearest approach to a rigid body is diamond or carborundum.
Actually no body is perfectly rigid and every body can be deformed more or less by the application of suitable forces. All these deformed bodies however regain their original shape or size, when the deforming forces are removed.
The property of matter by virtue of which a body tends to regain its original shape and size after the removal of deforming forces is called elasticity.

SOME TERMS RELATED TO ELASTICITY :

- Deforming Force

External force which try to change in the length, volume or shape of the body is called deforming force.

- Perfectly Elastic Body

The body which perfectly regains its original form on removing the external deforming force, is defined as a perfectly elastic body. Ex. : quartz - Very nearly a perfect elastic body.

- Plastic Body
(a) The body which does not have the property of opposing the deforming force, is known as a plastic body.
(b) The bodies which remain in deformed state even after removed of the deforming force are defined as plastic bodies.
- Internal restoring force

When a external force acts at any substance then due to the intermolecular force there is a internal resistance produced into the substance called internal restoring force.
At equilibrium the numerical value of internal restoring force is equal to the external force.

STRESS

The internal restoring force acting per unit area of cross-section of the deformed body is called stress.

$$
\text { Stress }=\frac{\text { Internal restoring force }}{\text { Area of cross section }}=\frac{\mathrm{F}_{\text {internal }}}{\mathrm{A}}=\frac{\mathrm{F}_{\text {extermal }}}{\mathrm{A}}
$$

Stress depends on direction of force as well as direction of area of application so it is tensor.
SI UNIT : $\mathrm{N}-\mathrm{m}^{-2}$ Dimensions: $\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}$
There are three types of stress :-

- Longitudinal Stress

When the stress is normal to the surface of body, then it is known as longitudinal stress. There are two types of longitudinal stress
(a) Tensile Stress : The longitudinal stress, produced due to increase in length of a body, is defined as tensile stress.

(b) Compressive Stress : The longitudinal stress, produced due to decrease in length of a body, is defined as compressive stress.

(c) Volume Stress

If equal normal forces are applied every one surface of a body, then it undergoes change in volume. The force opposing this change in volume per unit area is defined as volume stress.
(d) Tangential Stress or Shear Stress

When the stress is tangential or parallel to the surface of a body then it is known as shear stress. Due to this stress, the shape of the body changes or it gets twisted.

STRAIN

- The ratio of change of any dimension to its original dimension is called strain.

$$
\text { Strain }=\frac{\text { change in size of the body }}{\text { original size of the body }}
$$

- It is a unitless and dimensionless quantity.
- There are three types of strain : Type of strain depends upon the directions of applied force.
- Longitudinal strain $=\frac{\text { change in length of the body }}{\text { initial length of the body }}=\frac{\Delta L}{L}$
- Volume strain $=\frac{\text { change in volume of the body }}{\text { original volume of the body }}=\frac{\Delta \mathrm{V}}{\mathrm{V}}$

- Shear strain

When a deforming force is applied to a body parallel to its surface then its shape (not size) changes. The strain produced in this way is known as shear strain. The strain produced due to change of shape of the body is known as shear strain.
$\tan \phi=\frac{\ell}{\mathrm{L}}$ or $\phi=\frac{\ell}{\mathrm{L}}=\frac{\text { displacement of upper face }}{\text { distance between two faces }}$

Relation Between angle of twist and Angle of shear

When a cylinder of length ' ℓ ' and radius ' r ' is fixed at one end and and tangential force is applied at the other end, then the cylinder gets twisted. Figure shows the angle of shear ABA^{\prime} and angle of twist $A^{\prime} A^{\prime}$. Arc AA' $=r \theta$ and $\quad \operatorname{Arc} A A^{\prime}=\ell \phi$ so $r \theta=\ell \phi$
$\Rightarrow \phi=\frac{\mathrm{r} \theta}{\ell}$

where $\theta=$ angle of twist, $\phi=$ angle of shear

- When a material is under tensile stress restoring force are caused by intermolecular attraction while under compressive stress, the restoring force are due to intermolecular repulsion.
- If the deforming force is inclined to the surface at an angle θ such that $\theta \neq 0$ and $\theta \neq 90^{\circ}$ then both tangential and normal stress are developed.
- Linear strain in the direction of force is called longitudinal strain while in a direction perpendicular to force lateral strain.

STRESS - STRAIN GRAPH

- Proportion Limit : The limit in which Hooke's law is valid and stress is directly proportional to strain is called proportion limit.Stress \propto Strain
- Elastic limit : That maximum stress which on removing the deforming force makes the body to recover completely its original state.

- Yield Point : The point beyond elastic limit, at which the length of wire starts increasing without increasing stress, is defined as the yield point.
- Breaking Point : The position when the strain becomes so large that the wire breaks down at last, is called breaking point. At this position the stress acting in that wire is called breaking stress and strain is called breaking strain.
- Elastic Hysteresis: The strain persists even when the stress is removed. This lagging behind of strain is called elastic hysteresis. This is the reason why the values of strain for same stress are different while increasing the load and while decreasing the load.

- Breaking Stress : The stress required to cause actual facture of a material is called the breaking stress Breaking stress $=\mathrm{F} / \mathrm{A}$
- Breaking stress also measures the tensile strength.
- Metals with small plastic deformation are called brittle.
- Metals with large plastic deformation are called ductile.
- Elasticity restoring forces are strictly conservative only when the elastic hysteresis is zero. i.e. the loading and unloading stress - strain curves are identical.

Ex. Find out longitudinal stress and tangential stress on a fixed block.
Sol. Longitudinal or normal stress $\sigma_{1}=\frac{100 \sin 30^{\circ}}{5 \times 2}=5 \mathrm{~N} / \mathrm{m}^{2}$
Tangential stress $\sigma_{2}=\frac{100 \cos 30^{\circ}}{5 \times 2}=5 \sqrt{3} \mathrm{~N} / \mathrm{m}^{2}$

Ex. The breaking stress of aluminium is $7.5 \times 10^{8} \mathrm{dyne}^{\mathrm{cm}^{-2}}$. Find the greatest length of aluminium wire that can hang vertically without breaking. Density of aluminium is $2.7 \mathrm{~g} \mathrm{~cm}^{-3}$.
Given : $\mathrm{g}=980 \mathrm{~cm} \mathrm{~s}^{-2}$.
Sol. Let ℓ be the greatest length of the wire that can hang vertically without breaking.
Mass of wire $\mathrm{m}=$ cross-sectional area $(\mathrm{A}) \times$ length $(\ell) \times$ density (ρ), Weight of wire $=\mathrm{mg}=\mathrm{A} \ell \rho g$ This is equal to the maximum force that the wire can withstand.
\therefore Breaking stress $=\frac{\ell \mathrm{A} \mathrm{\rho g}}{\mathrm{~A}}=\ell \rho g \Rightarrow 7.5 \times 10^{8}=\ell \times 2.7 \times 980$
$\Rightarrow \quad \ell=\frac{7.5 \times 10^{8}}{2.7 \times 980} \mathrm{~cm}=2.834 \times 10^{5} \mathrm{~cm}=2.834 \mathrm{~km}$

HOOKE'S LAW

If the deformation is small, the stress in a body is proportional to the corresponding strain, this fact is
known as Hooke's Law. Within elastic limit : stress \propto strain $\Rightarrow \frac{\text { stress }}{\text { strain }}=$ constant
This constant is known as modulus of elasticity or coefficient of elasticity.
The modulus of elasticity depends only on the type of material used. It does not depend upon the value of stress and strain.

YOUNG'S MODULUS OF ELASTICITY 'Y'

- Within elastic limit the ratio of longitudinal stress and longitudinal strain is called Young's modulus of elasticity.
- $\quad Y=\frac{\text { longitudinal stress }}{\text { longitudinal strain }}=\frac{F / A}{\ell / L}=\frac{F L}{\ell A}$
- Within elastic limit the force acting upon a unit area of a wire by which the length of a wire becomes double, is equivalent to the Young's modulus of elasticity of material of a wire.
- If L is the length of wire, r is radius and ℓ is the increase in length of the wire by suspending a weight Mg at its one end then Young's modulus of elasticity of the material of wire $\mathrm{Y}=\frac{\left(\mathrm{Mg} / \pi \mathrm{r}^{2}\right)}{(\ell / \mathrm{L})}=\frac{\mathrm{MgL}}{\pi \mathrm{r}^{2} \ell}$

- Unit of $\mathrm{Y}: \mathrm{N} / \mathrm{m}^{2} \quad$ - Dimensions of $\mathrm{Y}: \mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}$

Increment of length due to own weight

Let a rope of mass M and length L is hanged vertically. As the tension of different point on the rope is different. Stress as well as strain will be different at different point.
(i) maximum stress at hanging point
(ii) minimum stress at lower point

Consider a $d x$ element of rope at x distance from lower end then tension $T=\left(\frac{M}{L}\right) \times g$

So stress $=\frac{T}{A}=\left(\frac{M}{L}\right) \frac{x g}{A}$

Let increase in length of $d x$ is dy then strain $=\frac{d y}{d x}$
So Young modulus of elasticity $Y=\frac{\text { stress }}{\text { strain }}=\frac{\frac{M}{L} \frac{x g}{A}}{d y / d x} \Rightarrow\left(\frac{M}{L}\right) \frac{x g}{A} d x=Y d y$
For full length of rope $\frac{\mathrm{Mg}}{\mathrm{LA}} \int_{0}^{\mathrm{L}} \mathrm{xdx}=\mathrm{Y} \int_{0}^{\Delta \ell} \mathrm{dy} \Rightarrow \frac{\mathrm{Mg}}{\mathrm{LA}} \frac{\mathrm{L}^{2}}{2}=\mathrm{Y} \Delta \ell \Rightarrow \Delta \ell=\frac{\mathrm{MgL}}{2 \mathrm{AY}}$
[Since the stress is varying linearly we may apply average method to evaluate strain.]

BULK MODULUS OF ELASTICITY 'K' or 'B'

- Within elastic limit the ratio of the volume stress and the volume strain is called bulk modulus of elasticity.
- K or $B=\frac{\text { volume stress }}{\text { volumestrain }}=\frac{F / A}{\frac{-\Delta V}{V}}=\frac{\Delta P}{\frac{-\Delta V}{V}}$

The minus sign indicates a decrease in volume with an increase in stress.

- Unit of K : $\mathrm{N} \mathrm{m}^{-2}$ or pascal

- Bulk modulus of an ideal gas is process dependence.

- For isothermal process $\mathrm{PV}=$ constant $\Rightarrow \mathrm{PdV}+\mathrm{VdP}=0 \Rightarrow \mathrm{P}=\frac{-\mathrm{dP}}{\mathrm{dV} / \mathrm{V}}$ So bulk modulus $=\mathrm{P}$
- For adiabatic process $\mathrm{PV}^{\gamma}=$ constant $\Rightarrow \gamma \mathrm{PV}^{\gamma-1} \mathrm{dV}+\mathrm{V}^{\gamma} \mathrm{dP}=0$

$$
\Rightarrow \gamma \mathrm{PdV}+\mathrm{VdP}=0 \Rightarrow \gamma \mathrm{P}=\frac{-\mathrm{dP}}{\mathrm{dV} / \mathrm{V}} \text { So bulk modulus }=\gamma \mathrm{P}
$$

- For any polytropic process $\mathrm{PV}^{\mathrm{n}}=$ constant

$$
\Rightarrow \mathrm{nPV}^{\mathrm{n}-1} \mathrm{dV}+\mathrm{V}^{\mathrm{n}} \mathrm{dP}=0 \Rightarrow \mathrm{PdV}+\mathrm{VdP}=0 \Rightarrow \mathrm{nP}=\frac{-\mathrm{dP}}{\mathrm{dV} / \mathrm{V}} \quad \text { So bulk modulus }=\mathrm{nP}
$$

- Compressibility : The reciprocal of bulk modulus of elasticity is defined as compressibility. $\mathrm{C}=\frac{1}{\mathrm{~K}}$

MODULUS OF RIGIDITY ' η '

- Within elastic limit the ratio of shearing stress and shearing strain is called modulus of rigidity of a material.

Note : Angle of shear ' ϕ ' always taking in radian

Poisson's Ratio (σ)

In elastic limit, the ratio of lateral strain and longitudinal strain is called Poisson's ratio.
$\sigma=\frac{\text { lateral strain }}{\text { longitudinal strain }}=\frac{\beta}{\alpha} ; \beta=\frac{-\Delta \mathrm{D}}{\mathrm{D}}=\frac{\mathrm{d}-\mathrm{D}}{\mathrm{D}} \quad \& \alpha=\frac{\Delta \mathrm{L}}{\mathrm{L}}$

WORK DONE IN STRETCHING A WIRE

(Potential energy of a stretched wire)

When a wire is stretched, work is done against the interatomic forces, which is stored in the form of elastic potential energy.

For a wire of length L_{o} stretched by a distance x , the restoring elastic force is :

$$
\mathrm{F}=\text { stress } \times \text { area }=\mathrm{Y}\left[\frac{\mathrm{x}}{\mathrm{~L}_{\mathrm{o}}}\right] \mathrm{A}
$$

The work has to be done against the elastic restoring forces in stretching dx

$$
d W=F d x=\frac{Y A}{L_{o}} x d x
$$

The total work done in stretching the wire from $\mathrm{x}=0$ to $\mathrm{x}=\Delta \ell$ is, then

$$
\begin{gathered}
\mathrm{W}=\int_{0}^{\Delta \ell} \frac{\mathrm{YA}}{\mathrm{~L}_{\mathrm{o}}} \mathrm{xdx}=\frac{\mathrm{YA}}{\mathrm{~L}_{\mathrm{o}}}\left[\frac{\mathrm{x}^{2}}{2}\right]_{0}^{\Delta \ell}=\frac{\mathrm{YA}(\Delta \ell)^{2}}{2 \mathrm{~L}_{\circ}} \\
\left.\mathrm{W}=\frac{1}{2} \times \mathrm{Y} \times(\text { strain })^{2} \times \text { original volume }=\frac{1}{2}(\text { stress })(\text { strain }) \text { (volume) }\right)
\end{gathered}
$$

- The value of K is maximum for solids and minimum for gases.

- For any ideal rigid body all three elastic modulus are infinite .
- $\quad \eta$ is the characteristic of solid material only as the fluids do not have fixed shape.
- Potential energy density $=$ area under the stress-strain curve.
- Young's modulus $=$ Slope of the stress-strain curve

Ex. A steel wire of 4.0 m in length is stretched through 2.00 mm . The cross-sectional area of the wire is $2.0 \mathrm{~mm}^{2}$. If Young's modulus of steel is $2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ find (i) the energy density of wire (ii) the elastic potential energy stored in the wire.
Sol. (i) The energy density of stretched wire $=\frac{1}{2} \times$ stress $\times \operatorname{strain}=\frac{1}{2} \times \mathrm{Y} \times(\text { strain })^{2}$ $=\frac{1}{2} \times 2.0 \times 10^{11} \times\left[\frac{2 \times 10^{-3}}{4}\right]^{2}=2.5 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$
(ii) Elastic potential energy $=$ energy density \times volume $=2.5 \times 10^{4} \times\left(2.0 \times 10^{-6}\right) \times 4.0 \mathrm{~J}$

$$
=20 \times 10^{-2}=0.20 \mathrm{~J}
$$

Ex. A thin uniform metallic rod of length 0.5 m and radius 0.1 m rotates with an angular velocity $400 \mathrm{rad} / \mathrm{s}$ in a horizontal plane about a vertical axis passing through one of its ends. Calculate (a) tension in the rod and (b) the elongation of the rod. The density of material of the rod is $10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ and the Young's modulus is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.
Sol. (a) Consider an element of length dr at a distance r from the axis of rotation as shown in figure. The centripetal force acting on this element will be $\mathrm{dT}=\mathrm{dmr} \omega^{2}=(\rho \mathrm{Adr}) \mathrm{r} \omega^{2}$. As this force is provided by tension in the rod (due to elasticity), so the tension in the rod at a distance r from the axis of rotation will be due to the centripetal force due to all elements between $\mathrm{x}=\mathrm{r}$ to $\mathrm{x}=\mathrm{L}$

i.e., $T=\int_{r}^{L} \rho A \omega^{2} r d r=\frac{1}{2} \rho A \omega^{2}\left[L^{2}-r^{2}\right]$

So here $\mathrm{T}=\frac{1}{2} \times 10^{4} \times \pi \times 10^{-2} \times(400)^{2}\left[\left(\frac{1}{2}\right)^{2}-\mathrm{r}^{2}\right]=8 \pi \times 10^{6}\left[\frac{1}{4}-\mathrm{r}^{2}\right] \mathrm{N}$
(b) Now if dy is the elongation in the element of length dr at position r then strain

$$
\frac{d y}{d r}=\frac{\text { stress }}{Y}=\frac{T}{A Y}=\frac{1}{2} \frac{\rho \omega^{2}}{Y}\left[L^{2}-r^{2}\right] d r
$$

So the elongation of the whole rod

$$
\Delta \mathrm{L}=\frac{\rho \omega^{2}}{2 \mathrm{Y}} \int_{0}^{\mathrm{L}}\left(\mathrm{~L}^{2}-\mathrm{r}^{2}\right) \mathrm{dr}=\frac{1}{3} \frac{\rho \omega^{2} \mathrm{~L}^{3}}{\mathrm{Y}}=\frac{1}{3} \times \frac{10^{4} \times(400)^{2}(0.5)^{3}}{2 \times 10^{11}}=\frac{1}{3} \times 10^{-3} \mathrm{~m}
$$

Ex. Find the depth of lake at which density of water is 1% greater than at the surface.
Given compressibility $\mathrm{K}=50 \times 10^{-6} / \mathrm{atm}$.
Sol. $B=\frac{\Delta P}{-\Delta V / V} \Rightarrow \frac{\Delta V}{V}=-\frac{\Delta P}{B}$
We know $\mathrm{P}=\mathrm{P}_{\text {atm }}+$ hpg and $\mathrm{m}=\rho \mathrm{V}=$ constant
$d \rho V+d V_{\rho}=0 \Rightarrow \frac{d \rho}{\rho}=-\frac{d V}{V}$ i.e. $\frac{\Delta \rho}{\rho}=\frac{\Delta P}{B}$

$\Rightarrow \frac{\Delta \rho}{\rho}=\frac{1}{100}=\frac{h \rho g}{B}$
[assuming $\rho=$ constant]; h $\rho g=\frac{B}{100}=\frac{1}{100 \mathrm{~K}}$
$\Rightarrow \mathrm{h} g=\frac{1 \times 1 \times 10^{5}}{100 \times 50 \times 10^{-6}}$
$\mathrm{h}=\frac{10^{5}}{5000 \times 10^{-6} \times 1000 \times 10}=\frac{100 \times 10^{3}}{50} \mathrm{~m}=2 \mathrm{~km}$

JEE-Physics

Ex. A rubber cube of side 5 cm has one side fixed while a tangential force equal to 1800 N is applied to opposite face. Find the shearing strain and the lateral displacement of the strained face. Modulus of rigidity for rubber is $2.4 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$.

Sol. Stress $=\frac{F}{A}=\eta \frac{x}{L}$
Strain $=\theta=\frac{\mathrm{F}}{\mathrm{A} \eta}=\frac{1800}{25 \times 10^{-4} \times 2.4 \times 10^{6}}=\frac{180}{25 \times 24}=\frac{3}{10}=0.3$ radian
as $\frac{\mathrm{x}}{\mathrm{L}}=0.3 \Rightarrow \mathrm{x}=0.3 \times 4 \times 10^{-2}=1.5 \times 10^{-2} \mathrm{~m}=1.5 \mathrm{~mm}$

EFFECT OF TEMPERATURE ON ELASTICITY

When temperature is increased then due to weakness of inter molecular force the elastic properties in general decreases i.e. elastic constant decreases. Plasticity increases with temperature. For example, at ordinary room temperature, carbon is elastic but at high temperature, carbon becomes plastic. Lead is not much elastic at room temperature but when cooled in liquid nitrogen exhibit highly elastic behaviour. For a special kind of steel, elastic constants do not vary appreciably temperature. This steel is called 'INVAR steel'.

EFFECT OF IMPURITY ON ELASTICITY

Y is slightly increase by impurity. The inter molecular attraction force inside wire effectively increase by impurity due to this external force can be easily opposed.

TEMPERATURE \& DIFFERENT TYPE OF TEMPERATURE SCALES

TEMPERATURE

- Temperature is a macroscopic physical quantity related to our sense of hot and cold.
- The natural flow of heat is from higher temperature to lower temperature, i.e. temperature determines the thermal state of a body whether it can give or receive heat.

DIFFERENT TYPES OF TEMPERATURE SCALES

- The Kelvin temperature scale is also known as thermodynamic scale. The SI unit of temperature is the kelvin and is defined as $(1 / 273.16)$ of the temperature of the triple point of water. The triple point of water is that point on a $\mathrm{P}-\mathrm{T}$ diagram where the three phase of water, the solid, the liquid and the gas, can coexist in equilibrium.
- In addition to Kelvin temperature scale, there are other temperature scales also like Celsius, Fahrenheit, Reaumur, Rankine, etc. Temperature on one scale can be converted into other scale by using the following identity

$$
\frac{\text { Reading on any scale }- \text { lower fixed point (LFP) }}{\text { Upper fixed point (UFP) - lower fixed point (LFP) }}=\text { constant for all scales }
$$

Hence $\quad \frac{C-0^{\circ}}{100^{\circ}-0^{\circ}}=\frac{F-32^{\circ}}{212^{\circ}-32^{\circ}}=\frac{K-273.15}{373.15-273.15}$

- Different temperature scales :

Name of the scale	Symbol for each degree	Lower fixed point (LFP)	Upper fixed point (UFP)	Number of divisions on the scale
Celsius	${ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	100
Fahrenheit	${ }^{\circ} \mathrm{F}$	$32^{\circ} \mathrm{F}$	$212^{\circ} \mathrm{F}$	180
Kelvin	K	273.15 K	373.15 K	100

Ex. Express a temperature of $60^{\circ} \mathrm{F}$ in degree celsius and in kelvin.
Sol. By using $\frac{C-0^{\circ}}{100^{\circ}-0^{\circ}}=\frac{F-32^{\circ}}{212^{\circ}-32^{\circ}}=\frac{K-273.15}{373.15-273.15}$
$\Rightarrow \frac{\mathrm{C}-0^{\circ}}{100^{\circ}-0^{\circ}}=\frac{60^{\circ}-32^{\circ}}{212^{\circ}-32^{\circ}}=\frac{\mathrm{K}-273.15}{373.15-273.15} \Rightarrow \mathrm{C}=15.15^{\circ} \mathrm{C}$ and $\mathrm{K}=288.7 \mathrm{~K}$
Ex. The temperature of an iron piece is heated from 30° to $90^{\circ} \mathrm{C}$. What is the change in its temperature on the fahrenheit scale and on the kelvin scale?

Sol. $\Delta \mathrm{C}=90^{\circ}-30^{\circ}=60^{\circ} \mathrm{C}$
Temperature difference on Fahrenheit Scale $\Delta \mathrm{F}=\frac{9}{5} \Delta \mathrm{C}=\frac{9}{5}\left(60^{\circ} \mathrm{C}\right)=108^{\circ} \mathrm{F}$
Temperature difference on Kelvin Scale $\Delta K=\Delta C=60 K$

THERMAL EXPANSION

THERMAL EXPANSION

When matter is heated without any change in it's state, it usually expands. According to atomic theory of matter, asymmetry in potential energy curve is responsible for thermal expansion. As with rise in temperature the amplitude of vibration increases and hence energy of atoms increases, hence the average distance between the atom increases. So the matter as a whole expands.

- Thermal expansion is minimum in case of solids but maximum in case of gases because intermolecular force is maximum in solids but minimum in gases.
- Solids can expand in one dimension (Linear expansion), two dimension (Superficial expansion) and three dimension (Volume expansion) while liquids and gases usually suffers change in volume only. Linear expansion :

$$
\ell=\ell_{0}(1+\alpha \Delta \theta) \Rightarrow \Delta \ell=\ell_{0} \alpha \Delta \theta
$$

Superficial (areal) expansion :

$$
\mathrm{A}=\mathrm{A}_{0}(1+\beta \Delta \theta)
$$

Also $\quad \mathrm{A}_{0}=\ell_{0}{ }^{2}$ and $\mathrm{A}=\ell^{2}$
So $\quad \ell^{2}=\ell_{0}^{2}(1+\beta \Delta \theta)=\left[\ell_{0}(1+\alpha \Delta \theta)\right]^{2} \Rightarrow \beta=2 \alpha$

Volume expansion :

Contraction on heating :

Some rubber like substances contract on heating because transverse vibration of atoms of substance dominate over longitudinal vibration which is responsible for expansion.

Application of thermal Expansion in Solids

(a) Bi-metallic strip : Two strips of equal length but of different materials (different coefficient of linear expansion) when join together, it is called "Bi-metallic strip" and can be used in thermostat to break or make electrical contact. This strip has the characteristic property of bending on heating due to unequal linear expansion of the two metals. The strip will bend with metal of greater α on outer side.

(b) Effect of temperature on the time period of a simple pendulum : A pendulum clock keeps proper time at temperature θ. If temperature is increased to $\theta^{\prime}(>\theta)$ then due to linear expansion, length of pendulum increases and hence its time period will increase.

Fractional change in time period $\frac{\Delta \mathrm{T}}{\mathrm{T}}=\frac{1}{2} \alpha \Delta \theta\left(\because \mathrm{~T} \propto \sqrt{\ell} \quad \therefore \frac{\Delta \mathrm{~T}}{\mathrm{~T}}=\frac{1}{2} \frac{\Delta \ell}{\ell}\right)$

- Due to increment in its time period, a pendulum clock becomes slow in summer and will lose time. Loss of time in a time period $\Delta \mathrm{T}=\frac{1}{2} \alpha \Delta \theta \mathrm{~T}$
- The clock will lose time i.e. will become slow if $\theta^{\prime}>\theta$ (in summer) and will gain time i.e will become fast if $\theta^{\prime}<\theta$ (in winter).
- Since coefficient of linear expansion (α) is very small for invar, hence pendulums are made of invar to show the correct time in all seasons.
(c) When a rod whose ends are rigidly fixed such as to prevent expansion or contraction, undergoes a change in temperature due to thermal expansion or contraction, a compressive or tensile stress is developed in it. Due to this thermal stress the rod will exert a large force on the supports. If the change in temperature of a rod of length L is $\Delta \theta$ then :-

Thermal strain $=\frac{\Delta \mathrm{L}}{\mathrm{L}}=\alpha \Delta \theta \quad \because \alpha=\frac{\Delta \mathrm{L}}{\mathrm{L}} \times \frac{1}{\Delta \theta} \quad$ So thermal stress $=\mathrm{Y} \alpha \Delta \theta$

$$
\mathrm{Y}=\frac{\text { stress }}{\text { strain }}
$$

So force on the supports $F=Y A \alpha \Delta \theta$
(d) Error in scale reading due to expansion or contraction: If a scale gives correct reading at temperature θ. At temperature $\theta^{\prime}(>\theta)$ due to linear expansion of scale, the scale will expand and scale reading will be lesser than true value so that,

JEE-Physics

(e) Expansion of cavity: Thermal expansion of an isotropic object may be imagined as a photographic enlargement.

(f) Some other application

- When rails are laid down on the ground, space is left between the ends of two rails
- The transmission cable are not tightly fixed to the poles
- Test tubes, beakers and cubicles are made of pyrex-glass or silica because they have very low value of coefficient of linear expansion
- The iron rim to be put on a cart wheel is always of slightly smaller diameter than that of wheel
- A glass stopper jammed in the neck of a glass bottle can be taken out by warming the neck of the bottle.
Ex. A steel ruler exactly 20 cm long is graduated to give correct measurements at $20^{\circ} \mathrm{C}$. $\left(\alpha_{\text {steel }}=1.2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\right)$
(a) Will it give readings that are too long or too short at lower temperatures?
(b) What will be the actual length of the ruler be when it is used in the desert at a temperature of $40^{\circ} \mathrm{C}$?
Sol. (a) If the temperature decreases, the length of the ruler also decreases through thermal contraction.
Below $20^{\circ} \mathrm{C}$, each centimeter division is actually somewhat shorter than 1.0 cm , so the steel ruler gives readings that are too long.
(b) At $40^{\circ} \mathrm{C}$, the increases in length of the ruler is

$$
\Delta \ell=\ell \alpha \Delta \mathrm{T}=(20)\left(1.2 \times 10^{-5}\right)\left(40^{0}-20^{0}\right)=0.48 \times 10^{-2} \mathrm{~cm}
$$

The actual length of the ruler is, $\ell^{\prime}=\ell+\Delta \ell=20.0048 \mathrm{~cm}$
Ex. A second's pendulum clock has a steel wire. The clock is calibrated at $20^{\circ} \mathrm{C}$. How much time does the clock lose or gain in one week when the temperature is increased to $30^{\circ} \mathrm{C} ?\left(\alpha_{\text {steel }}=1.2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\right)$
Sol. The time period of second's pendulum is 2 second. As the temperature increases length time period increases. Clock becomes slow and it loses the time. The change in time period is

$$
\Delta \mathrm{T}=\frac{1}{2} \mathrm{~T} \alpha \Delta \theta=\left(\frac{1}{2}\right)(2)\left(1.2 \times 10^{-5}\right)\left(30^{0}-20^{\circ}\right)=1.2 \times 10^{-4} \mathrm{~s}
$$

\therefore New Time period is

$$
\mathrm{T}^{\prime}=\mathrm{T}+\Delta \mathrm{T}=\left(2+1.2 \times 10^{-4}\right)=2.00012 \mathrm{~s}
$$

\therefore Time lost in one week

$$
\Delta \mathrm{t}=\left(\frac{\Delta \mathrm{T}}{\mathrm{~T}^{\prime}}\right) \mathrm{t}=\frac{\left(1.2 \times 10^{-4}\right)}{(2.00012)}(7 \times 24 \times 3600)=36.28 \mathrm{~s}
$$

Thermal Expansion in Liquids

- Liquids do not have linear and superficial expansion but these only have volume expansion.
- Since liquids are always to be heated along with a vessel which contains them so initially on heating the system (liquid + vessel), the level of liquid in vessel falls (as vessel expands more since it absorbs heat and liquid expands less) but later on, it starts rising due to faster expansion of the liquid.

PQ \rightarrow represents expansion of vessel $\mathrm{QR} \rightarrow$ represents the real expansion of liquid.

- The actual increase in the volume of the liquid

$=$ The apparent increase in the volume of liquid + the increase in the volume of the vessel.
- Liquids have two coefficients of volume expansion.

(i) Co-efficient of apparent expansion (γ_{a})

- It is due to apparent (that appears to be, but in not) increase in the volume of liquid if expansion of vessel containing the liquid is not taken into account.

$$
\gamma_{\mathrm{a}}=\frac{\text { Apparent expansion in volume }}{\text { Initial volume } \times \Delta \theta}=\frac{(\Delta \mathrm{V})}{\mathrm{V} \times \Delta \theta}
$$

(ii) Co-efficient of real expansion $\left(\gamma_{\mathrm{r}}\right)$

- It is due to the actual increase in volume of liquid due to heating.

$$
\gamma_{\mathrm{r}}=\frac{\text { Real increase in volume }}{\text { Initial volume } \times \Delta \theta}=\frac{(\Delta \mathrm{V})}{\mathrm{V} \times \Delta \theta}
$$

- Also coefficient of expansion of flask $\gamma_{\text {Vessel }}=\frac{(\Delta \mathrm{V})_{\text {Vessel }}}{\mathrm{V} \times \Delta \theta}$
- $\quad \gamma_{\text {Real }}=\gamma_{\text {Apparent }}+\gamma_{\text {Vessel }}$
- Change (apparent change) in volume in liquid relative to vessel is $\Delta \mathrm{V}_{\text {app }}=\mathrm{V}\left(\gamma_{\text {Real }}-\gamma_{\text {Vessel }}\right) \Delta \theta=\mathrm{V}\left(\gamma_{\mathrm{r}}-3 \alpha\right) \Delta \theta$
$\alpha=$ Coefficient of linear expansion of the vessel.

Ex. In figure shown, left arm of a U-tube is immersed in a hot water bath at temperature $t^{\circ} \mathrm{C}$, and right arm is immersed in a bath of melting ice; the height of manometric liquid in respective columns is h_{t} and h_{0}. Determine the coefficient of expansion of the liquid.
Sol. The liquid is in hydrostatic equilibrium $\Rightarrow \rho_{t} g h_{t}=\rho_{0} g h_{0}$ Where, ρ_{t} is density of liquid in hot bath, ρ_{0} is density of liquid in cold bath.
Volumes of a given mass M of liquid at temperaturest and $0^{\circ} \mathrm{C}$

Water at temperature $\mathrm{t}^{\circ} \mathrm{C}$
 are related by $V_{t}=V_{0}(1+\gamma t)$ Since $\rho_{t} V_{t}=\rho_{0} V_{0} \Rightarrow \rho_{t}=\frac{\rho_{0} V_{0}}{V_{t}}=\frac{\rho_{0}}{(1+\gamma t)}$

Since $h_{t}=\frac{\rho_{0} h_{0}}{\rho_{t}}=h_{0}(1+\gamma t)$ which on solving for γ, yields $\gamma=\frac{\left(h_{t}-h_{0}\right)}{h_{0} t}$

Anomalous expansion of water

Generally matter expands on heating and contracts on cooling. In case of water, it expands on heating if its temperature is greater than $4^{\circ} \mathrm{C}$. In the range $0^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$, water contracts on heating and expands on cooling, i.e. γ is negative. This behaviour of water in the range from
 $0^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$ is called anomalous expansion.
This anomalous behaviour of water causes ice to form first at the surface of a lake in cold weather. As winter approaches, the water temperature increases initially at the surface. The water there sinks because of its increased density. Consequently, the surface reaches $0^{\circ} \mathrm{C}$ first and the lake becomes covered with ice. Aquatic life is able to survive the cold winter as the lake bottom remains unfrozen at a temperature of about $4^{\circ} \mathrm{C}$. At $4^{\circ} \mathrm{C}$, density of water is maximum while its specific volume is minimum.

Ex. The difference between lengths of a certain brass rod and of a steel rod is claimed to be constant at all temperatures. Is this possible?

Sol. If L_{B} and L_{S} are the lengths of brass and steel rods respectively at a given temperature, then the lengths of the rods when temperature is changed by $\theta^{\circ} \mathrm{C}$.
$\mathrm{L}_{\mathrm{B}}^{\prime}=\mathrm{L}_{\mathrm{B}}\left(1+\alpha_{\mathrm{B}} \Delta \theta\right)$ and $\mathrm{L}_{\mathrm{S}}^{\prime}=\mathrm{L}_{\mathrm{S}}\left(1+\alpha_{\mathrm{B}} \Delta \theta\right) \quad$ So that $\mathrm{L}_{\mathrm{B}}^{\prime}=\mathrm{L}_{\mathrm{S}}^{\prime}\left(\mathrm{L}_{\mathrm{B}}-\mathrm{L}_{\mathrm{S}}\right)+\left(\mathrm{L}_{\mathrm{B}} \alpha_{\mathrm{B}}-\mathrm{L}_{\mathrm{S}} \alpha_{\mathrm{S}}\right) \Delta \theta$
So $\left(L_{B}^{\prime}-L_{S}^{\prime}{ }_{S}\right)$ will be equal to $\left(L_{B}-L_{S}\right)$ at all temperatures if, $L_{B} \alpha_{B}-L_{S} \alpha_{S}=0[\operatorname{as} \Delta \theta \neq 0]$ or $\frac{L_{B}}{L_{S}}=\frac{\alpha_{S}}{\alpha_{B}}$ i.e., the difference in the lengths of the two rods will be independent of temperature if the lengths are in the inverse ratio of their coefficients of linear expansion.
Ex. There are two spheres of same radius and material at same temperature but one being solid while the other hollow. Which sphere will expand more if
(a) they are heated to the same temperature, (b) same heat is given to them?

Sol. (a) As thermal expansion of isotropic solids is similar to true photographic enlargement,
expansion of a cavity is same as if it had been a solid body of the same material

$$
\text { i.e. } \Delta \mathrm{V}=\mathrm{V} \gamma \Delta \theta
$$

As here V, γ and $\Delta \theta$ are same for both solid and hollow spheres treated (cavity) ; so the expansion of both will be equal.
(b) If same heat is given to the two spheres due to lesser mass, rise in temperature of hollow sphere will be more [as $\Delta \theta=\frac{\mathrm{Q}}{\mathrm{mc}}$] and hence its expansion will be more [as $\Delta \mathrm{V}=\mathrm{V} \gamma \Delta \theta$].

HEAT

When a hot body is put in contact with a cold one, the former gets colder and the latter warmer. From this observation it is natural to conclude that a certain quantity of heat has passed from the hot body to the cold one. Heat is a form of energy.
Heat is felt by its effects. Some of the effects of heat are :
(a) Change in the degree of hotness
(b) Expansion in length, surface area and volume
(c) Change in state of a substance
(d) Change in the resistance of a conductor
(e) Thermo e.m.f. effect

SI UNIT : J (joule) Also measured in the unit calorie.

- Calorie

It is defined as the amount of heat required to raise the temperature of 1 g water by $1^{\circ} \mathrm{C}$.

- International calorie

International calorie is the amount of heat required to raise the temperature of 1 g water from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$ rise of temperature.

MECHANICAL EQUIVALENT OF HEAT

According to Joule, work may be converted into heat and vice-versa. The ratio of work done to heat produced is always constant. $\frac{\mathrm{W}}{\mathrm{H}}=$ constant $(\mathrm{J}) \Rightarrow \mathrm{W}=\mathrm{J} H$

W must be in joule, irrespective of nature of energy or work and H must be in calorie.
J is called mechanical equivalent of heat. It is not a physical quantity but simply a conversion factor.
It converts unit of work into that of heat and vice--versa.
$\mathrm{J}=4.18$ joule/cal or 4.18×10^{3} joule per kilo-cal. For rough calculations we take $\mathrm{J}=4.2$ joule/cal

SPECIFIC HEAT (s or c)

It is the amount of energy required to raise the temperature of unit mass of that substance by $1^{\circ} \mathrm{C}$ (or 1 K) is called specific heat. It is represented by s or c .

If the temperature of a substance of mass m changes from T to $\mathrm{T}+\mathrm{dT}$ when it exchanges an amount
of heat dQ with its surroundings then its specific heat is $c=\frac{1}{m} \frac{d Q}{d T}$
The specific heat depends on the pressure, volume and temperature of the substance.
For liquids and solids, specific heat measurements are most often made at a constant pressure as functions of temperature, because constant pressure is quite easy to produce experimentally.

SI UNIT : joule/kg-K CGS UNIT : cal/g - ${ }^{\circ} \mathrm{C}$
Specific heat of water : $\mathrm{c}_{\text {water }}=1 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{C}=1 \mathrm{cal} / \mathrm{g}-\mathrm{K}=1 \mathrm{kcal} / \mathrm{kg}-\mathrm{K}=4200$ joule $/ \mathrm{kg}-\mathrm{K}$

When a substance does not undergo a change of state (i.e., liquid remains liquid or solid remains solid), then the amount of heat required to raise the temperature of mass m of thesubstance by an amount $\Delta \theta$ is $\mathrm{Q}=\mathrm{ms} \Delta \theta$.
The temperature dependence of the specific heat of water at 1 atmospheric pressure is shown in figure. Its variation is less than 1% over the interval from 0 to $100^{\circ} \mathrm{C}$. Such a small variation is typical for most solids and liquids, so their specific heats can generally be taken to be constant over fairly large
 temperature ranges.

- There are many processes possible to give heat to a gas.

A specific heat can be associated to each such process which depends on the nature of process.

- Value of specific heats can vary from zero (0) to infinity.
- Generally two types of specific heat are mentioned for a gas -
(a) Specific heat at constant volume $\left(\mathrm{C}_{\mathrm{v}}\right)$
(b) Specific heat at constant pressure $\left(\mathrm{C}_{\mathrm{P}}\right)$
- These specific heats can be molar or gram.

MOLAR HEAT CAPACITY

The amount of energy needed to raise the temperature of one mole of a substance by $1^{\circ} \mathrm{C}($ or 1 K$)$ is called molar heat capacity. The molar heat capacity is the product of molecular weight and specific heat i.e.,

Molar heat capacity $C=$ Molecular weight $(M) \times$ Specific heat $(c) \Rightarrow C=\frac{1}{\mu}\left(\frac{d Q}{d T}\right)$
If the molecular mass of the substance is M and the mass of the substance is m then number of moles
of the substance $\mu=\frac{\mathrm{m}}{\mathrm{M}} \Rightarrow \mathrm{C}=\frac{\mathrm{M}}{\mathrm{m}}\left(\frac{\mathrm{dQ}}{\mathrm{dT}}\right) \quad$ SI UNIT : J/mol-K

THERMAL CAPACITY

The quantity of heat required to raise the temperature of the whole of that substance through $1^{\circ} \mathrm{C}$ is called thermal capacity. The thermal capacity of mass m of the whole of substance of specific heat s is $=\mathrm{ms}$

$$
\text { Thermal capacity }=\text { mass } \times \text { specific heat }
$$

Thermal capacity depends on property of material of the body and mass of the body.
SI UNIT : cal $/{ }^{\circ} \mathrm{C}$ or $\mathrm{cal} / \mathrm{K}, \quad$ Dimensions : $\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}$

WATER EQUIVALENT OF A BODY

As the specific heat of water is unity so the thermal capacity of a body (ms) represents its water equivalent also.

- Mass of water having the same thermal capacity as the body is called the water equivalent of the body
- The water equivalent of a body is the amount of water that absorbs or gives out the same amount of heat as is done by the body when heated or cooled through $1^{\circ} \mathrm{C}$.
Water equivalent $=$ mass of body \times specific heat of the material $\Rightarrow(\mathrm{w}=\mathrm{ms})$.

LATENT HEAT OR HIDDEN HEAT

When state of a body changes, change of state takes place at constant temperature [melting point or boiling point] and heat released or absorbed is $\mathrm{Q}=\mathrm{mL}$ where L is latent heat. Heat is absorbed if solid converts into liquid (at melting point) or liquid converts into vapours (at boiling point) and heat is released if liquid converts into solid or vapours converts into liquid.

- Latent heat of fusion

It is the quantity of heat (in kilocalories) required to change its 1 kg mass from solid to liquid state at its melting point. Latent heat of fusion for ice : $80 \mathrm{kcal} / \mathrm{kg}=80 \mathrm{cal} / \mathrm{g}$.

- Latent heat of vaporization

The quantity of heat required to change its 1 kg mass from liquid to vapour state at its boiling point.
Latent heat of vaporisation for water : $536 \mathrm{kcal} / \mathrm{kg}=536 \mathrm{cal} / \mathrm{g}$

CHANGE OF STATE

- Melting

Conversion of solid into liquid state at constant temperature is known as melting.

- Boiling

Evaporation within the whole mass of the liquid is called boiling. Boiling takes place at a constant temperature known as boiling point. A liquid boils when the saturated vapour pressure on its surface is equal to atmospheric pressure. Boiling point reduces on decreasing pressure.

- Evaporation

Conversion of liquid into vapours at all temperatures is called evaporation. It is a surface phenomenon. Greater the temperature, faster is the evaporation. Smaller the boiling point of liquid, more rapid is the evaporation. Smaller the humidity, more is the evaporation. Evaporation increases on decreasing pressure that is why evaporation is faster in vacuum.

- Heat of evaporation

Heat required to change unit mass of liquid into vapour at a given temperature is called heat of evaporation at that temperature.

- Sublimation

Direct conversion of solid in to vapour state is called sublimation.

- Heat of sublimation

Heat required to change unit mass of solid directly into vapours at a given temperature is called heat of sublimation at that temperature.

- Camphor and ammonium chloride sublimates on heating in normal conditions.
- A block of ice sublimates into vapours on the surface of moon because of very-very low pressure on its surface

- Condensation

The process of conversion from gaseous or vapour state to liquid state is known as condensation .
These materials again get converted to vapour or gaseous state on heating.

PHASE OF A SUBSTANCE

The phase of a substance is defined as its form which is homogeneous, physically distinct and mechanically separable from the other forms of that substance.

Phase diagram

- A phase diagram is a graph in which pressure (P) is represented along the y-axis and temperature (T) is represented along the x -axis.

- Characteristics of Phase diagram

(i) Different phases of a substances can be shown on a phase diagram.
(ii) A region on the phase diagram represents a single phase of the substance, a curve represents equilibrium between two phases and a common point represents equilibrium between three phases.
(iii) A phase diagram helps to determine the condition under which the different phases are in equilibrium.
(iv) A phase diagram is useful for finding a convenient way in which a desired change of phase can be produced.

PHASE DIAGRAM FOR WATER

The phase diagram for water consists of three curves AB, AC and AD meeting each other at the point A , these curves divide the phase diagram into three regions.

Region to the left of the curve AB and above the curve AD represents the solid phase of water (ice). The region to the right of the curve $A B$ and above the curve $A C$ represents the liquid phase of water. The region below the curves AC and AD represents the gaseous phase of water (i.e. water vapour). A curve on the phase diagram represents the boundary between two phases of the substance.

Along any curve the two phases can coexist in equilibrium

- Along curve AB , ice and water can remain in equilibrium. This curve is called fusion curve or ice line. This curve shows that the melting point of ice decreases with increase in pressure.
- Along the curve AC , water and water vapour can remain in equilibrium. The curve is called vaporisation curve or steam line. The curve shows that the boiling point of water increases with increase in pressure.
- Along the curve AD , ice and water vapour can remain in equilibrium.

This curve is called sublimation curve or hoar frost line.

TRIPLE POINT OF WATER

The three curves in the phase diagram of water meet at a single point A, which is called the triple point of water. The triple point of water represents the co-existance of all the three phases of water ice water and water vapour in equilibrium. The pressure corresponding to triple point of water is 6.03×10^{-3} atmosphere or 4.58 mm of Hg and temperature corresponding to it is 273.16 K .

- Significance of triple point of water

Triple point of water represents a unique condition and it is used to define the absolute temperature. While making Kelvin's absolute scale, upper fixed point is 273.16 K and lower fixed point is 0 K .
One kelvin of temperature is fraction $\frac{1}{273.16}$ of the temperature of triple point of water.

HEATING CURVE

If to a given mass (m) of a solid, heat is supplied at constant rate and a graph is plotted between temperature and time as shown in figure is called heating curve.

- In the region OA

Rate of heat supply P is constant and temperature of solid is changing with time
So, $\mathrm{Q}=\mathrm{mc}_{\mathrm{s}} \Delta \mathrm{T} \Rightarrow \mathrm{P} \Delta \mathrm{t}=\mathrm{mc}_{\mathrm{s}} \Delta \mathrm{T}[\because \mathrm{Q}=\mathrm{P} \Delta \mathrm{t}] \because \frac{\Delta \mathrm{T}}{\Delta \mathrm{t}}=$ The slope of temperature-time curve so specific heat of solid $\mathrm{c}_{\mathrm{s}} \propto \frac{1}{\text { slope of line } \mathrm{OA}}$ specific heat (or thermal capacity) is inversely proportional to the slope of temperature-time curve.

- In the region $\mathbf{A B}$

Temperature is constant, so it represents change of state, i.e., melting of solid with melting point T_{1}. At point A melting starts and at point B all solid is converted into liquid. So between A and B substance is partly solid and partly liquid. If L_{F} is the latent heat of fusion then
$Q=\mathrm{mL}_{\mathrm{F}} \Rightarrow L_{F}=\frac{P\left(t_{2}-t_{1}\right)}{m} \quad\left[\right.$ as $Q=P\left(t_{2}-t_{1}\right] \Rightarrow L_{F} \propto$ length of line $A B$
i.e., Latent heat of fusion is proportional to the length of line of zero slope.
[In this region specific heat $\propto \frac{1}{\tan 0^{\circ}}=\infty$]

- In the region BC

Temperature of liquid increases so specific heat (or thermal capacity) of liquid will be inversely proportional to the slope of line $B C, c_{L} \propto \frac{1}{\text { slope of line } B C}$

- In the region CD

Temperature in constant, so it represents change of state, i.e., liquid is boiling with boiling point T_{2}. At C all substance is in liquid state while at D is vapour state and between C and D partly liquid and partly gas. The length of line CD is proportional to latent heat of vaporisation, i.e., $\mathrm{L}_{\mathrm{v}} \propto$ Length of line CD.
[In this region specific heat $\propto \frac{1}{\tan 0^{\circ}}=\infty$]
The line DE represents gaseous state of substance with its temperature increasing linearly with time. The reciprocal of slope of line will be proportional to specific heat or thermal capacity of substance in vapour state.

LAW OF MIXTURES

- When two bodies (one being solid and other liquid or both being liquid) at different temperatures are mixed, heat will be transferred from body at higher temperature to a body at lower temperature till both acquire same temperature. The body at higher temperature released heat while body at lower temperature absorbs it, so that Heat lost $=$ Heat gained. Principle of calorimetry represents the law of conservation of heat energy.
- Temperature of mixture (T) is always \geq lower temperature $\left(\mathrm{T}_{\mathrm{L}}\right)$ and \leq higher temperature $\left(\mathrm{T}_{\mathrm{H}}\right)$, $\mathrm{T}_{\mathrm{L}} \leq \mathrm{T} \leq \mathrm{T}_{\mathrm{H}}$
The temperature of mixture can never be lesser than lower temperature (as a body cannot be cooled below the temperature of cooling body) and greater than higher temperature (as a body cannot be heated above the temperature of heating body). Further more usually rise in temperature of one body is not equal to the fall temperature of the other body though heat gained by one body is equal to the heat lost by the other.

Ex. 5 g ice at $0^{\circ} \mathrm{C}$ is mixed with 5 g of steam at $100^{\circ} \mathrm{C}$. What is the final temperature?
Sol. Heat required by ice to raise its temperature to $100^{\circ} \mathrm{C}$,
$\mathrm{Q}_{1}=\mathrm{m}_{1} \mathrm{~L}_{1}+\mathrm{m}_{1} \mathrm{c}_{1} \Delta \theta_{1}=5 \times 80+5 \times 1 \times 100=400+500+900=1800 \mathrm{cal}$
Heat given by steam when condensed $\mathrm{Q}_{2}=\mathrm{m}_{2} \mathrm{~L}_{2}=5 \times 536=2680 \mathrm{cal}$
As $\mathrm{Q}_{2}>\mathrm{Q}_{1}$. This means that whole steam is not even condensed.
Hence temperature of mixture will remain at $100^{\circ} \mathrm{C}$.

Ex. A calorimeter of heat capacity $100 \mathrm{~J} / \mathrm{K}$ is at room temperature of $30^{\circ} \mathrm{C} .100 \mathrm{~g}$ of water at $40^{\circ} \mathrm{C}$ of specific heat $4200 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$ is poured into the calorimeter. What is the temperature of water in calorimeter?
Sol. Let the temperature of water in calorimeter is t. Then heat lost by water $=$ heat gained by calorimeter

$$
(0.1) \times 4200 \times(40-t)=100(\mathrm{t}-30) \Rightarrow 42 \times 40-42 \mathrm{t}=10 \mathrm{t}-300 \Rightarrow \mathrm{t}=38.07^{\circ} \mathrm{C}
$$

Ex. Find the quantity of heat required to convert 40 g of ice at $-20^{\circ} \mathrm{C}$ into water at $20^{\circ} \mathrm{C}$.
Given $\mathrm{L}_{\text {ice }}=0.336 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
Specific heat of ice $=2100 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, specific heat of water $=4200 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
Sol. Heat required to raise the temperature of ice from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}=0.04 \times 2100 \times 20=1680 \mathrm{~J}$
Heat required to convert the ice into water at $0^{\circ} \mathrm{C}=\mathrm{mL}=0.04 \times 0.336 \times 10^{6}=13440 \mathrm{~J}$
Heat required to heat water from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}=0.04 \times 4200 \times 20=3360 \mathrm{~J}$
Total heat required $=1680+13440+3360=18480 \mathrm{~J}$

Ex. Steam at $100^{\circ} \mathrm{C}$ is passed into 1.1 kg of water contained in a calorimeter of water equivalent 0.02 kg at $15^{\circ} \mathrm{C}$ till the temperature of the calorimeter and its contents rises to $80^{\circ} \mathrm{C}$. What is the mass of steam condensed? Latent heat of steam $=536 \mathrm{cal} / \mathrm{g}$.

Sol. Heat required by (calorimeter + water)

$$
\mathrm{Q}=\left(\mathrm{m}_{1} \mathrm{c}_{1}+\mathrm{m}_{2} \mathrm{c}_{2}\right) \Delta \theta=(0.02+1.1 \times 1)(80-15)=72.8 \mathrm{kcal}
$$

If m is mass of steam condensed, then heat given by steam

$$
\mathrm{Q}=\mathrm{mL}+\mathrm{mc} \Delta \theta=\mathrm{m} \times 536+\mathrm{m} \times 1 \times(100-80)=556 \mathrm{~m} \quad \therefore 556 \mathrm{~m}=72.8
$$

$\therefore \quad$ Mass of steam condensed $\mathrm{m}=\frac{72.8}{556}=0.130 \mathrm{~kg}$

MODE OF HEAT TRANSFER

Heat is a form of energy which transfers from a body at higher temperature to a body at lower temperature. The transfer of heat from one body to another may take place by any one of the following modes :

- Conduction

The process in which the material takes an active part by molecular action and energy is passed from one particle to another is called conduction. It is predominant in solids.

- Convection

The transfer of energy by actual motion of particle of medium from one place to another is called convection. It is predominant is fluids (liquids and gases).

- Radiation

Quickest way of transmission of heat is known as radiation. In this mode of energy transmission, heat is transferred from one place to another without effecting the inter-venning medium.

Conduction	Convection	Radiation
Heat Transfer due to Temperature difference	Heat transfer due to density difference	Heat transfer with out any medium
Due to free electron or vibration motion of molecules	Actual motion of particles	Electromagnetic radiation Heat transfer in solid body (in mercury also) Heat transfer in fluids (Liquid + gas)
Slow process	Slow process	

THERMAL CONDUCTION

The process by which heat is transferred from hot part to cold part of a body through the transfer of energy from one particle to another particle of the body without the actual movement of the particles from their equilibrium positions is called conduction. The process of conduction only in solid body (except Hg) Heat transfer by conduction from one part of body to another continues till their temperatures become equal.
Steady state : When temperature of the each cross-section of the bar becomes constant through different for different cross-sections is called steady state.

- Equation of thermal conduction

Rate of heat flow $\frac{d Q}{d t}=-K A \frac{d \theta}{d x} \quad \frac{d Q}{d t}=\frac{K A}{L}\left(\theta_{1}-\theta_{2}\right)$
Cross section area $=\mathrm{A}$; Length $=\mathrm{L}$

Thermal conductivity of material $=K$

- Thermal (temperature) gradient

The decrease in temperature with distance from hot end of the rod is known as temperature gradient or in the direction of heat energy flow, the rate of fall in temperature w.r.t. distance is called as temperature gradient. It is denoted by $-\mathrm{dT} / \mathrm{dx}$

- Thermal conductivity (K): It's depends on nature of material.
- SI UNIT : $\mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$ Dimensions : $\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \theta^{-1} \mathrm{~K}\left[\begin{array}{l}\text { For Ag maximum is (} 410 \mathrm{~W} / \mathrm{mK} \text {) } \\ \text { For Freon minimum is } 12(0.008 \mathrm{~W} / \mathrm{mK})\end{array}\right.$
- For an ideal or perfect conductor of heat the value of $K=\infty$
- For an ideal or perfect bad conductor or insulator the value of $\mathrm{K}=0$
- For cooking the food, low specific heat and high conductivity utensils are most suitable.

APPLICATION OF THERMAL CONDUCTION

- In winter, the iron chairs appear to be colder than the wooden chairs.
- Cooking utensils are made of aluminium and brass whereas their handles are made of wood.
- Ice is covered in gunny bags to prevent melting of ice.
- We feel warm in woollen clothes and fur coat.
- Two thin blankets are warmer than a single blanket of double the thickness.
- Birds often swell their feathers in winter.
- A new quilt is warmer than old one.

THERMAL RESISTANCE (R)

The thermal resistance of a body is a measure of its opposition of the flow of heat through it. $R=\frac{L}{K A}$

- Heat flow through slabs in series

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2} \\
& \frac{\mathrm{~L}_{1}+\mathrm{L}_{2}}{\mathrm{~K}_{\text {eq }} \mathrm{A}}=\frac{\mathrm{L}_{1}}{\mathrm{~K}_{1} \mathrm{~A}}+\frac{\mathrm{L}_{2}}{\mathrm{~K}_{2} \mathrm{~A}}
\end{aligned}
$$

Equivalent thermal conductivity of the system is

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{L}_{1}+\mathrm{L}_{2}}{\frac{\mathrm{~L}_{1}}{\mathrm{~K}_{1}}+\frac{\mathrm{L}_{2}}{\mathrm{~K}_{2}}}=\frac{\sum \mathrm{L}_{\mathrm{i}}}{\Sigma \frac{\mathrm{~L}_{\mathrm{i}}}{\mathrm{~K}_{\mathrm{i}}}}
$$

equivalent to

- Heat flow through slabs in parallel

$$
\frac{1}{\mathrm{R}_{\text {eq }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}, \mathrm{R}=\frac{\mathrm{L}}{\mathrm{KA}} ; \frac{\mathrm{K}_{\text {eq }}}{\mathrm{L}}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)=\frac{\mathrm{K}_{1} \mathrm{~A}_{1}}{\mathrm{~L}}+\frac{\mathrm{K}_{2} \mathrm{~A}_{2}}{\mathrm{~L}}
$$

Equivalent thermal conductivity

$$
\mathrm{K}_{\text {eq }}=\frac{\mathrm{K}_{1} \mathrm{~A}_{1}+\mathrm{K}_{2} \mathrm{~A}_{2}}{\mathrm{~A}_{1}+\mathrm{A}_{2}}=\frac{\Sigma \mathrm{K}_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}}{\Sigma \mathrm{~A}_{\mathrm{i}}}
$$

GROWTH OF ICE ON LAKES

In winter atmospheric temperature falls below $0^{\circ} \mathrm{C}$ and water in the lake start freezing.
Let at time t thickness of ice on the surface of the lake $=x$ and air temperature $=-\theta^{\circ} \mathrm{C}$
The temperature of water in contact with the lower surface of ice $=0^{\circ} \mathrm{C}$
Let area of the lake $=\mathrm{A}$

Heat escaping through ice in time $d t$ is $d Q=K A \frac{[0-(-\theta)]}{x} d t$
Due to escape of this heat increasing extra thickness of ice $=d x$ Mass of this extra thickness of ice is $m=\rho V=\rho A . d x$
$d Q=m L=(\rho A . d x) L$

$\therefore \quad K A \frac{\theta}{x} d t=(\rho A \cdot d x) L \Rightarrow d t=\frac{\rho L}{K \theta} x d x$
So time taken by ice to grow a thickness x is $t=\frac{\rho L}{K \theta} \int_{0}^{x} x d x=\frac{1}{2} \frac{\rho L}{K \theta} x^{2}$
So time taken by ice to grow from thickness x_{1} to thickness x_{2} is

$$
\mathrm{t}=\mathrm{t}_{2}-\mathrm{t}_{1}=\frac{1}{2} \frac{\rho \mathrm{~L}}{\mathrm{KT}}\left(\mathrm{x}_{2}^{2}-\mathrm{x}_{1}^{2}\right) \quad \text { and } \quad \mathrm{t} \propto\left(\mathrm{x}_{2}^{2}-\mathrm{x}_{1}^{2}\right)
$$

Time taken to double and triple the thickness ratio $t_{1}: t_{2}: t_{3}:: 1^{2}: 2^{2}: 3^{2}$
So $\mathrm{t}_{1}: \mathrm{t}_{2}: \mathrm{t}_{3}:: 1: 4: 9$

Ex. One end of a brass rod 2 m long and having 1 cm radius is maintained at $250^{\circ} \mathrm{C}$. When a steady state is reached, the rate of heat flow across any cross-section is $0.5 \mathrm{cal} \mathrm{s}^{-1}$. What is the temperature of the other end $\mathrm{K}=0.26 \mathrm{cal} \mathrm{s}^{-1} \mathrm{~cm}^{-1}{ }^{\circ} \mathrm{C}^{-1}$.

Sol. $\frac{\mathrm{Q}}{\mathrm{t}}=0.5 \mathrm{cal} \mathrm{s}^{-1} ; \mathrm{r}=1 \mathrm{~cm} \quad \therefore$ Area $\mathrm{A}=\pi \mathrm{r}^{2}=3.142 \times 1 \mathrm{~cm}^{2}=3.142 \mathrm{~cm}^{2}$
$\mathrm{L}=$ Length of $\mathrm{rod}=2 \mathrm{~m}=200 \mathrm{~cm}, \mathrm{~T}_{1}=250^{\circ} \mathrm{C}, \mathrm{T}_{2}=$?
We know $\frac{Q}{t}=\frac{K A\left(T_{1}-T_{2}\right)}{L}$ or $\left(T_{1}-T_{2}\right)=\frac{Q}{t} \times \frac{\Delta x}{k A}=\frac{0.5 \times 200}{0.26 \mathrm{C}^{-1} \times 3.142}=122.4^{\circ} \mathrm{C}$
$\therefore \mathrm{T}_{2}=250^{\circ} \mathrm{C}-122.4^{\circ} \mathrm{C}=127.6^{\circ} \mathrm{C}$

Ex. Steam at 373 K is passed through a tube of radius 10 cm and length 2 m . The thickness of the tube is 5 mm and thermal conductivity of the material is $390 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$, calculate the heat lost per second. The outside temp. is $0^{\circ} \mathrm{C}$.

Sol. Using the relation $\mathrm{Q}=\frac{\mathrm{KA}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \mathrm{t}}{\mathrm{L}}$
Here, heat is lost through the cylindrical surface of the tube.
$\mathrm{A}=2 \pi \mathrm{r}$ (radius of the tube) (length of the tube) $=2 \pi \times 0.1 \times 2=0.4 \pi \mathrm{~m}^{2}$
$\mathrm{K}=390 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$
$\mathrm{T}_{1}=373 \mathrm{~K}, \quad \mathrm{~T}_{2}=0^{\circ} \mathrm{C}=273 \mathrm{~K}, \quad \mathrm{~L}=5 \mathrm{~mm}=0.005 \mathrm{~m} \quad$ and $\mathrm{t}=1 \mathrm{~s}$
$\therefore \mathrm{Q}=\frac{390 \times 0.4 \pi \times(373-273) \times 1}{0.005}=\frac{390 \times 0.4 \pi \times 100}{0.005}=98 \times 10^{5} \mathrm{~J}$.

Ex. The thermal conductivity of brick is $1.7 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$, and that of cement is $2.9 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$. What thickness of cement will have same insulation as the brick of thickness 20 cm .

Sol. Since $Q=\frac{K A\left(T_{1}-T_{2}\right) t}{L}$. For same insulation by the brick and cement $Q, A\left(T_{1}-T_{2}\right)$ and t do not change. Hence, $\frac{\mathrm{K}}{\mathrm{L}}$ remain constant. If K_{1} and K_{2} be the thermal conductivities of brick and cement respectively and L_{1} and L_{2} be the required thickness then $\frac{\mathrm{K}_{1}}{\mathrm{~L}_{1}}=\frac{\mathrm{K}_{2}}{\mathrm{~L}_{2}}$ or $\frac{1.7}{20}=\frac{2.9}{\mathrm{~L}_{2}}$
$\therefore \mathrm{L}_{2}=\frac{2.9}{1.7} \times 20=34.12 \mathrm{~cm}$
Ex. Two vessels of different material are identical in size and wall-thickness. They are filled with equal quantities of ice at $0^{\circ} \mathrm{C}$. If the ice melts completely, in 10 and 25 minutes respectively then compare the coefficients of thermal conductivity of the materials of the vessels.
Sol. Let K_{1} and K_{2} be the coefficients of thermal conductivity of the materials, and t_{1} and t_{2} be the time in which ice melts in the two vessels. Since both the vessels are identical, so A and x in both the cases is same.

Now, $\mathrm{Q}=\frac{\mathrm{K}_{1} \mathrm{~A}\left(\theta_{1}-\theta_{2}\right) \mathrm{t}_{1}}{\mathrm{~L}}=\frac{\mathrm{K}_{2} \mathrm{~A}\left(\theta_{1}-\theta_{2}\right) \mathrm{t}_{2}}{\mathrm{~L}} \Rightarrow \frac{\mathrm{~K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}=\frac{25 \mathrm{~min}}{10 \mathrm{~min}}=\frac{5}{2}$
Ex. Three rods of material X and three rods of material Y are connected as shown in figure. All the rods are identical in length and cross-sectional area. If the end A is maintained at $60^{\circ} \mathrm{C}$ and the junction E at at $10^{\circ} \mathrm{C}$, calculate the temp. of the junctions B,C,D. The thermal conductivity of X is 0.92 CGS units and that of Y is 0.46 CGS units.

Sol. $\quad \mathrm{R}_{\mathrm{X}} \propto \frac{1}{\mathrm{~K}_{\mathrm{X}}}, \mathrm{R}_{\mathrm{Y}} \propto \frac{1}{\mathrm{~K}_{\mathrm{Y}}} \Rightarrow \frac{\mathrm{R}_{\mathrm{X}}}{\mathrm{R}_{\mathrm{Y}}}=\frac{\mathrm{K}_{\mathrm{Y}}}{\mathrm{K}_{\mathrm{X}}}=\frac{0.46}{0.92}=\frac{1}{2} \quad$ Let $\mathrm{R}_{\mathrm{X}}=\mathrm{R} \therefore \mathrm{R}_{\mathrm{Y}}=2 \mathrm{R}$
The total resistance $\Sigma R=R_{Y}+$ effective resistance in the bridge

$$
\Sigma \mathrm{R}=2 \mathrm{R}+\frac{2 \mathrm{R} \times 4 \mathrm{R}}{2 \mathrm{R}+4 \mathrm{R}}=2 \mathrm{R}+\frac{4}{3} \mathrm{R}=\frac{10}{3} \mathrm{R} \& \because \Delta \theta=\ell \times \mathrm{R}
$$

Further

$$
\begin{equation*}
\mathrm{I}_{\mathrm{BCE}}(2 \mathrm{R})=\mathrm{I}_{\mathrm{BDE}}(4 \mathrm{R}) \text { and } \mathrm{I}_{\mathrm{BCE}}+\mathrm{I}_{\mathrm{BDE}}=\mathrm{I} \Rightarrow \mathrm{I}_{\mathrm{BCE}}=\frac{2}{3} \mathrm{I} \text { and } \mathrm{I}_{\mathrm{BDE}}=\frac{1}{3} \mathrm{I} \tag{i}
\end{equation*}
$$

For A and $B \quad \theta_{A}-\theta_{B}=60^{\circ}-\theta_{B} \Rightarrow 60-\theta_{B}=2 R \times I$
For B and C $\quad \theta_{B}-\theta_{C}=\frac{2}{3}(I \times R) \quad \ldots$ (ii) $\theta_{C}-\theta_{E}=\frac{2}{3} \times R \times I$
For A and E

$$
\begin{aligned}
& \theta_{A}-\theta_{E}=60-10=50 \Rightarrow \frac{10}{3}(\mathrm{R} \times \mathrm{I})=50 \ldots . \text { (iii) } \therefore \mathrm{R} \times \mathrm{I}=15 \\
& \therefore \theta_{A}-\theta_{B}-2 \times 15=30, \theta_{\mathrm{B}}=60-30=30^{\circ} \mathrm{C}, \theta_{B}-\theta_{C}=\left(\frac{2}{3}\right) \times 15=10 \\
& \therefore \theta_{C}=30-10=20^{\circ} \mathrm{C} \text { Obviously, } \theta_{C}=\theta_{D}=20^{\circ} \mathrm{C}
\end{aligned}
$$

Ex. Two plates of equal areas are placed in contact with each other. Their thickness are 2.0 cm and 5.0 cm respectively. The temperature of the external surface of the first plate is $-20^{\circ} \mathrm{C}$ and that of the external surface of the second plate is $20^{\circ} \mathrm{C}$. What will be the temperature of the contact surface if the plate (i) are of the same material, (ii) have thermal conductivities in the ratio $2: 5$.

Sol. Rate of flow of heat in the plates is $\frac{Q}{t}=\frac{\mathrm{K}_{1} \mathrm{~A}\left(\theta_{1}-\theta\right)}{\mathrm{L}_{1}}=\frac{\mathrm{K}_{2} \mathrm{~A}\left(\theta-\theta_{2}\right)}{\mathrm{L}_{2}} \ldots$ (i)
(i) Here $\theta_{1}=-20^{\circ} \mathrm{C}, \theta_{2}=20^{\circ} \mathrm{C}$,

$$
\mathrm{L}_{1}=2 \mathrm{~cm}=0.02 \mathrm{~m}, \mathrm{~L}_{2}=5 \mathrm{~cm}=0.05 \mathrm{~m} \text { and } \mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K}
$$

\therefore equation (i) becomes $\frac{\mathrm{KA}(-20-\theta)}{0.02}=\frac{\mathrm{KA}(\theta-20)}{0.05}$

$\therefore 5(-20-\theta)=2(\theta-20) \Rightarrow-100-5 \theta=2 \theta-40 \Rightarrow 7 \theta=-60 \Rightarrow \theta=-8.6^{\circ} \mathrm{C}$
(ii) $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{2}{5}$ or $\mathrm{K}_{1}=\frac{2}{5} \mathrm{~K}_{2}$
\therefore from equation (i) $\frac{2 / 5 \mathrm{~K}_{2} \mathrm{~A}(-20-\theta)}{0.02}=\frac{\mathrm{K}_{2} \mathrm{~A}(\theta-20)}{0.05}-20-\theta=\theta-20$ or $-2 \theta=0 \quad \therefore \theta=0^{\circ} \mathrm{C}$
Ex. An ice box used for keeping eatables cold has a total wall area of 1 metre 2 and a wall thickness of 5.0 cm . The thermal conductivity of the ice box is $\mathrm{K}=0.01$ joule $/$ metre $-{ }^{\circ} \mathrm{C}$. It is filled with ice at $0^{\circ} \mathrm{C}$ along with eatables on a day when the temperature is $30^{\circ} \mathrm{C}$. The latent heat of fusion of ice is $334 \times$ 10^{3} jule $/ \mathrm{kg}$. Calculate the amount of ice melted in one day.
Sol. $\quad \frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KA}}{\mathrm{L}} \mathrm{d} \theta=\frac{0.01 \times 1}{0.05} \times 30=6$ joule $/ \mathrm{s} \quad$ So $\frac{\mathrm{dQ}}{\mathrm{dt}} \times 86400=6 \times 86400$
$\mathrm{Q}=\mathrm{mL}(\mathrm{L}-$ latent heat $), \quad \mathrm{m}=\frac{\mathrm{Q}}{\mathrm{L}}=\frac{6 \times 86400}{334 \times 10^{3}}=1.552 \mathrm{~kg}$
Ex. A hollow spherical ball of inner radius a and outer radius 2 a is made of a uniform material of constant thermal conductivity K. The temperature within the ball is maintained at $2 \mathrm{~T}_{0}$ and outside the ball it is T_{0}. Find, (a) the rate at which heat flows out of the ball in the steadystate, (b) the temperature at $\mathbf{r}=$ $3 \mathrm{a} / 2$, where r is radial distance from the centre of shell. Assume steady state condition.
Sol. In the steady state, the net outward thermal current is constant,
 and does not depend on the radial position.

Thermal current, $\mathrm{C}_{1}=\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)=-\mathrm{K} \cdot\left(4 \pi \mathrm{r}^{2}\right) \frac{\mathrm{dT}}{\mathrm{dr}} \Rightarrow \frac{\mathrm{dT}}{\mathrm{dr}}=-\frac{\mathrm{C}_{1}}{4 \pi \mathrm{~K}} \frac{1}{\mathrm{r}^{2}}+\mathrm{C}_{2}$
At $\mathrm{r}=\mathrm{a}, \mathrm{T}=2 \mathrm{~T}_{0}$ and $\mathrm{r}=2 \mathrm{a}, \mathrm{T}=\mathrm{T}_{0} \Rightarrow \mathrm{~T}=\frac{2 \mathrm{a}}{\mathrm{r}} \mathrm{T}_{0}$ (a) $\frac{\mathrm{dQ}}{\mathrm{dt}}=8 \pi \mathrm{aKT}_{0}$ (b) $\mathrm{T}(\mathrm{r}=3 \mathrm{a} / 2)=4 \mathrm{~T}_{0} / 3$

Thermal Radiation

The process of the transfer of heat from one place to another place without heating the intervening medium is called radiation. When a body is heated and placed in vacuum, it loses heat even when there is no medium surrounding it. The heat can not go out from the body by the process of conduction or convection since both of these process require the presence of a material medium between source and surrounding objects. The process by which heat is lost in this case is called radiation. This does not require the presence of any material medium.
It is by radiation that the heat from the Sun reaches the Earth. Radiation has the following properties:
(a) Radiant energy travels in straight lines and when some object is placed in the path, it's shadow is formed at the direction.
(b) It can travel through vacuum.
(c) Intensity of radiation follows the law of inverse square.

All these and many other properties establish that heat radiation has nearly all the properties possessed by light and these are also electromagnetic waves with the only difference of wavelength or frequency. The wavelength of heat radiation is larger than that of visible light.

Types of thermal Radiation :- Two types of thermal radiation.

- When radiation passes through any medium then radiations slightly absorbed by medium according to its absorptive power so temperature of medium slightly increases.
- Heat radiation are always obtained in infra-red region of electromagnetic wave spectrum so they are called Infra red rays.

BASIC FUNDAMENTAL DEFINITIONS

- Energy Density (u)

The radiation energy of whole wavelength $(0$ to $\infty)$ present in unit volume at any point in space is defined as energy density. S I UNIT : J/m ${ }^{3}$

- \quad Spectral energy density $\left(\mathbf{u}_{\lambda}\right):$ Energy density per unit spectral region. $u=\int_{0}^{\infty} u_{\lambda} d \lambda$

SI UNIT : J/m ${ }^{3} \AA$

- Absorptive power or absorptive coefficient 'a' : The ratio of amount of radiation absorbed by a surface $\left(Q_{a}\right)$ to the amount of radiation incident (Q) upon it is defined as the coefficient of absorption $a=\frac{Q_{a}}{Q}$. It is unitless
- Spectral absorptive power $\left(a_{\lambda}\right) a_{\lambda}=\frac{Q a_{\lambda}}{Q_{\lambda}}$: Also called monochromatic absorptive coefficient At a given wavelength $\mathrm{a}=\int_{0}^{\infty} \mathrm{a}_{\lambda} \mathrm{d} \lambda$. For ideal black body a_{λ} and $\mathrm{a}=1$, a and a_{λ} are unitless
- Emissive power (e): The amount of heat radiation emitted by unit area of the surface in one second at a particular temperature. SI UNIT : J/m²s
- Spectral Emmisive power $\left(\mathbf{e}_{\lambda}\right)$: The amount of heat radiation emitted by unit area of the body in one second in unit spectral region at a given wavelength. Emissive power or total emissive power $e=\int_{0}^{\infty} e_{\lambda} \mathrm{d} \lambda$

SI UNIT : W/m² \AA

EMISSIVITY (e)

- Absolute emissivity or emissivity : Radiation energy given out by a unit surface area of a body in unit time corresponding to unit temperature difference w.r.t. the surroundings is called Emissivity.

S I UNIT : W/m ${ }^{2}{ }^{\circ} \mathrm{K}$

- Relative emissivity (\mathbf{e}_{r}): $\mathrm{e}_{\mathrm{r}}=\frac{\mathrm{Q}_{G B}}{\mathrm{Q}_{\mathrm{IB}}}=\frac{e_{G B}}{\mathrm{E}_{I B B}}=\frac{\text { emitted radiation by gray body }}{\text { emitted radiation by ideal black body }}$ $\mathrm{GB}=$ gray or general body, $\mathrm{IBB}=$ Ideal black body
(i) No unit
(ii) For ideal black body $\mathrm{e}_{\mathrm{r}}=1$
(iii) range $0<\mathrm{e}_{\mathrm{r}}<1$

SPECTRAL, EMISSIVE, ABSORPTIVE AND TRANSMITTIVE POWER OF A GIVEN BODY SURFACE

Due to incident radiations on the surface of a body following phenomena occur by which the radiation is divided into three parts. (a) Reflection (b) Absorption (c) Transmission

- From energy conservation

$$
\mathrm{Q}=\mathrm{Q}_{\mathrm{r}}+\mathrm{Q}_{\mathrm{a}}+\mathrm{Q}_{\mathrm{t}} \quad \Rightarrow \frac{\mathrm{Q}_{\mathrm{r}}}{\mathrm{Q}}+\frac{\mathrm{Q}_{\mathrm{a}}}{\mathrm{Q}}+\frac{\mathrm{Q}_{\mathrm{t}}}{\mathrm{Q}}=1 \Rightarrow \mathrm{r}+\mathrm{a}+\mathrm{t}=1
$$

Reflective Coefficient $\mathrm{r}=\frac{\mathrm{Q}_{\mathrm{r}}}{\mathrm{Q}}$, Absorptive Coefficient $\mathrm{a}=\frac{\mathrm{Q}_{\mathrm{a}}}{\mathrm{Q}}$,

Transmittive Coefficient $t=\frac{Q_{t}}{Q}$
$\mathrm{r}=1$ anda $=0, \mathrm{t}=0 \quad \Rightarrow \quad$ Perfect reflector
$\mathrm{a}=1$ and $\quad \mathrm{r}=0, \mathrm{t}=0 \quad \Rightarrow \quad$ Ideal absorber (ideal black body)
$\mathrm{t}=1$ and $\mathrm{a}=0, \mathrm{r}=0 \quad \Rightarrow \quad$ Perfect transmitter
Reflection power $(\mathrm{r})=\left[\frac{\mathrm{Q}_{\mathrm{r}}}{\mathrm{Q}} \times 100\right] \%$, Absorption power $(\mathrm{a})=\left[\frac{\mathrm{Q}_{\mathrm{a}}}{\mathrm{Q}} \times 100\right] \%$
Transmission power $(\mathrm{t})=\left[\frac{\mathrm{Q}_{\mathrm{t}}}{\mathrm{Q}} \times 100\right] \%$
Ex. Total radiations incident on body $=400 \mathrm{~J}, 20 \%$ radiation reflected and 120 J absorbs. Then find out $\%$ of transmittive power
Sol. $\mathrm{Q}=\mathrm{Q}_{\mathrm{t}}+\mathrm{Q}_{\mathrm{r}}+\mathrm{Q}_{\mathrm{a}} \Rightarrow 400=80+120+\mathrm{Q}_{\mathrm{t}} \Rightarrow \mathrm{Q}_{\mathrm{t}}=200 \quad$. So $\%$ of transmittive power is 50%

IDEAL BLACK BODY

- For a body surface which absorbs all incident thermal radiations at low temperature irrespective of their wave length and emitted out all these absorbed radiations at high temperature assumed to be an ideal black body surface.
- The identical parameters of an ideal black body is given by

$$
\mathrm{a}=\mathrm{a}_{\lambda}=1 \text { and } \mathrm{r}=0=\mathrm{t}, \mathrm{e}_{\mathrm{r}}=1
$$

- The nature of emitted radiations from surface of ideal black body only depends on its temperature

- The radiations emitted from surface of ideal black body called as either full or white radiations.
- At low temperature surface of ideal black body is a perfect absorber and at a high temperature it proves to be a good emitter.
- An ideal black body need not be black colour (eg. Sun)

Elasticity, Thermal expansion, Calorimetry \& Heat Transfer

PREVOST'S THEORY OF HEAT ENERGY EXCHANGE

According to Prevost at every possible temperature (Not absolute temperature) there is a continuous heat energy exchange between a body and its surrounding and this exchange carry on for infinite time.
The relation between temperature difference of body with its surrounding decides whether the body experience cooling effect or heating effect.
When a cold body is placed in the hot surrounding : The body radiates less energy and absorbs more energy from the surrounding, therefore the temperature of body increases.
When a hot body placed in cooler surrounding : The body radiates more energy and absorb less energy from the surroundings. Therefore temperature of body decreases.

When the temperature of a body is equal to the temperature of the surrounding

The energy radiated per unit time by the body is equal to the energy absorbed per unit time by the body, therefore its temperature remains constant.

- At absolute zero temperature (0 kelvin) all atoms of a given substance remains in ground state, so, at this temperature emission of radiation from any substance is impossible, so Prevost's heat energy exchange theory does not applied at this temperature, so it is called limited temperature of prevosts theory.
- With the help of Prevost's theory rate of cooling of any body w.r.t. its surroundings can be worked out (applied to Stefen Boltzman law, Newton's law of cooling.)

KIRCHHOFF'S LAW

At a given temperature for all bodies the ratio of their spectral emissive power $\left(\mathrm{e}_{\lambda}\right)$ to spectral absorptive power $\left(\mathrm{a}_{\lambda}\right)$ is constant and this constant is equal to spectral emissive power $\left(\mathrm{E}_{\lambda}\right)$ of the ideal black body at same temperature

$$
\frac{e_{\lambda}}{a_{\lambda}}=\mathrm{E}_{\lambda}=\mathrm{constant} \quad\left[\frac{e_{\lambda}}{\mathrm{a}_{\lambda}}\right]_{1}=\left[\frac{e_{\lambda}}{\mathrm{a}_{\lambda}}\right]_{2}=\text { constant } \mathrm{e}_{\lambda} \propto \mathrm{a}_{\lambda}
$$

Good absorbers are good emitters and bad absorbers are bad emitters

- For a constant temperature the spectral emmisive power of an ideal black body is a constant parameter
- The practical confirmation of Kirchhoff's law carried out by Rishi apparatus and the main base of this apparatus is a Lessilie container.
- The main conclusion predicted from Kirchhof's law can be expressed as
\(\left.\begin{array}{lll}Good absorber \& \rightleftharpoons \& Good emitter

Bad absorber \& \rightleftharpoons \& Bad emitter

(at Low temperature)\end{array}\right) \quad\)| (at high temperature) |
| :--- |

APPLICATIONS OF KIRCHOFF LAW

- In deserts days are hot and nights cold

Sand is rough and black, so it is a good absorber and hence in deserts, days (When radiation from Sun is incident on sand) will be very hot. Now in accordance with Kirchhoff's Law, good absorber is a good emitter.
So nights (when send emits radiation) will be cold.

STEFAN'S LAW

The amount of radiation emitted per second per unit area by a black body is directly proportional to the fourth power of its absolute temperature.
Amount of radiation emitted $\mathrm{E} \propto \mathrm{T}^{4}$ where $\mathrm{T}=$ temperature of ideal black body (in K)

$$
\mathrm{E}=\sigma \mathrm{T}^{4} \quad \text { This law is true for only ideal black body }
$$

SI Unit : $\mathrm{E}=$ watt $/ \mathrm{m}^{2} \quad \sigma=$ Stefen's constant $=5.67 \times 10^{-8}$ watt $/ \mathrm{m}^{2} \mathrm{~K}^{4}$
Dimensions of $\sigma: M^{1} L^{0} \mathrm{~T}^{-3} \theta^{-4}$
Total radiation energy emitted out by surface of area A in time t : If T is constant.
Ideal black body $\quad Q_{I B B}=\sigma A^{4} t \quad$ and for any other body $Q_{G B}=e_{r} \sigma A T^{4} t$

Rate of emission of radiation

When Temperature of surrounding $\mathrm{T}_{0}\left(\right.$ Let $\left.\mathrm{T}_{0}<\mathrm{T}\right)$
Rate of emission of radiation from ideal black body surface $E_{1}=\sigma T^{4}$
Rate of absorption of radiation from surrounding $\mathrm{E}_{2}=\sigma \mathrm{T}_{0}{ }^{4}$
Net rate of loss of radiation from ideal black body surface is $\mathrm{E}=\mathrm{E}_{1}-\mathrm{E}_{2}=\sigma \mathrm{T}^{4}-\sigma \mathrm{T}_{0}^{4}=\sigma\left(\mathrm{T}^{4}-\mathrm{T}_{0}^{4}\right)$
Net loss of radiation energy from entire surface area in time t is $Q_{I B B}=\sigma A\left(T^{4}-T_{0}^{4}\right) t$
For any other body $Q_{G B}=e_{r} A \sigma\left(T^{4}-T_{0}^{4}\right) t$
If in time $d t$ the net heat energy loss for ideal black body is $d Q$ and because of this its temperature falls by $d \theta$
Rate of loss of heat $R_{H}=\frac{d Q}{d t}=\sigma A\left(T^{4}-T_{0}^{4}\right)$
It is also equal to emitted power or radiation emitted per second
Rate of fall in temperature (Rate of cooling) $\mathrm{R}_{\mathrm{F}}=\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\sigma \mathrm{A}}{\mathrm{msJ}}\left(\mathrm{T}^{4}-\mathrm{T}_{0}^{4}\right)\left[\because \frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{msJ} \frac{\mathrm{d} \theta}{\mathrm{dt}}\right]$

Note:

(i) If all of T, T_{0}, m, s, V, ρ, are same for different shape body then R_{F} and R_{H} will be maximum in the flat surface.
(ii) If a solid and hollow sphere are taken with all the parameters same then hollow will cool down at fast rate.
(iii) Rate of temperature fall, $\mathrm{R}_{\mathrm{F}} \propto \frac{1}{\mathrm{~s}} \propto \frac{\mathrm{~d} \theta}{\mathrm{dt}}$ so dt $\propto \mathrm{s}$. If condition in specific heat is $\Rightarrow \mathrm{s}_{1}>\mathrm{s}_{2}>\mathrm{s}_{3}$ If all cooled same temperature i.e. temperature fall is also identical for all then required time $\mathrm{t} \propto \mathrm{s} \therefore \mathrm{t}_{1}>\mathrm{t}_{2}>\mathrm{t}_{3}$

- When a body cools by radiation the cooling depends on :
(i) Nature of radiating surface : greater the emissivity $\left(\mathrm{e}_{\mathrm{r}}\right)$, faster will be the cooling.
(ii) Area of radiating surface : greater the area of radiating surface, faster will be the cooling.
(iii) Mass of radiating body : greater the mass of radiating body slower will be the cooling.
(iv) Specific heat of radiating body : greater the specific heat of radiating body slower will be the cooling.
(v) Temperature of radiating body : greater the temperature of radiating body faster will be the cooling.

Ex. The operating temperature of a tungesten filament in an incandescent lamp is 2000 K and its emissivity is 0.3 . Find the surface area of the filament of a 25 watt lamp. Stefan's constant $\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
Sol. \because Rate of emission = wattage of the lamp

$$
\therefore \mathrm{W}=\mathrm{Ae} \mathrm{\sigma} \mathrm{~T}^{4} \Rightarrow \mathrm{~A}=\frac{\mathrm{W}}{e \sigma \mathrm{~T}^{4}}=\frac{25}{0.3 \times 5.67 \times 10^{-8} \times(200)^{4}}=0.918 \mathrm{~m}^{2}
$$

NEWTON'S LAW OF COOLING

Rate of loss of heat $\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)$ is directly proportional to excess of temperature of the body over that of surrounding. [(when $\left.\left(\theta-\theta_{0}\right) \ngtr 35^{\circ} \mathrm{C}\right] \quad \frac{\mathrm{dQ}}{\mathrm{dt}} \propto\left(\theta-\theta_{0}\right) \Rightarrow \frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{ms} \frac{\mathrm{d} \theta}{\mathrm{dt}}$
$\theta=$ temperature of body $\left[\right.$ in $\left.{ }^{\circ} \mathrm{C}\right], \theta_{\mathrm{o}}=$ temperature of surrounding, $\theta-\theta_{0}=$ excess of temperature $\left(\theta>\theta_{0}\right)$ If the temperature of body decrease $\mathrm{d} \theta$ in time dt then rate of fall of temperature $-\frac{\mathrm{d} \theta}{\mathrm{dt}} \propto\left(\theta-\theta_{0}\right)$
Where negative sign indictates that the rate of cooling is decreasing with time.

Excess of temperature

If the temperature of body decreases from θ_{1} to θ_{2} and temperature of surroundings is θ_{0} then average excess of temperature $=\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right] \Rightarrow\left[\frac{\theta_{1}-\theta_{2}}{\mathrm{t}}\right]=-\mathrm{K}\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]$
Ex. If a liquid takes 30 seconds in cooling of $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and 70 seconds in cooling $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, then find the room temperature.

Sol.
$\frac{\theta_{1}-\theta_{2}}{t}=K\left(\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right)$
In first case, $\frac{80-70}{30}=\mathrm{K}\left(\frac{80+70}{2}-\theta_{0}\right) \quad \frac{1}{3}=\mathrm{K}\left(75-\theta_{0}\right) \ldots(\mathrm{i})$
In second case, $\frac{60-50}{70}=K\left(\frac{60+50}{2}-\theta_{0}\right) \frac{1}{7}=K\left(55-\theta_{0}\right) \ldots$ (ii)
Equation (i) divide by equation (ii) $\frac{7}{3}=\frac{\left(75-\theta_{0}\right)}{\left(55-\theta_{0}\right)} \Rightarrow 385-7 \theta_{0}=225-3 \theta_{0} \Rightarrow \theta_{0}=\frac{160}{4}=40^{\circ} \mathrm{C}$

Limitations of Newton's Law

- Temperature difference should not exceed $35^{\circ} \mathrm{C},\left(\theta-\theta_{0}\right) \ngtr 35^{\circ} \mathrm{C}$
- Loss of heat should only be by radiation.
- This law is an extended form of Stefan-Boltzman's law.

For Heating, Newton's law of heating $\frac{\theta_{1}-\theta_{2}}{t}=+\mathrm{H}\left[\theta_{0}-\frac{\theta_{1}+\theta_{2}}{2}\right] \mathrm{H}$ heating constant.

Derivation of Newton's law from Steafen's Boltzman law

$$
\begin{array}{ll}
\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\sigma \mathrm{A}}{\mathrm{msJ}}\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right) & \left\{\begin{array}{l}
\mathrm{T}-\mathrm{T}_{0}=\Delta \mathrm{T} \\
\mathrm{~T}=\mathrm{T}_{0}+\Delta \mathrm{T}
\end{array}\right\} \\
\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\sigma \mathrm{A}}{\mathrm{msJ}}\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right) & \mathrm{T}-\mathrm{T}_{0}=\Delta \mathrm{T}, \Delta \mathrm{~T} \lll \mathrm{~T}_{0} \\
\frac{\mathrm{~d} \theta}{\mathrm{dt}}=\frac{\sigma \mathrm{A}}{\mathrm{msJ}}\left[\left(\mathrm{~T}_{0}+\Delta \mathrm{T}\right)^{4}-\mathrm{T}_{0}^{4}\right] & \text { If } \mathrm{x} \lll 1 \text { then }(1+\mathrm{x})^{\mathrm{n}}=1+\mathrm{nx}
\end{array}
$$

$$
\begin{aligned}
& \frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\sigma \mathrm{A}}{\mathrm{msJ}}\left[\mathrm{~T}_{0}^{4}\left(1+\frac{\Delta \mathrm{T}}{\mathrm{~T}_{0}}\right)^{4}-\mathrm{T}_{0}^{4}\right]=\frac{\sigma \mathrm{A}}{\mathrm{msJ}} \mathrm{~T}_{0}^{4}\left[\left(1+\frac{\Delta \mathrm{T}}{\mathrm{~T}_{0}}\right)^{4}-1\right]=\frac{\sigma \mathrm{A}}{\mathrm{msJ}} \mathrm{~T}_{0}^{4}\left[1+4 \frac{\Delta \mathrm{~T}}{\mathrm{~T}_{0}}-1\right] \\
& \frac{\mathrm{d} \theta}{\mathrm{dt}}=\left[4 \frac{\sigma \mathrm{~A}}{\mathrm{msJ}} \mathrm{~T}_{0}^{3}\right] \Delta \mathrm{T} \Rightarrow \frac{\mathrm{~d} \theta}{\mathrm{dt}}=\mathrm{K} \Delta \mathrm{~T} \quad \text { constant } \mathrm{K}=\frac{4 \sigma \mathrm{~A} \mathrm{~T}_{0}^{3}}{\mathrm{msJ}}
\end{aligned}
$$

Newton's law of cooling $\frac{\mathrm{d} \theta}{\mathrm{dt}} \propto \Delta \mathrm{T}$ (for small temperature difference)

APPLICATION OF NEWTON'S LAW OF COOLING

- To find out specific heat of a given liquid

If for the two given liquids their volume, radiating surface area, nature of surface, initial temperature are allowed to cool down in a common environments then rate of loss of heat of these liquids are equal.

$\because\left[\frac{\mathrm{dQ}}{\mathrm{dt}}\right]_{\text {Water }}=\left[\frac{\mathrm{dQ}}{\mathrm{dt}}\right]_{\text {Liquidid }} \quad \therefore(\mathrm{ms}+\mathrm{w})\left[\frac{\theta_{1}-\theta_{2}}{\mathrm{t}_{1}}\right]=\left(\mathrm{m}^{\prime} \mathrm{s}^{\prime}+\mathrm{w}\right)\left[\frac{\theta_{1}-\theta_{2}}{\mathrm{t}_{2}}\right] \Rightarrow \frac{\mathrm{ms}+\mathrm{w}}{\mathrm{t}_{1}}=\frac{\mathrm{m}^{\prime} \mathrm{s}^{\prime}+\mathrm{w}}{\mathrm{t}_{2}}$
where $w=$ water equivalent of calorimeter.

Cooling curve :

Ex. When a calorimeter contains 40 g of water at $50^{\circ} \mathrm{C}$, then the temperature falls to $45^{\circ} \mathrm{C}$ in 10 minutes. The same calorimeter contains 100 g of water at $50^{\circ} \mathrm{C}$, it takes 20 minutes for the temperature to become $45^{\circ} \mathrm{C}$. Find the water equivalent of the calorimeter.

Sol. $\frac{m_{1} s_{1}+W}{t_{1}}=\frac{m_{2} s_{2}+W}{t_{2}}$ where W is the water equivalent
$\Rightarrow \frac{40 \times 1+\mathrm{W}}{10}=\frac{100 \times 1+\mathrm{W}}{20} \Rightarrow 80+2 \mathrm{~W}=100+\mathrm{W} \Rightarrow \mathrm{W}=20 \mathrm{~g}$

SPECTRAL ENERGY DISTRIBUTION CURVE OF BLACK BODY RADIATIONS

Practically given by : Lumers and Pringshem Mathematically given by : Plank

spectral energy distribution curve $\left(\mathrm{E}_{-}-\lambda\right)$

(i) $\quad \lambda_{m} \propto \frac{1}{T}$
(ii) $\quad E_{\lambda_{m}} \propto T^{5}$
(iii) Area $\int_{0}^{\infty} \mathrm{E}_{\lambda} \mathrm{d} \lambda=\mathrm{E}=\sigma \mathrm{T}^{4} \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\left[\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right]^{4}$

- Spectral energy distribution curves are continuous. At any temperature in between possible wavelength $(0-\infty)$ radiation emitted but for different wavelength quantity of radiations are different.
- As the wave length increases, the amount of radiation emitted first increase, becomes maximum and then decreases.
- At a particular temperature the area enclosed between the spectral energy curve shows the spectral emissive power of the body.

$$
\text { Area }=\int_{0}^{\infty} \mathrm{E}_{\lambda} \mathrm{d} \lambda=\mathrm{E}=\sigma \mathrm{T}^{4}
$$

WEIN'S DISPLACEMENT LAW

The wavelength corresponding to maximum emission of radiation decrease with increasing temperature $\left[\lambda_{\mathrm{m}} \propto \frac{1}{\mathrm{~T}}\right]$. This is known as Wein's displacement law. $\lambda_{\mathrm{m}} \mathrm{T}=\mathrm{b}$ where b Wein's constant $=2.89 \times 10^{-3} \mathrm{mK}$.

Dimensions of $\mathbf{b}:=M^{0} L^{1} \mathrm{~T}^{0} \theta^{1}$
Relation between frequency and temperature $v_{m}=\frac{c}{b} T$

Ex. The temperature of furnace is $2000^{\circ} \mathrm{C}$, in its spectrum the maximum intensity is obtained at about $4000 \AA$, If the maximum intensity is at $2000 \AA$ calculate the temperature of the furnace in ${ }^{\circ} \mathrm{C}$.
Sol. by using $\lambda_{\mathrm{m}} \mathrm{T}=\mathrm{b}, 4000(2000+273)=2000(\mathrm{~T}) \Rightarrow \mathrm{T}=4546 \mathrm{~K}$
The temperature of furnace $=4546-273=4273{ }^{\circ} \mathrm{C}$

SOLAR CONSTANT 'S'

The Sun emits radiant energy continuously in space of which an in significant part reaches the Earth. The solar radiant energy received per unit area per unit time by a black surface held at right angles to the Sun's rays and placed at the mean distance of the Earth (in the absence of atmosphere) is called solar constant.
The solar constant S is taken to be 1340 watts $/ \mathrm{m}^{2}$ or $1.937 \mathrm{Cal} / \mathrm{cm}^{2}-$ minute

- Temperature of the Sun

Let R be the radius of the Sun and 'd' be the radius of Earth's orbit around the Sun. Let E be the energy emitted by the Sun per second per unit area. The total energy emitted by the Sun in one second $=E \cdot A=E \times 4 \pi R^{2}$. (This energy is falling on a sphere of radius equal to the radius of the Earth's orbit around the Sun i.e., on a sphere of surface area $4 \pi \mathrm{~d}^{2}$)
So, The energy falling per unit area of Earth $=\frac{4 \pi R^{2} \times E}{4 \pi d^{2}}=\frac{E R^{2}}{d^{2}}$
$\mathrm{R}=7 \times 10^{8} \mathrm{~m}, \mathrm{~d}=1.5 \times 10^{11} \mathrm{~m}, \quad \mathrm{~s}=5.7 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Solar constant $S=\frac{E R^{2}}{d^{2}}$
By Stefan's Law $E=\sigma T^{4}$

$$
\mathrm{S}=\frac{\sigma \mathrm{T}^{4} \mathrm{R}^{2}}{\mathrm{~d}^{2}} \Rightarrow \mathrm{~T}=\left[\frac{\mathrm{S} \times \mathrm{d}^{2}}{\sigma \times \mathrm{R}^{2}}\right]^{\frac{1}{4}}=\left[\frac{1340 \times\left(1.5 \times 10^{11}\right)^{2}}{5.7 \times 10^{-8} \times\left(7 \times 10^{8}\right)^{2}}\right]^{\frac{1}{4}}=5732 \mathrm{~K}
$$

EXERCISE (S-1)

Elasticity

1. A steel wire of length 4.5 m and a copper wire of length 3.5 m are stretched same amount under a given load. If ratio of youngs modulli of steel to that of copper is $\frac{12}{7}$, then what is the ratio of cross sectional area of steel wire to copper wire?
2. Diagram shows stress-strain graph for two material A \& B. The graphs are drawn to scale.

The ratio of young modulli of material A to material B is.
3. Two identical wires $A \& B$ of same material are loaded as shown in figure. If the elongation in wire B is 1.5 mm , what is the elongation in A . (Mass of A \& B can be neglected)

4. A wire of length L and radius r is clamped rigidly at one end. When the other end of the wire is pulled by a force f, its length increases by l. Another wire of the same material of length $2 L$ and radius $2 r$, is pulled by a force $2 f$. Find the increase in length of this wire.
5. Consider a long steel bar under a tensile stress due to forces \vec{F} acting at the edges along the length of the bar (Fig.). Consider a plane making an angle θ with the length. What are the tensile and shearing stresses on this plane?
(a) For what angle is the tensile stress a maximum?

(b) For what angle is the shearing stress a maximum?
6. A light rigid bar AB is suspended horizontally from two vertical wires, one of steel and one of brass, as shown in figure. Each wire is 2.00 m long. The diameter of the steel wire is 0.60 mm and the length of the bar $A B$ is 0.20 m . When a mass of 10 kg is suspended from the centre of $A B$ bar remains horizontal.
(i) What is the tension in each wire?
(ii) Calculate the extension of the steel wire and the energy stored in it.
(iii)Calculate the diameter of the brass wire.

(iv)If the brass wire were replaced by another brass wire of diameter 1 mm , where should the mass be suspended so that AB would remain horizontal? The Young modulus for steel $=2.0 \times 10^{11} \mathrm{~Pa}$, the Young modulus for brass $=1.0 \times 10^{11} \mathrm{~Pa}$.

Calorimetry

7. One day in the morning, Ramesh filled up $1 / 3$ bucket of hot water from geyser, to take bath. Remaining $2 / 3$ was to be filled by cold water (at room temperature) to bring mixture to a comfortable temperature. Suddenly Ramesh had to attend to something which would take some times, say 5-10 minutes before he could take bath. Now he had two options: (i) fill the remaining bucket completely by cold water and then attend to the work, (ii) first attend to the work and fill the remaining bucket just before taking bath. Which option do you think would have kept water warmer ? Explain.
8. An aluminium container of mass 100 gm contains 200 gm of ice at $-20^{\circ} \mathrm{C}$. Heat is added to the system at the rate of $100 \mathrm{cal} / \mathrm{s}$. Find the temperature of the system after 4 minutes (specific heat of ice $=0.5$ and $\mathrm{L}=80 \mathrm{cal} / \mathrm{gm}$, specific heat of $\mathrm{Al}=0.2 \mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{C}$)
9. A hot liquid contained in a container of negligible heat capacity loses temperature at rate $3 \mathrm{~K} / \mathrm{min}$, just before it begins to solidify. The temperature remains constant for 30 min . Find the ratio of specific heat capacity of liquid to specific latent heat of fusion is in K^{-1} (given that rate of losing heat is constant).
10. Two 50 gm ice cubes are dropped into 250 gm of water into a glass. If the water was initially at a temperature of $25^{\circ} \mathrm{C}$ and the temperature of ice $-15^{\circ} \mathrm{C}$. Find the final temperature of water. (specific heat of ice $=0.5 \mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{C}$ and $\mathrm{L}=80 \mathrm{cal} / \mathrm{gm}$). Find final amount of water and ice.
11. A flow calorimeter is used to measure the specific heat of a liquid. Heat is added at a known rate to a stream of the liquid as it passes through the calorimeter at a known rate. Then a measurement of the resulting temperature difference between the inflow and the outflow points of the liquid stream enables us to compute the specific heat of the liquid. A liquid of density $0.2 \mathrm{~g} / \mathrm{cm}^{3}$ flows through a calorimeter at the rate of $10 \mathrm{~cm}^{3} / \mathrm{s}$. Heat is added by means of a $250-\mathrm{W}$ electric heating coil, and a temperature difference of $25^{\circ} \mathrm{C}$ is established in steady-state conditions between the inflow and the outflow points. Find the specific heat of the liquid.
12. Two identical calorimeter A and B contain equal quantity of water at $20^{\circ} \mathrm{C}$. A 5 gm piece of metal X of specific heat $0.2 \mathrm{cal} \mathrm{g}^{-1}\left(\mathrm{C}^{0}\right)^{-1}$ is dropped into A and a 5 gm piece of metal Y into B . The equilibrium temperature in A is $22^{\circ} \mathrm{C}$ and in $\mathrm{B} 23^{\circ} \mathrm{C}$. The initial temperature of both the metals is $40^{\circ} \mathrm{C}$. Find the specific heat of metal Y in cal $\mathrm{g}^{-1}\left(\mathrm{C}^{\circ}\right)^{-1}$.
13. The temperature of 100 gm of water is to be raised from $24^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ by adding steam to it. Calculate the mass of the steam required for this purpose.
14. A substance is in the solid form at $0^{\circ} \mathrm{C}$. The amount of heat added to this substance and its temperature are plotted in the following graph. If the relative specific heat capacity of the solid substance is 0.5 , find from the graph

(i) the mass of the substance ;
(ii) the specific latent heat of the melting process, and
(iii) the specific heat of the substance in the liquid state.

Thermal expansion

15. If two rods of length L and 2 L having coefficients of linear expansion α and 2α respectively are connected so that total length becomes 3 L , determine the average coefficient of linear expansion of the composite rod.
16. A clock pendulum made of invar has a period of 0.5 sec at $20^{\circ} \mathrm{C}$. If the clock is used in a climate where average temperature is $30^{\circ} \mathrm{C}$, approximately. How much fast or slow will the clock run in 10^{6} sec. $\left(\alpha_{\text {invar }}=1 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$
17. An iron bar (Young's modulus $=10^{11} \mathrm{~N} / \mathrm{m}^{2}, \alpha=10^{-6} /{ }^{\circ} \mathrm{C}$) 1 m long and $10^{-3} \mathrm{~m}^{2}$ in area is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ without being allowed to bend or expand. Find the compressive force developed inside the bar.

Conduction

18. A thin walled metal tank of surface area $5 \mathrm{~m}^{2}$ is filled with water and contains an immersion heater dissipating 1 kW . The tank is covered with 4 cm thick layer of insulation whose thermal conductivity is $0.2 \mathrm{~W} / \mathrm{m} / \mathrm{K}$. The outer face of the insulation is $25^{\circ} \mathrm{C}$. Find the temperature of the tank in the steady state
19. The figure shows the face and interface temperature of a composite slab containing of four layers of two materials having identical thickness. Under steady state condition, find the value of temperature θ.

20. Three conducting rods of same material and cross-section are shown in figure. Temperature of A, D and C are maintained at $20^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$. Find the ratio of length BD and BC if there is no heat flow in AB .

21. In the square frame of side l of metallic rods, the corners A and C are maintained at T_{1} and T_{2} respectively. The rate of heat flow from A to C is ω. If A and D are instead maintained $T_{1} \& T_{2}$ respectively. Find the total rate of heat flow.

22. One end of copper rod of uniform cross-section and of length 1.5 meters is in contact with melting ice and the other end with boiling water. At what point along its length should a temperature of $200^{\circ} \mathrm{C}$ be maintained, so that in steady state, the mass of ice melting is equal to that of steam produced in the same interval of time? Assume that the whole system is insulated from the surroundings.

Radiation

23. Two spheres of same radius R have their densities in the ratio $8: 1$ and the ratio of their specific heats are $1: 4$. If by radiation their rates of fall of temperature are same, then find the ratio of their rates of losing heat.
24. A solid receives heat by radiation over its surface at the rate of 4 kW . The heat convection rate from the surface of solid to the surrounding is 5.2 kW , and heat is generated at a rate of 1.7 kW over the volume of the solid. The rate of change of the average temperature of the solid is $0.5^{\circ} \mathrm{Cs}^{-1}$. Find the heat capacity of the solid.
25. A solid copper cube and sphere, both of same mass \& emissivity are heated to same initial temperature and kept under identical conditions. What is the ratio of their initial rate of fall of temperature?
26. A vessel containing 100 gm water at $0^{\circ} \mathrm{C}$ is suspended in the middle of a room. In 15 minutes the temperature of the water rises by $2^{\circ} \mathrm{C}$. When an equal amount of ice is placed in the vessel, it melts in 10 hours. Calculate the specific heat of fusion of ice.
27. The maximum in the energy distribution spectrum of the sun is at $4753 \AA$ and its temperature is 6050 K . What will be the temperature of the star whose energy distribution shows a maximum at $9506 \AA$.
28. A pan filled with hot food cools from $50.1^{\circ} \mathrm{C}$ to $49.9^{\circ} \mathrm{C}$ in 5 sec . How long will it take to cool from $40.1^{\circ} \mathrm{C}$ to $39.9^{\circ} \mathrm{C}$ if room temperature is $30^{\circ} \mathrm{C}$?

EXERCISE (S-2)

1. Three aluminium rods of equal length form an equilateral triangle ABC . Taking O (mid point of rod BC) as the origin. Find the increase in Y-coordinate of center of mass per unit change in temperature of the system. Assume the length of the each rod is 2 m , and $\alpha_{\mathrm{al}}=4 \sqrt{3} \times 10^{-6} /{ }^{\circ} \mathrm{C}$

2. A metal rod A of 25 cm lengths expands by 0.050 cm , when its temperature is raised from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Another rod B of a different metal of length 40 cm expands by 0.040 cm for the same rise in temperature. A third rod C of 50 cm length is made up of pieces of rods A and B placed end to end expands by 0.03 cm on heating from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Find the lengths of each portion of the composite rod.
3. A wire of cross-sectional area $4 \times 10^{-4} \mathrm{~m}^{2}$, modulus of elasticity $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and length 1 m is stretched between two vertical rigid poles. A mass of 1 kg is suspended at its middle. Calculate the angle it makes with the horizontal.
4. A copper calorimeter of mass 100 gm contains 200 gm of a mixture of ice and water. Steam at $100^{\circ} \mathrm{C}$ under normal pressure is passed into the calorimeter and the temperature of the mixture is allowed to rise to $50^{\circ} \mathrm{C}$. If the mass of the calorimeter and its contents is now 330 gm , what was the ratio of ice and water in the beginning? Neglect heat losses.
Given : Specific heat capacity of copper $=0.42 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$,
Specific heat capacity of water $=4.2 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$,
Specific heat of fusion of ice $=3.36 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$
Latent heat of condensation of steam $=22.5 \times 10^{5} \mathrm{Jkg}^{-1}$
5. An isosceles triangle is formed with a rod of length l_{1} and coefficient of linear expansion α_{1} for the base and two thin rods each of length l_{2} and coefficient of linear expansion α_{2} for the two pieces, if the distance between the apex and the midpoint of the base remain unchanged as the temperatures varied
show that $\frac{l_{1}}{l_{2}}=2 \sqrt{\frac{\alpha_{2}}{\alpha_{1}}}$.
6. A steel drill making 180 rpm is used to drill a hole in a block of steel. The mass of the steel block and the drill is 180 gm . If the entire mechanical work is used up in producing heat and the rate of raise in temperature of the block and the drill is $0.5^{\circ} \mathrm{C} / \mathrm{s}$. Find
(a) the rate of working of the drill in watts, and (b) the torque required to drive the drill.

Specific heat of steel $=0.1$ and $\mathrm{J}=4.2 \mathrm{~J} / \mathrm{cal}$. Use : $\mathrm{P}=\tau \omega$
7. Ice at $-20^{\circ} \mathrm{C}$ is filled upto height $\mathrm{h}=10 \mathrm{~cm}$ in a uniform cylindrical vessel. Water at temperature $\theta^{\circ} \mathrm{C}$ is filled in another identical vessel upto the same height $\mathrm{h}=10 \mathrm{~cm}$. Now, water from second vessel is poured into first vessel and it is found that level of upper surface falls through $\Delta \mathrm{h}=0.5 \mathrm{~cm}$ when thermal equilibrium is reached. Neglecting thermal capacity of vessels, change in density of water due to change in temperature and loss of heat due to radiation, calculate initial temperature θ of water. Given,
Density of water: $\quad \rho_{\mathrm{w}}=1 \mathrm{gm} \mathrm{cm}^{-3} \quad$ Density of ice: $\quad \rho_{\mathrm{i}}=0.9 \mathrm{gm} / \mathrm{cm}^{3}$
Specific heat of water: $\mathrm{s}_{\mathrm{w}}=1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C} \quad$ Specific heat of ice: $\mathrm{s}_{\mathrm{i}}=0.5 \mathrm{cal} / \mathrm{gm}^{0} \mathrm{C}$ Specific latent heat of ice : $\mathrm{L}=80 \mathrm{cal} / \mathrm{gm}$
8. A highly conducting solid cylinder of radius a and length l is surrounded by a co-axial layer of a material having thermal conductivity K and negligible heat capacity. Temperature of surrounding space (out side the layer) is T_{0}, which is higher than temperature of the cylinder. If heat capacity per unit volume of cylinder material is s and outer radius of the layer is b, calculate time required to increase temperature of the cylinder from T_{1} to T_{2}. Assume end faces to be thermally insulated.
9. A lagged stick of cross section area $1 \mathrm{~cm}^{2}$ and length 1 m is initially at a temperature of $0^{\circ} \mathrm{C}$. It is then kept between 2 reservoirs of temperature $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$. Specific heat capacity is $10 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$ and linear mass density is $2 \mathrm{~kg} / \mathrm{m}$. Find

(a) temperature gradient along the rod in steady state.
(b) total heat absorbed by the rod to reach steady state.
10. A cylindrical block of length 0.4 m an area of cross-section $0.04 \mathrm{~m}^{2}$ is placed coaxially on a thin metal disc of mass 0.4 kg and of the same cross-section. The upper face of the cylinder is maintained at a constant temperature of 400 K and the initial temperature of the disc is 300 K . If the thermal conductivity of the material of the cylinder is 10 watt $/ \mathrm{m}-\mathrm{K}$ and the specific heat of the material of the disc in $600 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, how long will it take for the temperature of the disc to increase to 350 K ? Assume, for purposes of calculation, the thermal conductivity of the disc to be very high and the system to be thermally insulated except for the upper face of the cylinder.
11. A liquid takes 5 minutes to cool from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. How much time will it take to cool from $60^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$? The temperature of surrounding is $20^{\circ} \mathrm{C}$. Use exact method.
12. Hot oil is circulated through an insulated container with a wooden lid at the top whose conductivity $\mathrm{K}=0.149 \mathrm{~J} /\left(\mathrm{m}-{ }^{\circ} \mathrm{C}-\mathrm{sec}\right)$, thickness $\mathrm{t}=5 \mathrm{~mm}$, emissivity $=0.6$. Temperature of the top of the lid in steady state is at $\mathrm{T}_{l}=127^{\circ}$. If the ambient temperature $\mathrm{T}_{\mathrm{a}}=27^{\circ} \mathrm{C}$. Calculate [JEE' 2003]
(a) rate of heat loss per unit area due to radiation from the lid.
(b) temperature of the oil. (Given $\sigma=\frac{17}{3} \times 10^{-8}$)

13. One end of a rod of length L and cross-sectional area A is kept in a furnace of temperature T_{1}. The other end of the rod is kept at a temperature T_{2}. The thermal conductivity of the material of the rod is K and emissivity of the rod is e. It is given that $T_{2}=T_{S}+\Delta T$ where $\Delta T \ll T_{S}, T_{S}$ being the temperature of the surroundings. If $\Delta \mathrm{T} \propto\left(\mathrm{T}_{1}-\mathrm{T}_{\mathrm{S}}\right)$, find the proportionality constant. Consider that heat is lost only by radiation at the end where the temperature of the rod is T_{2}.[JEE 2004]

EXERCISE (0-1)

SINGLE CORRECT TYPE QUESTIONS

Elasticity

1. The maximum load a wire can withstand without breaking, when its length is reduced to half of its original length, will
(A) be double.
(B) be half.
(C) be four times.
(D) remain same.
2. The temperature of a wire is doubled. The Young's modulus of elasticity
(A) will also double.
(B) will become four times.
(C) will remain same.
(D) will decrease.
3. A spring is stretched by applying a load to its free end. The strain produced in the spring is
(A) volumetric.
(B) shear.
(C) longitudinal and shear.
(D) longitudinal.
4. Overall changes in volume and radii of a uniform cylindrical steel wire are 0.2% and 0.002% respectively when subjected to some suitable force. Longitudinal tensile stress acting on the wire is :($\mathrm{Y}=2.0 \times 10^{11} \mathrm{Nm}^{-2}$)
(A) $3.2 \times 10^{9} \mathrm{Nm}^{-2}$
(B) $3.2 \times 10^{7} \mathrm{Nm}^{-2}$
(C) $3.6 \times 10^{9} \mathrm{Nm}^{-2}$
(D) $3.9 \times 10^{8} \mathrm{Nm}^{-2}$
5. A solid sphere of radius R made of material of bulk modulus K is surrounded by a liquid in a cylindrical container. A massless piston of area A floats on the surface of the liquid. When a mass m is placed on the piston to compress the liquid, the fractional change in the radius of the sphere $\delta R / R$ is
(A) $\mathrm{mg} / \mathrm{AK}$
(B) $\mathrm{mg} / 3 \mathrm{AK}$
(C) mg / A
(D) $\mathrm{mg} / 3 \mathrm{AR}$
6. A wire suspended vertically from one of its ends is stretched by attaching a weight of 200 N to the lower ends. The weight stretches the wire by 1 mm . Then the elastic energy stored in the wire is-
[AIEEE - 2003]
(A) 0.2 J
(B) 10 J
(C) 20 J
(D) 0.1 J
7. A uniform rod rotating in gravity free region with certain constant angular velocity. The variation of tensile stress with distance x from axis of rotation is best represented by which of the following graphs.
(A)

(B)

(C)

(D)

8. The load versus strain graph for four wires of the same material is shown in the figure. The thickest wire is represented by the line :-

(A) OB
(B) OA
(C) OD
(D) OC
9. A cuboidal block of sides $a, b \& c$ is fixed on ground. The top is pushed by a horizontal force F as shown. The angle ϕ by which the block deforms is : (η is modulus of rigidity $)$

(A) $\frac{F}{a b \eta}$
(B) $\frac{\mathrm{F}}{\mathrm{ac} \eta}$
(C) $\frac{F}{b c \eta}$
(D) $\frac{F}{\sqrt{b^{2}+c^{2}} \eta}$

Calorimetry

10. Heat is associated with
(A) kinetic energy of random motion of molecules.
(B) kinetic energy of orderly motion of molecules.
(C) total kinetic energy of random and orderly motion of molecules.
(D) kinetic energy of random motion in some cases and kinetic energy of orderly motion in other.
11. Equal amount of heat energy are transferred into equal mass of ethyl alcohol and water sample. The rise in temperature of water sample is $25^{\circ} \mathrm{C}$. The temperature rise of ethyl alcohol will be.
(Specific heat of ethyl alcohol is one half of the specific heat of water).
(A) $12.5^{\circ} \mathrm{C}$
(B) $25^{\circ} \mathrm{C}$
(C) $50^{\circ} \mathrm{C}$
(D) It depends on the rate of energy transfer.
12. A block of mass 2.5 kg is heated to temperature of $500^{\circ} \mathrm{C}$ and placed on a large ice block. What is the maximum amount of ice that can melt (approx.). Specific heat for the body $=0.1 \mathrm{Cal} / \mathrm{gm}^{\circ} \mathrm{C}$.
(A) 1 kg
(B) 1.5 kg
(C) 2 kg
(D) 2.5 kg
13. 10 gm of ice at $0^{\circ} \mathrm{C}$ is kept in a calorimeter of water equivalent 10 gm . How much heat should be supplied to the apparatus to evaporate the water thus formed? (Neglect loss of heat)
(A) 6200 cal
(B) 7200 cal
(C) 13600 cal
(D) 8200 cal
14. A continuous flow water heater (geyser) has an electrical power rating $=2 \mathrm{~kW}$ and efficienty of conversion of electrical power into heat $=80 \%$. If water is flowing through the device at the rate of $100 \mathrm{cc} / \mathrm{sec}$, and the inlet temperature is $10^{\circ} \mathrm{C}$, the outlet temperature will be
(A) $12.2^{\circ} \mathrm{C}$
(B) $13.8^{\circ} \mathrm{C}$
(C) $20^{\circ} \mathrm{C}$
(D) $16.5^{\circ} \mathrm{C}$
15. A solid material is supplied with heat at a constant rate. The temperature of material is changing with heat input as shown in the figure. What does slope DE represents?
(A) latent heat of liquid
(B) latent heat of vapour
(C) heat capacity of vapour
(D) inverse of heat capacity of vapour

16. A block of ice with mass m falls into a lake. After impact, a mass of ice $m / 5$ melts. Both the block of ice and the lake have a temperature of $0^{\circ} \mathrm{C}$. If L represents the heat of fusion, the minimum distance the ice fell before striking the surface is
(A) $\frac{L}{5 g}$
(B) $\frac{5 \mathrm{~L}}{\mathrm{~g}}$
(C) $\frac{g L}{5 m}$
(D) $\frac{\mathrm{mL}}{5 \mathrm{~g}}$
17. The specific heat of a metal at low temperatures varies according to $S=a T^{3}$ where a is a constant and T is the absolute temperature. The heat energy needed to raise unit mass of the metal from $\mathrm{T}=1 \mathrm{~K}$ to $\mathrm{T}=2 \mathrm{~K}$ is :-
(A) 3 a
(B) $\frac{15 \mathrm{a}}{4}$
(C) $\frac{2 \mathrm{a}}{3}$
(D) $\frac{12 \mathrm{a}}{5}$
18. The graph shown in the figure represent change in the temperature of 5 kg of a substance as it abosrbs heat at a constant rate of $42 \mathrm{~kJ} \mathrm{~min}^{-1}$. The latent heat of vapourazation of the substance is :
(A) $630 \mathrm{~kJ} \mathrm{~kg}^{-1}$
(B) $126 \mathrm{~kJ} \mathrm{~kg}^{-1}$
(C) $84 \mathrm{~kJ} \mathrm{~kg}^{-1}$

(D) $12.6 \mathrm{~kJ} \mathrm{~kg}^{-1}$
is $2000 \mathrm{~kg} / \mathrm{m}^{3}$. It is found that the heat capacity of 8 volumes of A is equal to heat capacity of 12 volumes of B . The ratio of specific heats of A and B will be
(A) $1: 2$
(B) $3: 1$
(C) $3: 2$
(D) $2: 1$
19. 2 kg ice at $-20^{\circ} \mathrm{C}$ is mixed with 5 kg water at $20^{\circ} \mathrm{C}$. Then final amount of water in the mixture would be; Given specific heat of ice $=0.5 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$, specific heat of water $=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$, Latent heat of fusion of ice $=80 \mathrm{cal} / \mathrm{g}$.
[JEE' (Scr) 2003]
(A) 6 kg
(B) 5 kg
(C) 4 kg
(D) 2 kg
20. Some steam at $100^{\circ} \mathrm{C}$ is passed into 1.1 kg of water contained in a calorimeter of water equivalent 0.02 kg at $15^{\circ} \mathrm{C}$ so that the temperature of the calorimeter and its contents rises to $80^{\circ} \mathrm{C}$. What is the mass of steam condensing. (in kg)
(A) 0.130
(B) 0.065
(C) 0.260
(D) 0.135
21. Find the amount of heat supplied to decrease the volume of an ice water mixture by $1 \mathrm{~cm}^{3}$ without any change in temperature. ($\rho_{\text {ice }}=0.9 \rho_{\text {water }}, \mathrm{L}_{\text {ice }}=80 \mathrm{cal} / \mathrm{gm}$).
(A) 360 cal
(B) 500 cal
(C) 720 cal
(D) none of these

Thermal expansion

23. The radius of a metal sphere at room temperature T is R, and the coefficient of linear expansion of the metal is α. The sphere is heated a little by a temperature ΔT so that its new temperature is $T+\Delta T$. The increase in the volume of the sphere is approximately
(A) $2 \pi R \propto \Delta T$
(B) $\pi R^{2} \alpha \Delta T$
(C) $4 \pi R^{3} \alpha \Delta T / 3$
(D) $4 \pi R^{3} \propto \Delta T$
24. A hole is made in a metal plate, when the temperature of metal is raised then the diameter of the hole will :-
(A) Decrease
(B) Increase
(C) Remain same
(D) Answer depends upon the initial temperature of the metal
25. A rod of length 2 m rests on smooth horizontal floor. If the rod is heated from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. Find the longitudinal strain developed? $\left(\alpha=5 \times 10^{-5} /{ }^{\circ} \mathrm{C}\right)$
(A) 10^{-3}
(B) 2×10^{-3}
(C) Zero
(D) None
26. A steel tape gives correct measurement at $20^{\circ} \mathrm{C}$. A piece of wood is being measured with the steel tape at $0^{\circ} \mathrm{C}$. The reading is 25 cm on the tape, the real length of the given piece of wood must be:
(A) 25 cm
(B) $<25 \mathrm{~cm}$
(C) $>25 \mathrm{~cm}$
(D) can not say
27. The bulk modulus of copper is $1.4 \times 10^{11} \mathrm{~Pa}$ and the coefficient of linear expansion is $1.7 \times 10^{-5}\left(\mathrm{C}^{\circ}\right)^{-1}$. What hydrostatic pressure is necessary to prevent a copper block from expanding when its temperature is increased from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$?
(A) $6.0 \times 10^{5} \mathrm{~Pa}$
(B) $7.1 \times 10^{7} \mathrm{~Pa}$
(C) $5.2 \times 10^{6} \mathrm{~Pa}$
(D) 40 atm
28. A thin copper wire of length L increase in length by 1% when heated from temperature T_{1} to T_{2}. What is the percentage change in area when a thin copper plate having dimensions $2 \mathrm{~L} \times \mathrm{L}$ is heated from T_{1} to T_{2} ?
(A) 1%
(B) 2%
(C) 3%
(D) 4%
29. A cuboid ABCDEFGH is anisotropic with $\alpha_{x}=1 \times 10^{-5} /{ }^{\circ} \mathrm{C}, \alpha_{\mathrm{y}}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}, \alpha_{\mathrm{z}}=3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. Coefficient of superficial expansion of faces can be

(A) $\beta_{\mathrm{ABCD}}=5 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(B) $\beta_{\text {BCGH }}=4 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(C) $\beta_{\text {CDEH }}=3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(D) $\beta_{\text {EFGH }}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
30. The coefficient of apparent expansion of a liquid in a copper vessel is C and in a silver vessel is S . The coefficient of volume expansion of copper is γ_{c}. What is the coefficient of linear expansion of silver?
(A) $\frac{\left(\mathrm{C}+\gamma_{\mathrm{c}}+\mathrm{S}\right)}{3}$
(B) $\frac{\left(\mathrm{C}-\gamma_{\mathrm{c}}+\mathrm{S}\right)}{3}$
(C) $\frac{\left(\mathrm{C}+\gamma_{\mathrm{c}}-\mathrm{S}\right)}{3}$
(D) $\frac{\left(C-\gamma_{c}-S\right)}{3}$
31. Two rods one of aluminium of length l_{1} having coefficient of linear expansion α_{a}, and other steel of length l_{2} having coefficient of linear expansion α_{s} are joined end to end. The expansion in both the rods is same on variation of temperature. Then the value of $\frac{l_{1}}{l_{1}+l_{2}}$ is [JEE' (Scr) 2003]
(A) $\frac{\alpha_{s}}{\alpha_{a}+\alpha_{s}}$
(B) $\frac{\alpha_{s}}{\alpha_{a}-\alpha_{s}}$
(C) $\frac{\alpha_{a}+\alpha_{s}}{\alpha_{s}}$
(D) None of these
32. An open vessel is filled completely with oil which has same coefficient of volume expansion as that of the vessel. On heating both oil and vessel,
(A) the vessel can contain more volume and more mass of oil
(B) the vessel can contain same volume and same mass of oil
(C) the vessel can contain same volume but more mass of oil
(D) the vessel can contain more volume but same mass of oil

Conduction

33. Diagram shows a heat source ' S ' and three position of heat recover (hand). The main made of heat transfer is given as ' a ', ' b ' \& 'c'. Choose the correct matching :-
(A) a - conduction ; b - convection; c - radiation
(B) b - conduction ; a - convection ; c - radiation
(C) a - conduction ; c - convection; b - radiation
(D) c - conduction; b - radiation; a - convection

34. A rod of length ' ℓ ' and cross-section ' A ' is used to melt a piece of ice as shown.

Now if the rod broken into two equal parts and is arranged as shown.

Time taken to melt ice in second use becomes.
(A) Half
(B) One-forth
(C) Twice
(D) Four times
35. One end of a 2.35 m long and 2.0 cm radius aluminium $\operatorname{rod}\left(\mathrm{K}=235 \mathrm{~W} \cdot \mathrm{~m}^{-1} \mathrm{~K}^{-1}\right)$ is held at $20^{\circ} \mathrm{C}$. The other end of the rod is in contact with a block of ice at its melting point. The rate in $\mathrm{kg} . \mathrm{s}^{-1}$ at which ice melts is [Take latent heat of fusion for ice as $\frac{10}{3} \times 10^{5} \mathrm{~J} . \mathrm{kg}^{-1}$]
(A) $48 \pi \times 10^{-6}$
(B) $24 \pi \times 10^{-6}$
(C) $2.4 \pi \times 10^{-6}$
(D) $4.8 \pi \times 10^{-6}$
36. The wall with a cavity consists of two layers of brick separated by a layer of air. All three layers have the same thickness and the thermal conductivity of the brick is much greater than that of air. The left layer is at a higher temperature than the right layer and steady state condition exists. Which of the following graphs predicts correctly the variation of temperature T with distance d inside the cavity?
(A)

(B)

(C)

(D)

37. A wall has two layer A and B each made of different material, both the layers have the same thickness. The thermal conductivity of the material A is twice that of B . Under thermal equilibrium the temperature difference across the wall B is $36^{\circ} \mathrm{C}$. The temperature difference across the wall A is
(A) $6^{\circ} \mathrm{C}$
(B) $12^{\circ} \mathrm{C}$
(C) $18^{\circ} \mathrm{C}$
(D) $72^{\circ} \mathrm{C}$
38. Two identical conducting rods are first connected independently to two vessels, one containing water at $100^{\circ} \mathrm{C}$ and the other containing ice at $0^{\circ} \mathrm{C}$. In the second case, the rods are joined end to end and connected to the same vessels. Let q_{1} and $\mathrm{q}_{2} \mathrm{~g} / \mathrm{s}$ be the rate of melting of ice in the two cases respectively. The ratio $\mathrm{q}_{2} / \mathrm{q}_{1}$ is
[JEE' 2004 (Scr.)]
(A) $1 / 2$
(B) $2 / 1$
(C) $4 / 1$
(D) $1 / 4$
39. Three identical rods $A B, C D$ and $P Q$ are joined as shown. P and Q are mid points of $A B$ and $C D$ respectively. Ends A, B, C and D are maintained at $0^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. The direction of heat flow in PQ is
(A) from P to Q
(B) from Q to P
(C) heat does not flow in PQ
(D) data not sufficient
40. The temperature drop through each layer of a two layer furnace wall is shown in figure. Assume that the external temperature T_{1} and T_{3} are maintained constant and $\mathrm{T}_{1}>\mathrm{T}_{3}$. If the thickness of the layers x_{1} and x_{2} are the same, which of the following statements are correct.
(A) $\mathrm{k}_{1}>\mathrm{k}_{2}$
(B) $\mathrm{k}_{1}<\mathrm{k}_{2}$
(C) $\mathrm{k}_{1}=\mathrm{k}_{2}$ but heat flow through material (1) is larger then through (2)
(D) $\mathrm{k}_{1}=\mathrm{k}_{2}$ but heat flow through material (1) is less than that through (2)

41. A composite rod made of three rods of equal length and cross-section as shown in the fig. The thermal conductivities of the materials of the rods are $\mathrm{K} / 2,5 \mathrm{~K}$ and K respectively. The end A and end B are at constant temperatures. All heat entering the end A goes out of the end B, there being no loss of heat from the sides of the bar. The effective thermal conductivity of the bar is

(A) $15 \mathrm{~K} / 16$
(B) $6 \mathrm{~K} / 13$
(C) $5 \mathrm{~K} / 16$
(D) $2 \mathrm{~K} / 13$.
42. Figure shows three different arrangements of materials 1,2 and 3 to form a wall. Thermal conductivities are $\mathrm{k}_{1}>\mathrm{k}_{2}>\mathrm{k}_{3}$. The left side of the wall is $20^{\circ} \mathrm{C}$ higher than the right side. Temperature difference $\Delta \mathrm{T}$ across the material 1 has following relation in three cases :

(A) $\Delta \mathrm{T}_{\mathrm{a}}>\Delta \mathrm{T}_{\mathrm{b}}>\Delta \mathrm{T}_{\mathrm{c}}$
(B) $\Delta \mathrm{T}_{\mathrm{a}}=\Delta \mathrm{T}_{\mathrm{b}}=\Delta \mathrm{T}_{\mathrm{c}}$
(C) $\Delta \mathrm{T}_{\mathrm{a}}=\Delta \mathrm{T}_{\mathrm{b}}>\Delta \mathrm{T}_{\mathrm{c}}$
(D) $\Delta T_{a}=\Delta T_{b}<\Delta T_{c}$
43. The temperature of the two outer surfaces of a composite slab, consisting of two materials having coefficients of thermal conductivity K and 2 K and thickness x and $4 x$, respectively are T_{2} and $T_{1}\left(T_{2}>T_{1}\right)$. The rate of heat transfer through the slab, in a steady state is $\left(\frac{A\left(T_{2}-T_{1}\right) K}{x}\right) f$, with f equals to-
[AIEEE - 2004]
(A) 1
(B) $1 / 2$
(C) $2 / 3$
(D) $1 / 3$

Radiation

44. A black metal foil is warmed by radiation from a small sphere at temperature ' T ' and at a distance ' d '. It is found that the power received by the foil is P . If both the temperature and distance are doubled, the power received by the foil will be :
(A) 16 P
(B) 4 P
(C) 2 P
(D) P
45. The rate of emission of radiation of a black body at $273^{\circ} \mathrm{C}$ is E , then the rate of emission of radiation of this body at $0^{\circ} \mathrm{C}$ will be :-
(A) $\frac{E}{16}$
(B) $\frac{E}{4}$
(C) $\frac{E}{8}$
(D) 0
46. The power radiated by a black body is P and it radiates maximum energy around the wavelength λ_{0}. If the temperature of the black body is now changed so that it radiates maximum energy around wavelength $3 / 4 \lambda_{0}$, the power radiated by it will increase by a factor of :-
(A) $4 / 3$
(B) $16 / 9$
(C) $64 / 27$
(D) $256 / 81$
47. Spheres P and Q are uniformly constructed from the same material which is a good conductor of heat and the radius of Q is thrice the radius of P. The rate of fall of temperature of P is x times that of Q when both are at the same surface temperature. The value of x is :
(A) $1 / 4$
(B) $1 / 3$
(C) 3
(D) 4
48. Two spheres of the same material have radii 1 m and 4 m and temperatures 4000 K and 2000 K respectively. The ratio of the energy radiated per second by the first sphere to that by the second is-
(A) $1: 1$
(B) $16: 1$
(C) $4: 1$
(D) $1: 9$
49. If emissivity of bodies X and Y are e_{x} and e_{y} and absorptive power are A_{x} and A_{y} then
[JEE' (Scr) 2003]

(A) $\mathrm{e}_{\mathrm{y}}>\mathrm{e}_{\mathrm{x}} ; \mathrm{A}_{\mathrm{y}}>\mathrm{A}_{\mathrm{x}}$
(B) $\mathrm{e}_{\mathrm{y}}<\mathrm{e}_{\mathrm{x}} ; \mathrm{A}_{\mathrm{y}}<\mathrm{A}_{\mathrm{x}}$
(C) $\mathrm{e}_{\mathrm{y}}>\mathrm{e}_{\mathrm{x}} ; \mathrm{A}_{\mathrm{y}}<\mathrm{A}_{\mathrm{x}}$
(D) $e_{y}=e_{x} ; A_{y}=A_{x}$
50. Three discs A, B, and C having radii $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6 m respectively are coated with carbon black on their outer surfaces. The wavelengths corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and 500 nm respectively. The power radiated by them are $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$ and Q_{C} respectively.
[JEE' 2004 (Scr.)]
(A) Q_{A} is maximum
(B) Q_{B} is maximum
(C) Q_{C} is maximum
(D) $Q_{A}=Q_{B}=Q_{C}$
51. A black body calorimeter filled with hot water cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 4 min and $40^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ in 8 min . The approximate temperature of surrounding is :
(A) $10^{\circ} \mathrm{C}$
(B) $15^{\circ} \mathrm{C}$
(C) $20^{\circ} \mathrm{C}$
(D) $25^{\circ} \mathrm{C}$
52. A system S receives heat continuously from an electrical heater of power 10 W . The temperature of S becomes constant at $50^{\circ} \mathrm{C}$ when the surrounding temperature is $20^{\circ} \mathrm{C}$. After the heater is switched off, S cools from $35.1^{\circ} \mathrm{C}$ to $34.9^{\circ} \mathrm{C}$ in 1 minute. The heat capacity of S is
(A) $100 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
(B) $300 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
(C) $750 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
(D) $1500 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
53. If the temperature of the sun were to increase from T to $2 T$ and its radius from R to $2 R$, then the ratio of the radiant energy received on earth to what it was previously, will be- [AIEEE - 2004]
(A) 4
(B) 16
(C) 32
(D) 64

MULTIPLE CORRECT TYPE QUESTIONS

Elasticity

54. A wire is suspended from the ceiling and stretched under the action of a weight F suspended from its other end. The force exerted by the ceiling on it is equal and opposite to the weight.
(A) Tensile stress at any cross section A of the wire is F / A.
(B) Tensile stress at any cross section is zero.
(C) Tensile stress at any cross section A of the wire is $2 F / A$.
(D) Tension at any cross section A of the wire is F.
55. A copper and a steel wire of the same diameter are connected end to end. A deforming force F is applied to this composite wire which causes a total elongation of 1 cm . The two wires will have
(A) the same stress.
(B) different stress.
(C) the same strain.
(D) different strain.
56. A body of mass M is attached to the lower end of a metal wire, whose upper end is fixed. The elongation of the wire is l.
(A) Loss in gravitational potential energy of M is $\mathrm{Mg} l$
(B) The elastic potential energy stored in the wire is $\mathrm{Mg} l$
(C) The elastic potential energy stored in the wire is $1 / 2 \mathrm{Mgl}$
(D) Heat produced is $1 / 2 \mathrm{Mgl}$.
57. The stress-strain graphs for two materials are shown in figure (assume same scale).

(A) Material (ii) is more elastic than material (i) and hence material (ii) is more brittle.
(B) Material (i) and (ii) have the same elasticity and the same brittleness.
(C) Material (ii) is elastic over a larger region of strain as compared to (i).
(D) Material (ii) is more brittle than material (i).
58. A composite rod consists of a steel rod of length 25 cm and area 2 A and a copper rod of length 50 cm and area A. The composite rod is subjected to an axial load F. If the Young's modulus of steel and copper are in the ratio $2: 1$.
(A) the extension produced in copper rod will be more .
(B) the extension in copper and steel parts will be in the ratio $2: 1$.
(C) the stress applied to the copper rod will be more.
(D) no extension will be produced in the steel rod.
59. The wires A and B shown in the figure are made of the same material and have radii r_{A} and r_{B} respectively. The block between them has a mass m. When the force F is $\mathrm{mg} / 3$, one of the wires breaks.
(A) A breaks if $\mathrm{r}_{\mathrm{A}}=\mathrm{r}_{\mathrm{B}}$
(B) A breaks if $\mathrm{r}_{\mathrm{A}}<2 \mathrm{r}_{\mathrm{B}}$
(C) Either A or B may break if $r_{A}=2 r_{B}$

(D) The lengths of A and B must be known to predict which wire will break

Calorimetry

60. Mark the CORRECT options:
(A) A system X is in thermal equilibrium with Y but not with Z. System Y and Z may be in thermal equilibrium with each other.
(B) A system X is in thermal equilibrium with Y but not with Z. Systems Y and Z are not in thermal equilibrium with each other.
(C) A system X is neither in thermal equilibrium with Y nor with Z. The systems Y and Z must be in thermal equilibrium with each other.
(D) A system X is neither in thermal equilibrium with Y nor with Z. The system Y and Z may be in thermal equilibrium with each other.
61. 50 gm ice at $-10^{\circ} \mathrm{C}$ is mixed with 20 gm steam at $100^{\circ} \mathrm{C}$. When the mixture finally reaches its steady state inside a calorimeter of water equivalent 1.5 gm then : [Assume calorimeter was initially at $0^{\circ} \mathrm{C}$, Take latent heat of vaporization of water $=540 \mathrm{cal} / \mathrm{gm}$, Latent heat of fusion of water $=80 \mathrm{cal} / \mathrm{gm}$, specific heat capacity of water $=1 \mathrm{cal} / \mathrm{gm}-{ }^{\circ} \mathrm{C}$, specific heat capacity of ice $\left.=0.5 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}\right]$
(A) Mass of water remaining is: 67.4 gm
(B) Mass of steam remaining is : 2.6 gm
(C) Mass of water remaining is : 67.87 gm
(D) Mass of steam remaining is : 2.13 gm

Thermal expansion

62. When the temperature of a copper coin is raised by $80^{\circ} \mathrm{C}$, its diameter increases by 0.2%.
(A) Percentage rise in the area of a face is 0.4%
(B) Percentage rise in the thickness is 0.4%
(C) Percentage rise in the volume is 0.6%
(D) Coefficient of linear expansion of copper is $0.25 \times 10^{-4} \mathrm{C}^{\circ-1}$.

Radiation

63. Two metallic sphere A and B are made of same material and have got identical surface finish. The mass of sphere A is four times that of B. Both the spheres are heated to the same temperature and placed in a room having lower temperature but thermally insulated from each other.
(A) The ratio of heat loss of A to that of B is $2^{4 / 3}$.
(B) The ratio of heat loss of A to that of B is $2^{2 / 3}$.
(C) The ratio of the initial rate of cooling of A to that of B is $2^{-2 / 3}$.
(D) The ratio of the initial rate of cooling of A to that of B is $2^{-4 / 3}$.
64. Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are the same. The two bodies radiate energy at the same rate. The wavelength λ_{B}, corresponding to the maximum spectral radiancy in the radiation from B, is shifted from the wavelength corresponding to the maximum spectral radiancy in the radiation from A by $1.00 \mu \mathrm{~m}$. If the temperature of A is 5802 K ,
(A) the temperature of B is 1934 K
(B) $\lambda_{B}=1.5 \mu \mathrm{~m}$
(C) the temperature of B is 11604 K
(D) the temperature of B is 2901 K

COMPREHENSION TYPE QUESTIONS

Conduction

Paragraph for Question No. 65 to 67

Two rods A and B of same cross-sectional are A and length l connected in series between a source $\left(\mathrm{T}_{1}=100^{\circ} \mathrm{C}\right)$ and a sink $\left(\mathrm{T}_{2}=0^{\circ} \mathrm{C}\right)$ as shown in figure. The rod is laterally insulated

65. The ratio of the thermal resistance of the rods is
(A) $\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\frac{1}{3}$
(B) $\frac{R_{A}}{R_{B}}=3$
(C) $\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\frac{3}{4}$
(D) $\frac{4}{3}$
66. If T_{A} and T_{B} are the temperature drops across the $\operatorname{rod} \mathrm{A}$ and B , then
(A) $\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\frac{3}{1}$
(B) $\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\frac{1}{3}$
(C) $\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\frac{3}{4}$
(D) $\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\frac{4}{3}$
67. If G_{A} and G_{B} are the temperature gradients across the $\operatorname{rod} A$ and B, then
(A) $\frac{\mathrm{G}_{\mathrm{A}}}{\mathrm{G}_{\mathrm{B}}}=\frac{3}{1}$
(B) $\frac{\mathrm{G}_{\mathrm{A}}}{\mathrm{G}_{\mathrm{B}}}=\frac{1}{3}$
(C) $\frac{\mathrm{G}_{\mathrm{A}}}{\mathrm{G}_{\mathrm{B}}}=\frac{3}{4}$
(D) $\frac{\mathrm{G}_{\mathrm{A}}}{\mathrm{G}_{\mathrm{B}}}=\frac{4}{3}$

EXERCISE (0-2)

SINGLE CORRECT TYPE QUESTIONS

1. A cylindrical wire of radius 1 mm , length 1 m , Young's modulus $=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, poisson's ratio $\mu=\pi / 10$ is stretched by a force of 100 N . Its radius will become
(A) 0.99998 mm
(B) 0.99999 mm
(C) 0.99997 mm
(D) 0.99995 mm
2. A thermally insulated vessel contains some water at $0^{\circ} \mathrm{C}$. The vessel is connected to a vacuum pump to pump out water vapour. This results in some water getting frozen. It is given Latent heat of vaporization of water at $0^{\circ} \mathrm{C}=21 \times 10^{5} \mathrm{~J} / \mathrm{kg}$ and latent heat of freezing of water $=3.36 \times 10^{5} \mathrm{~J} / \mathrm{kg}$. The maximum percentage amount of water that will be solidified in this manner will be :-
(A) 86.2%
(B) 33.6%
(C) 21%
(D) 24.36%
3. Ice at $0^{\circ} \mathrm{C}$ is added to 200 g of water initially at $70^{\circ} \mathrm{C}$ in a vacuum flask. When 50 g of ice has been added and has all melted the temperature of the flask and contents is $40^{\circ} \mathrm{C}$. When a further 80 g of ice has been added and has all metled, the temperature of the whole is $10^{\circ} \mathrm{C}$. Calculate the specific latent heat of fusion of ice.[Take $\mathrm{S}_{\mathrm{w}}=1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$.]
(A) $3.8 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(B) $1.2 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(C) $2.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(D) $3.0 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
4. The coefficient of linear expansion of copper is $17 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$. A copper statue is 93 m tall on the summer morning of temperature $25^{\circ} \mathrm{C}$. What is maximum order of increase in magnitude of the height in statue (maximum temperature of day is $45^{\circ} \mathrm{C}$)
(A) 0.1 mm
(B) 1 mm
(C) 10 mm
(D) 100 mm
5. The coefficients of thermal expansion of steel and a metal X are respectively 12×10^{-6} and 2×10^{-6} per ${ }^{\circ} \mathrm{C}$. At $40^{\circ} \mathrm{C}$, the side of a cube of metal X was measured using a steel vernier callipers. The reading was 100 mm . Assuming that the calibration of the vernier was done at $0^{\circ} \mathrm{C}$, then the actual length of the side of the cube at $0^{\circ} \mathrm{C}$ will be
(A) $>100 \mathrm{~mm}$
(B) $<100 \mathrm{~mm}$
(C) $=100 \mathrm{~mm}$
(D) data insufficient to conclude
6. The volume of the bulb of a mercury thermometer at $0^{\circ} \mathrm{C}$ is V_{0} and cross section of the capillary is A_{0}. The coefficient of linear expansion of glass is α_{g} per ${ }^{\circ} \mathrm{C}$ and the cubical expansion of mercury γ_{m} per ${ }^{\circ} \mathrm{C}$. If the mercury just fills the bulb at $0^{\circ} \mathrm{C}$, what is the length of mercury column in capillary at $\mathrm{T}^{\circ} \mathrm{C}$.
(A) $\frac{V_{0} T\left(\gamma_{m}+3 \alpha_{g}\right)}{A_{0}\left(1+2 \alpha_{g} T\right)}$
(B) $\frac{\mathrm{V}_{0} \mathrm{~T}\left(\gamma_{\mathrm{m}}-3 \alpha_{\mathrm{g}}\right)}{\mathrm{A}_{0}\left(1+2 \alpha_{\mathrm{g}} \mathrm{T}\right)}$
(C) $\frac{V_{0} T\left(\gamma_{m}+2 \alpha_{g}\right)}{A_{0}\left(1+3 \alpha_{g} T\right)}$
(D) $\frac{\mathrm{V}_{0} \mathrm{~T}\left(\gamma_{\mathrm{m}}-2 \alpha_{\mathrm{g}}\right)}{\mathrm{A}_{0}\left(1+3 \alpha_{\mathrm{g}} \mathrm{T}\right)}$
7. A rod of length 2 m at $0^{\circ} \mathrm{C}$ and having expansion coefficient $\alpha=(3 x+2) \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$ where x is the distance (in cm) from one end of rod. The length of rod at $20^{\circ} \mathrm{C}$ is :
(A) 2.124 m
(B) 3.24 m
(C) 2.0120 m
(D) 3.124 m
8. A liquid is given some heat.

Statement A : Some liquid evaporates.
Statement B : The liquid starts boiling.
(A) A implies B and B implies A
(B) B implies A but, A does not imply B
(C) A implies B but B does not imply A
(D) Neither A implies B nor B implies A
9. A long solid cylinder is radiating power. It is remoulded into a number of smaller cylinders, each of which has the same length as original cylinder. Each small cylinder has the same temperature as the original cylinder. The total radiant power emitted by the pieces is twice that emitted by the original cylinder. How many smaller cylinders are there ? Neglect the energy emitted by the flat faces of cylinder.
(A) 3
(B) 4
(C) 5
(D) 6
10. Four rods of same material with different radii r and length ℓ are used to connect two reservoirs of heat at different temperatures. Which one will conduct most heat ?
(A) $\mathrm{r}=2 \mathrm{~cm}, \ell=0.5 \mathrm{~m}$
(B) $\mathrm{r}=2 \mathrm{~cm}, \ell=2 \mathrm{~m}$
(C) $\mathrm{r}=0.5 \mathrm{~cm}, \ell=0.5 \mathrm{~m}$
(D) $\mathrm{r}=1 \mathrm{~cm}, \ell=1 \mathrm{~m}$
11. A rod of length L and uniform cross-sectional area has varying thermal conductivity which changes linearly from 2 K at end A to K at the other end B . The ends A and B of the rod are maintained at constant temperature $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$, respectively. At steady state, the graph of temperature : $T=T(x)$ where $x=$ distance from end A will be
(A)

(B)

(C)

(D)

12. The spectral emissive power E_{λ} for a body at temperature T_{1} is plotted against the wavelength and area under the curve is found to be A . At a different temperature T_{2} the area is found to be 9 A . Then $\lambda_{1} / \lambda_{2}=$
(A) 3
(B) $1 / 3$
(C) $1 / \sqrt{3}$
(D) $\sqrt{3}$
13. 'Gulab Jamuns' (assumed to be spherical) are to be heated in an oven. They are available in two sizes, one twice bigger (in radius) than the other. Pizzas (assumed to be discs) are also to be heated in oven. They are also in two sizes, one twice big (in radius) than the other. All four are put together to be heated to oven temperature. Choose the correct option from the following:
(A) Both size gulab jamuns will get heated in the same time.
(B) Smaller gulab jamuns are heated before bigger ones.
(C) Smaller pizzas are heated before bigger ones.
(D) Bigger pizzas are heated before smaller ones.
14. An experiment is perfomed to measure the specific heat of copper. A lump of copper is heated in an oven, then dropped into a beaker of water. To calculate the specific heat of copper, the experimenter must know or measure the value of all of the quantities below EXCEPT the
(A) heat capacity of water and beaker
(B) original temperature of the copper and the water
(C) final (equilibrium) temperature of the copper and the water
(D) time taken to achieve equilibrium, after the copper is dropped into the water
15. One end of a conducting rod is maintained at temperature $50^{\circ} \mathrm{C}$ and at the other end, ice is melting at $0^{\circ} \mathrm{C}$. The rate of melting of ice is doubled if:
(A) the temperature is made $200^{\circ} \mathrm{C}$ and the area of cross-section of the rod is doubled
(B) the temperature is made $100^{\circ} \mathrm{C}$ and length of rod is made four times
(C) area of cross-section of rod is halved and length is doubled
(D) the temperature is made $100^{\circ} \mathrm{C}$ and the area of cross-section of rod and length both are doubled.
16. A black body is at a temperature of 2880 K . The energy of radiation emitted by this object with wavelength between 499 nm and 500 nm is U_{1}, between 999 nm and 1000 nm is U_{2} and between 1499 nm and 1500 nm is U_{3}. The Wien constant $\mathrm{b}=2.88 \times 10^{6} \mathrm{~nm} \mathrm{~K}$. Then
(A) $\mathrm{U}_{1}=0$
(b) $U_{3}=0$
(C) $\mathrm{U}_{1}>\mathrm{U}_{2}$
(D) $U_{2}>U_{1}$

MULTIPLE CORRECT TYPE QUESTIONS

17. A bimetallic strip is formed out of two identical strips one of copper and the other of brass. The coefficient of linear expansion of the two metals are α_{C} and α_{B}. On heating, the temperature of the strip goes up by ΔT and the strip bends to form an arc of radius of curvature R. Then R is
(A) proportional at $\Delta \mathrm{T}$
(B) inversely proportional to $\Delta \mathrm{T}$
(C) proportional to $\left|\alpha_{B}-\alpha_{C}\right|$
(D) inversely proportional to $\left|\alpha_{B}-\alpha_{C}\right|$

COMPREHENSION TYPE QUESTIONS

Paragraph for Question No. 18 and 19

The figure shows a radiant energy spectrum graph for a black body at a temperature T .

18. Choose the CORRECT statement(s)
(A) The radiant energy is not equally distributed among all the possible wavelengths
(B) For a particular wavelength the spectral intensity is maximum
(C) The area under the curve is equal to the total rate at which heat is radiated by the body at that temperature
(D) None of these
19. If the temperature of the body is raised to a higher temperature T^{\prime}, then choose the correct statement(s)
(A) The intensity of radiation for every wavelength increases
(B) The maximum intensity occurs at a shorter wavelength
(C) The area under the graph increases
(D) The area under the graph is proportional to the fourth power of temperature

MATRIX MATCH TYPE QUESTION

20. A \& B are two black bodies of radii r_{A} and r_{B} respectively, placed in surrounding of temperature T_{0}. At steady state the temperature of $A \& B$ is $T_{A} \& T_{B}$ respectively.

Column I

Column II

(A)

- A \& B are solid sphere
- $\mathrm{r}_{\mathrm{A}}=\mathrm{r}_{\mathrm{B}}$
- Body ' B ' is being heated by a heater of constant power ' P '
(B)

(Q) $\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\mathrm{B}}$
- B is thin spherical shell
- A is a solid sphere
- $\mathrm{r}_{\mathrm{A}}<\mathrm{r}_{\mathrm{B}}$
(C)

- B is thin spherical shell
- A is a solid sphere
- $\mathrm{r}_{\mathrm{A}}<\mathrm{r}_{\mathrm{B}}$
- Body A is being heated by a heater of constant power ' P '
(D)

(S) Radiation spectrum of A \& B is distinguishable
- B is thin spherical shell
- A is a solid sphere
$-\mathrm{r}_{\mathrm{A}} \approx \mathrm{r}_{\mathrm{B}}$
- Body B is being heated by a heater of constant power ' P '
(R) Heat received by A is more than heat radiated by it at steady state.
(T) Steady state can't be achieved

21. A sample ' A ' of liquid water and a sample B of ice of equal mass are kept in 2 nearby containers so that they can exchange heat with each other but are thermally insulated from the surroundings. The graphs in column-II show the sketch of temperature T of samples versus time t . Match with appropriate description in column-I.

Column I

(A) Equilibrium temperature is above melting point of ice.
(B) At least some of water freezes.
(C) At least some of ice melts.
(D) Equilibrium temperature is below freezing point of water

Column II

(P)

(Q)

(R)

(S)

(T)

EXERCISE (JM)

1. Two wires are made of the same material and have the same volume. However wire 1 has crosssectional area A and wire 2 has cross-sectional area 3A. If the length of wire 1 increases by $\Delta \mathrm{x}$ on applying force F , how much force is needed to stretch wire 2 by the same amount ? [AIEEE-2009]
(1) 6 F
(2) 9 F
(3) F
(4) 4 F
2. A long metallic bar is carrying heat from one of its ends to the other end under steady-state. The variation of temperature θ along the length x of the bar from its hot end is best described by which of the following figures?
[AIEEE - 2009]
(1)

(2)

(3)

(4)

3. 100 g of water is heated from $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Ignoring the slight expansion of the water, the change in its internal energy is (specific heat of water is $4184 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$) :-
[AIEEE - 2011]
(1) 84 kJ
(2) 2.1 kJ
(3) 4.2 kJ
(4) 8.4 kJ
4. A liquid in a beaker has temperature $\theta(\mathrm{t})$ at time t and θ_{0} is temperature of surroundings, then according to Newton's law of cooling the correct graph between $\log _{e}\left(\theta-\theta_{0}\right)$ and t is :-
[AIEEE 2012]
(1)

(2)

(3)

(4)

5. A wooden wheel of radius R is made of two semicircular parts (see figure). The two parts are held together by a ring made of a metal strip of cross sectional area S and Length L. L is slightly less than $2 \pi R$. To fit the ring on the wheel, it is heated so that its temperature rises by ΔT and it just steps over the wheel. As it cools down to surrounding temperature, it presses the semicircular parts together. If the coefficient of linear expansion of the metal is α, and its Young's modulus is Y , the force that one part of the wheel applies on the other part is :
[AIEEE 2012]
(1) $2 \mathrm{SY} \alpha \Delta \mathrm{T}$
(2) $2 \pi S Y \alpha \Delta T$
(3) $S Y \alpha \Delta T$
(4) $\pi S Y \alpha \Delta T$

6. If a piece of metal is heated to temperature θ and then allowed to cool in a room which is at temperature θ_{0} the graph between the temperature T of the metal and time t will be closed to:[JEE-Main- 2013]
(1)

(2)

(3)

(4)

7. The pressure that has to be applied to the ends of a steel wire of length 10 cm to keep its length constant when its temperature is raised by $100^{\circ} \mathrm{C}$ is :
(For steel Young's modulus is $2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$ and coefficient of thermal expansion is $1.1 \times 10^{-5} \mathrm{~K}^{-1}$)
[JEE-Main-2014]
(1) $2.2 \times 10^{7} \mathrm{~Pa}$
(2) $2.2 \times 10^{6} \mathrm{~Pa}$
(3) $2.2 \times 10^{8} \mathrm{~Pa}$
(4) $2.2 \times 10^{9} \mathrm{~Pa}$
8. Three rods of Copper, Brass and Steel are welded together to form a Y-shaped structure. Area of cross-section of each rod $=4 \mathrm{~cm}^{2}$. End of copper rod is maintained at $100^{\circ} \mathrm{C}$ where as ends of brass and steel are kept at $0^{\circ} \mathrm{C}$. Lengths of the copper, brass and steel rods are 46,13 and 12 cms respectively. The rods are thermally insulated from surroundings except at ends. Thermal conductivities of copper, brass and steel are $0.92,0.26$ and 0.12 CGS units respectively. Rate of heat flow through copper rod is :
[JEE-Main-2014]
(1) $4.8 \mathrm{cal} / \mathrm{s}$
(2) $6.0 \mathrm{cal} / \mathrm{s}$
(3) $1.2 \mathrm{cal} / \mathrm{s}$
(4) $2.4 \mathrm{cal} / \mathrm{s}$
9. A pendulum made of a uniform wire of cross sectional area A has time period T . When an additional mass M is added to its bob, the time period changes to T_{M}. If the Young's modulus of the material of the wire is Y then $\frac{1}{\mathrm{Y}}$ is equal to :- $(\mathrm{g}=$ gravitational acceleration $)$
[JEE-Main-2015]
(1) $\left[1-\left(\frac{T_{M}}{T}\right)^{2}\right] \frac{A}{M g}$
(2) $\left[1-\left(\frac{T}{T_{M}}\right)^{2}\right] \frac{A}{M g}$
(3) $\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{A}{M g}$
(4) $\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{M g}{\mathrm{~A}}$
10. A pendulume clock loses 12 s a day if the temperature is $40^{\circ} \mathrm{C}$ and gains 4 s a day if the temperature is $20^{\circ} \mathrm{C}$. The temperature at which the clock will show correct time, and the coeffecient of linear expansion (α) of the metal of the pendulum shaft are respectively :-
[JEE-Main-2016]
(1) $55^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-2} /{ }^{\circ} \mathrm{C}$
(2) $25^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(3) $60^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
(4) $30^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
11. A copper ball of mass 100 gm is at a temperature T . It is dropped in a copper calorimeter of mass 100 gm , filled with 170 gm of water at room temperature. Subsequently, the temperature of the system is found to be $75^{\circ} \mathrm{C} . \mathrm{T}$ is given by : (Given : room temperature $=30^{\circ} \mathrm{C}$, specific heat of copper $=0.1$ $\mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$)
[JEE-Main-2017]
(1) $1250^{\circ} \mathrm{C}$
(2) $825^{\circ} \mathrm{C}$
(3) $800^{\circ} \mathrm{C}$
(4) $885^{\circ} \mathrm{C}$
12. A man grows into a giant such that his linear dimensions increase by a factor of 9 . Assuming that his density remains same, the stress in the leg will change by a factor of:
[JEE-Main-2017]
(1) 81
(2) $\frac{1}{81}$
(3) 9
(4) $\frac{1}{9}$
13. An external pressure P is applied on a cube at $0^{\circ} \mathrm{C}$ so that it is equally compressed from all sides. K is the bulk modulus of the material of the cube and α is its coefficient of linear expansion. Suppose we want to bring the cube to its original size by heating. The temperature should be raised by :
[JEE-Main-2017]
(1) $\frac{3 \alpha}{\mathrm{PK}}$
(2) $3 \mathrm{PK} \alpha$
(3) $\frac{\mathrm{P}}{3 \alpha \mathrm{~K}}$
(4) $\frac{\mathrm{P}}{\alpha \mathrm{K}}$
14. A solid sphere of radius r made of a soft material of bulk modulus K is surrounded by a liquid in a cylindrical container. A massless piston of area a floats on the surface of the liquid, covering entire cross section of cylindrical container. When a mass m is placed on the surface of the piston to compress the liquid, the fractional decrement in the radius of the sphere, $\left(\frac{d r}{r}\right)$, is :
[JEE-Main-2018]
(1) $\frac{\mathrm{Ka}}{3 \mathrm{mg}}$
(2) $\frac{\mathrm{mg}}{3 \mathrm{Ka}}$
(3) $\frac{\mathrm{mg}}{\mathrm{Ka}}$
(4) $\frac{\mathrm{Ka}}{\mathrm{mg}}$

EXERCISE (JA)

1. A metal rod AB of length 10 x has its one end A in ice at $0^{\circ} \mathrm{C}$ and the other end B in water at $100^{\circ} \mathrm{C}$. If a point P on the rod is maintained at $400^{\circ} \mathrm{C}$, then it is found that equal amounts of water and ice evaporate and melt per unit time. The latent heat of evaporation of water is $540 \mathrm{cal} / \mathrm{g}$ and latent heat of melting of ice is $80 \mathrm{cal} / \mathrm{g}$. If the point P is at a distance of $\lambda \mathrm{x}$ from the ice end A , find the value of λ. [Neglect any heat loss to the surrounding]
[JEE 2009]
2. Two spherical bodies A (radius 6 cm) and B (radius 18 cm) are at temperatures T_{1} and T_{2}, respectively. The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm . Considering then to be black bodies, what will be the ratio of the rate of total energy radiated by A to that of B?
[JEE 2010]
3. A piece of ice (heat capacity $=2100 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ and latent heat $=3.36 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$) of mass m grams is at $-5^{\circ} \mathrm{C}$ at atmospheric pressure. It is given 420 J of heat so that the ice starts melting. Finally when the ice-water mixture is in equilibrium, it is found that 1 gm of ice has melted. Assuming there is no other heat exchange in the process, the value of m is
[JEE 2010]
4. A 0.1 kg mass is suspended from a wire of negligible mass. The length of the wire is 1 m and its cross-sectional area is $4.9 \times 10^{-7} \mathrm{~m}^{2}$. If the mass is pulled a little in the vertically downward direction and released, it performs simple harmonic motion of angular frequency $140 \mathrm{rad} \mathrm{s}^{-1}$. If the Young's modulus of the material of the wire is $\mathrm{n} \times 10^{9} \mathrm{Nm}^{-2}$, the value of n is
[IIT-JEE 2010]
5. A composite block is made of slabs A, B, C, D and E of different thermal conductivities (given in terms of a constant K) and sizes (given in terms of length, L) as shown in the figure. All slabs are of same width. Heat 'Q' flows only from left to right through the blocks. Then in steady state
[JEE 2011]

(A) heat flow through A and E slabs are same
(B) heat flow through slab E is maximum
(C) temperature difference across slab E is smallest
(D) heat flow through $\mathrm{C}=$ heat flow through $\mathrm{B}+$ Heat flow through D
6. Steel wire of length ' L ' at $40^{\circ} \mathrm{C}$ is suspended from the ceiling and then a mass ' m ' is hung from its free end. The wire is cooled down from 40° to $30^{\circ} \mathrm{C}$ to regain its original length ' L '. The coefficient of linear thermal expansion of the steel is $10^{-5} /{ }^{\circ} \mathrm{C}$, Young's modulus of steel is $10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and radius of the wire is 1 mm . Assume that $\mathrm{L} \gg$ diameter of the wire. Then the value of ' m ' in kg is nearly
[JEE 2011]
7. Three very large plates of same area are kept parallel and close to each other. They are considered as ideal black surfaces and have very high thermal conductivity. The first and third plates are maintained at temperatures 2 T and 3 T respectively. The temperature of the middle (i.e. second) plate under steady state condition is
[JEE 2012]
(A) $\left(\frac{65}{2}\right)^{1 / 4} T$
(B) $\left(\frac{97}{4}\right)^{1 / 4} T$
(C) $\left(\frac{97}{2}\right)^{1 / 4} T$
(D) $(97)^{1 / 4} T$
8. Two rectangular blocks, having identical dimensions, can be arranged either in configuration I or in configuration II as shown in the figure. One of the blocks has thermal conductivity k and the other 2 k . The temperature difference between the ends along the x -axis is the same in both the configurations. It takes 9s to transport a certain amount of heat from the hot end to the cold end in the configuration I. The time to transport the same amount of heat in the configuration II is :- [JEE-Advance-2013]

Configuration II

Configuration I

(A) 2.0 s
(B) 3.0 s
(C) 4.5 s
(D) 6.0 s
9. One end of a horizontal thick copper wire of length 2 L and radius 2 R is welded to an end of another horizontal thin copper wire of length L and radius R . When the arrangement is stretched by applying forces at two ends, the ratio of the elongation in the thin wire to that in the thick wire is :-
[JEE-Advance-2013]
(A) 0.25
(B) 0.50
(C) 2.00
(D) 4.00
10. Parallel rays of light of intensity $I=912 \mathrm{Wm}^{-2}$ are incident on a spherical black body kept in surroundings of temperature 300 K . Take Stefan-Boltzmann constant $\sigma=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$ and assume that the energy exchange with the surroundings is only through radiation. The final steady state temperature of the black body is close to :-
[JEE-Advance-2014]
(A) 330 K
(B) 660 K
(C) 990 K
(D) 1550 K
11. Two spherical stars A and B emit blackbody radiation. The radius of A is 400 times that of B and A emits 10^{4} times the power emitted from B. The ratio $\left(\frac{\lambda_{A}}{\lambda_{B}}\right)$ of their wavelengths λ_{A} and λ_{B} at which the peaks occur in their respective radiation curves is.
[JEE-Advance-2015]
12. In plotting stress versus strain curves for two materials P and Q, a student by mistake puts strain on the y -axis and stress on the x -axis as shown in the figure. Then the correct statement(s) is (are):-
[JEE-Advance-2015]

(A) P has more tensile strength than Q
(B) P is more ductile than Q
(C) P is more brittle than Q
(D) The Young's modulus of P is more than that of Q
13. A water cooler of storage capacity 120 litres can cool water at constant rate of P watts. In a closed circulation system (as shown schematically in the figure), the water from the cooler is used to cool an external device that generates constantly 3 kW of heat (thermal load). The temperature of water fed into the device cannot exceed $30^{\circ} \mathrm{C}$ and the entire stored 120 litres of water is initially cooled to $10^{\circ} \mathrm{C}$. The entire system is thermally insulated. The minimum value of P (in watts) for which the device can be operated for 3 hours is :
[JEE-Advance-2016]

(Specific heat of water is $4.2 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ and the density of water is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$)
(A) 1600
(B) 2067
(C) 2533
(D) 3933
14. A metal is heated in a furnace where a sensor is kept above the metal surface to read the power radiated (P) by the metal. The sensor has a scale that displays $\log _{2}\left(\mathrm{P} / \mathrm{P}_{0}\right)$, where P_{0} is a constant. When the metal surface is at a temperature of $487^{\circ} \mathrm{C}$, the sensor shows a value 1 . Assume that the emissivity of the metallic surface remains constant. What is the value displayed by the sensor when the temperature of the metal surface is raised to $2767^{\circ} \mathrm{C}$?
[JEE-Advance-2016]
15. The ends Q and R of two thin wires, $P Q$ and $R S$, are soldered (joined) together. Initially each of the wires has a length of 1 m at $10^{\circ} \mathrm{C}$. Now the end P is maintained at $10^{\circ} \mathrm{C}$, while the end S is heated and maintained at $400^{\circ} \mathrm{C}$. The system is thermally insulated from its surroundings. If the thermal conductivity of wire PQ is twice that of the wire RS and the coefficient of linear thermal expansion of PQ is $1.2 \times 10^{-5} \mathrm{~K}^{-1}$, the change in length of the wire PQ is
[JEE-Advance-2016]
(A) 0.78 mm
(B) 0.90 mm
(C) 1.56 mm
(D) 2.34 mm
16. A human body has a surface area of approximately $1 \mathrm{~m}^{2}$. The normal body temperature is 10 K above the surrounding room temperature T_{0}. Take the room temperature to be $\mathrm{T}_{0}=300 \mathrm{~K}$. For $\mathrm{T}_{0}=300 \mathrm{~K}$, the value of $\sigma T_{0}^{4}=460 \mathrm{Wm}^{-2}$ (where σ is the Stefan-Boltzmann constant). Which of the following options is/are correct ?
[JEE-Advance-2017]
(A) The amount of energy radiated by the body in 1 second is close to 60 Joules
(B) If the surrounding temperature reduces by a small amount $\Delta \mathrm{T}_{0} \ll \mathrm{~T}_{0}$, then to maintain the same body temperature the same (living) human being needs to radiate $\Delta \mathrm{W}=4 \sigma \mathrm{~T}_{0}^{3} \Delta \mathrm{~T}_{0}$ more energy per unit time
(C) Reducing the exposed surface area of the body (e.g. by curling up) allows humans to maintain the same body temperature while reducing the energy lost by radiation
(D) Ifthe body temperature rises significantly then the peak in the spectrum of electromagnetic radiation emitted by the body would shift to longer wavelengths
17. Two conducting cylinders of equal length but different radii are connected in series between two heat baths kept at temperatures $\mathrm{T}_{1}=300 \mathrm{~K}$ and $\mathrm{T}_{2}=100 \mathrm{~K}$, as shown in the figure. The radius of the bigger cylinder is twice that of the smaller one and the thermal conductivities of the materials of the smaller and the larger cylinders are K_{1} and K_{2} respectively. If the temperature at the junction of the two cylinders in the steady state is 200 K , then $\mathrm{K}_{1} / \mathrm{K}_{2}=$ \qquad .
[JEE-Advance-2018]

EXERCISE (S-1)

1. Ans. 0.75
2. Ans. $\frac{9}{16}$
3. Ans. 3 mm
4. Ans. ℓ^{\prime}
5. Ans. (a) $\theta=\frac{\pi}{2} \quad$ (b) $\theta=\pi / 4$.
6. Ans. (i) 50 N , (ii) $0.045 \mathrm{~J}, 1.8 \times 10^{-3} \mathrm{~m}$ (iii) $8.4 \times 10^{-4} \mathrm{~m}$, (iv) $\mathrm{x}=0.12 \mathrm{~m}$ 7. Ans. The first one
7. Ans. $25.5^{\circ} \mathrm{C}$
8. Ans. $1 / 90$
9. Ans. $0^{\circ} \mathrm{C}, 125 / 4 \mathrm{~g}$ ice, $1275 / 4 \mathrm{~g}$ water
10. Ans. $5000 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ kg
11. Ans. 27/85
12. Ans. 12 gm
13. Ans. (i) 0.02 kg , (ii) $40,000 \mathrm{calkg}^{-1}$, (iii) $750 \mathrm{calkg}^{-1} \mathrm{~K}^{-1}$
14. Ans. 5 sec slow
15. Ans. $10,000 \mathrm{~N}$
16. Ans. $65^{\circ} \mathrm{C}$
17. Ans. $5 \alpha / 3$
18. Ans. 7/2
19. Ans. $(4 / 3) \omega$
20. Ans. 10.34 cm
21. Ans. $5^{\circ} \mathrm{C}$
22. Ans. $2: 1$
23. Ans. $1000 \mathrm{~J}\left(\mathrm{C}^{\circ}\right)^{-1}$
24. Ans. $\left(\frac{6}{\pi}\right)^{1 / 3}$
25. Ans. $80 \mathrm{kcal} / \mathrm{kg}$
26. Ans. 3025 K
27. Ans. 10 sec

EXERCISE (S-2)

EXERCISE (O-1)

1. Ans. (D)	2. Ans. (D)	3. Ans. (C)	4. Ans. (D)	5. Ans. (B)	6. Ans. (D)
7. Ans. (A)	8. Ans. (C)	9. Ans. (C)	10. Ans. (A)	11. Ans. (C)	12. Ans. (B)
13. Ans. (D)	14. Ans. (B)	15. Ans. (D)	16. Ans. (A)	17. Ans. (B)	18. Ans. (C)
19. Ans. (D)	20. Ans. (A)	21. Ans. (A)	22. Ans. (C)	23. Ans. (D)	24. Ans. (B)
25. Ans. (C)	26. Ans. (B)	27. Ans. (B)	28. Ans. (B)	29. Ans. (C)	30. Ans. (C)
31. Ans. (A)	32. Ans. (D)	33. Ans. (A)	34. Ans. (B)	35. Ans. (C)	36. Ans. (D)
37. Ans. (C)	38. Ans. (D)	39. Ans. (A)	40. Ans. (A)	41. Ans. (A)	42. Ans. (B)
43. Ans. (D)	44. Ans. (B)	45. Ans. (A)	46. Ans. (D)	47. Ans. (C)	48. Ans. (A)
49. Ans. (A) 50. Ans. (B)	51. Ans. (B)	52. Ans. (D)	53. Ans. (D)	54. Ans. (A,D)	
55. Ans. (A,D)	56. Ans. (A,C,D)	57. Ans. (C,D)	58. Ans. (A,C)	59. Ans. (A,B,C)	
60. Ans. (B,D)	61. Ans. (A,B)	62. Ans. (A,C,D)	63. Ans. (A,C)		
64. Ans. (A,B)	65. Ans. (A)	66. Ans. (B)	67. Ans. (B)		

EXERCISE (O-2)

1. Ans. (D)	2. Ans. (A)	3. Ans. (A)	4. Ans. (C)	5. Ans. (A)	6. Ans. (B)
7. Ans. (C)	8. Ans. (B)	9. Ans. (B)	10. Ans. (A)	11. Ans. (B)	12. Ans. (D)
13. Ans. (B)	14. Ans. (D)	15. Ans. (D)	16. Ans. (D)	17. Ans. (B,D)	18. Ans. (A,B)
19. Ans. (A,B,C,D)	20. Ans. A - Q,S; B - P; C - S; D - P				
21. Ans. A - Q; B - P,R; C - Q,S; D - R					

EXERCISE (JM)

1. Ans. (2)	2. Ans. (4)	3. Ans. (4)	4. Ans. (2)	5. Ans. (1)	6. Ans. (3)
7. Ans. (3)	8. Ans. (1)	9. Ans. (3)	10. Ans. (2)	11. Ans. (4)	12. Ans. (3)
13. Ans. (3)	14. Ans. (2)				

EXERCISE (JA)

1. Ans. 9
2. Ans. 9
3. Ans. 3
4. Ans. (C)
5. Ans. (A,B)
6. Ans. 4 [3.99, 4.01]
