

## **CONTENTS**

### DETERMINANT

| THEORY & ILLUSTRATIONS | Page - 01 |
|------------------------|-----------|
| EXERCISE(O-1)          | Page – 13 |
| EXERCISE(O-2)          | Page – 15 |
| EXERCISE(S-1)          | Page – 18 |
| EXERCISE(S-2)          | Page – 20 |
| EXERCISE (JM)          | Page – 21 |
| EXERCISE (JA)          | Page – 22 |

#### JEE (Main) Syllabus :

Matrices, algebra of matrices, types of matrices, determinants and matrices of order two and three. Properties of determinants, evaluation of determinants, area of triangles using determinants. Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations. Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices.

## DETERMINANT

#### 1. INTRODUCTION :

If the equations  $a_1x + b_1 = 0$ ,  $a_2x + b_2 = 0$  are satisfied by the same value of x, then  $a_1b_2 - a_2b_1 = 0$ . The expression  $a_1b_2 - a_2b_1$  is called a determinant of the second order, and is denoted by :

- $\begin{vmatrix} a_1 & b_1 \end{vmatrix}$
- a<sub>2</sub> b<sub>2</sub>

A determinant of second order consists of two rows and two columns.

Next consider the system of equations  $a_1x + b_1y + c_1 = 0$ ,  $a_2x + b_2y + c_2 = 0$ ,  $a_3x + b_3y + c_3 = 0$ If these equations are satisfied by the same values of x and y, then on eliminating x and y we get.

$$a_1(b_2c_3 - b_3c_2) + b_1(c_2a_3 - c_3a_2) + c_1(a_2b_3 - a_3b_2) = 0$$

The expression on the left is called a determinant of the third order, and is denoted by

 $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ 

A determinant of third order consists of three rows and three columns.

#### 2. VALUE OF A DETERMINANT :

$$\mathbf{D} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} = a_1 (b_2 c_3 - b_3 c_2) - b_1 (a_2 c_3 - a_3 c_2) + c_1 (a_2 b_3 - a_3 b_2)$$

Note : Sarrus diagram to get the value of determinant of order three :

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ +ve + ve + ve \end{vmatrix} = (a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2) - (a_3b_2c_1 + a_2b_1c_3 + a_1b_3c_2)$$

Note that the product of the terms in first bracket (i.e.  $a_1a_2a_3b_1b_2b_3c_1c_2c_3$ ) is same as the product of the terms in second bracket.

Illustration 1: The value of 
$$\begin{vmatrix} 1 & 2 & 3 \\ -4 & 3 & 6 \\ 2 & -7 & 9 \end{vmatrix}$$
 is -  
(A) 213 (B) - 231 (C) 231 (D) 39  
Solution:  $\begin{vmatrix} 1 & 2 & 3 \\ -4 & 3 & 6 \\ 2 & -7 & 9 \end{vmatrix} = 1 \begin{vmatrix} 3 & 6 \\ -7 & 9 \end{vmatrix} - 2 \begin{vmatrix} -4 & 6 \\ 2 & 9 \end{vmatrix} + 3 \begin{vmatrix} -4 & 3 \\ 2 & -7 \end{vmatrix}$   
 $= (27 + 42) - 2(-36 - 12) + 3(28 - 6) = 231$ 

Alternative : By sarrus diagram

$$\begin{vmatrix} 1 & 2 & 3 \\ -4 & 3 & 6 \\ 2 & -7 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ -4 & 3 & 6 \\ 2 & -7 & 9 \end{vmatrix} = 2 -7 = 135 - (18 - 114) = 231$$
Ans. (C)

#### 3. MINORS & COFACTORS :

The minor of a given element of determinant is the determinant obtained by deleting the row & the column in which the given element stands.

For example, the minor of  $\mathbf{a}_1$  in  $\begin{vmatrix} \mathbf{a}_1 & \mathbf{b}_1 & \mathbf{c}_1 \\ \mathbf{a}_2 & \mathbf{b}_2 & \mathbf{c}_2 \\ \mathbf{a}_3 & \mathbf{b}_3 & \mathbf{c}_3 \end{vmatrix}$  is  $\begin{vmatrix} \mathbf{b}_2 & \mathbf{c}_2 \\ \mathbf{b}_3 & \mathbf{c}_3 \end{vmatrix}$  & the minor of  $\mathbf{b}_2$  is  $\begin{vmatrix} \mathbf{a}_1 & \mathbf{c}_1 \\ \mathbf{a}_3 & \mathbf{c}_3 \end{vmatrix}$ .

Hence a determinant of order three will have "9 minors".

If  $M_{ij}$  represents the minor of the element belonging to i<sup>th</sup> row and j<sup>th</sup> column then the cofactor of that element is given by :  $C_{ij} = (-1)^{i+j}$ .  $M_{ij}$ 

**Illustration 2:** Find the minors and cofactors of elements '-3', '5', '-1' & '7' in the determinant  $\begin{bmatrix} 2 & -3 & 1 \\ 4 & 0 & 5 \\ -1 & 6 & 7 \end{bmatrix}$ 

Solution :

Minor of 
$$-3 = \begin{vmatrix} 4 & 5 \\ -1 & 7 \end{vmatrix} = 33$$
; Cofactor of  $-3 = -33$   
Minor of  $5 = \begin{vmatrix} 2 & -3 \\ -1 & 6 \end{vmatrix} = 9$ ; Cofactor of  $5 = -9$   
Minor of  $-1 = \begin{vmatrix} -3 & 1 \\ 0 & 5 \end{vmatrix} = -15$ ; Cofactor of  $-1 = -15$   
Minor of  $7 = \begin{vmatrix} 2 & -3 \\ 4 & 0 \end{vmatrix} = 12$ ; Cofactor of  $7 = 12$ 

# 4. EXPANSION OF A DETERMINANT IN TERMS OF THE ELEMENTS OF ANY ROW OR COLUMN:

et 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

(i) The sum of the product of elements of any row (column) with their corresponding cofactors is always equal to the value of the determinant.

D can be expressed in any of the six forms :

$$\begin{array}{ll} a_{1}A_{1}+b_{1}B_{1}+c_{1}C_{1}, & a_{1}A_{1}+a_{2}A_{2}+a_{3}A_{3}, \\ a_{2}A_{2}+b_{2}B_{2}+c_{2}C_{2}, & b_{1}B_{1}+b_{2}B_{2}+b_{3}B_{3}, \\ a_{3}A_{3}+b_{3}B_{3}+c_{3}C_{3}, & c_{1}C_{1}+c_{2}C_{2}+c_{3}C_{3}, \\ \text{where } A_{i}B_{i} \& C_{i} \ (i=1,2,3) \ \text{denote cofactors of } a_{i}b_{i} \& c_{i} \ \text{respectively.} \end{array}$$

(ii) The sum of the product of elements of any row (column) with the cofactors of other row (column) is always equal to zero.

Hence,  $a_2A_1 + b_2B_1 + c_2C_1 = 0$ ,  $b_1A_1 + b_2A_2 + b_3A_3 = 0$  and so on.

where  $A_i, B_i \& C_i$  (i = 1,2,3) denote cofactors of  $a_i, b_i \& c_i$  respectively.

| Do y          | yourself -1 :                                                                                                                                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)           | Find minors & cofactors of elements '6', '5', '0' & '4' of the determinant $\begin{vmatrix} 2 & 1 & 3 \\ 6 & 5 & 7 \\ 3 & 0 & 4 \end{vmatrix}$ . |
| ( <b>ii</b> ) | Calculate the value of the determinant $\begin{vmatrix} 5 & -3 & 7 \\ -2 & 4 & -8 \\ 9 & 3 & -10 \end{vmatrix}$                                  |
| (iii)         | The value of the determinant $\begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{vmatrix}$ is equal to -                                   |
|               | (A) $a^3 - b^3$ (B) $a^3 + b^3$ (C) 0 (D) none of these                                                                                          |
| ( <b>iv</b> ) | Find the value of 'k', if $\begin{vmatrix} 1 & 2 & 0 \\ 2 & 3 & 1 \\ 3 & k & 2 \end{vmatrix} = 4$                                                |

#### 5. **PROPERTIES OF DETERMINANTS :**

(a) The value of a determinant remains unaltered, if the rows & columns are inter-changed,

e.g. if  $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ 

(b) If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only. e.g.

Let 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \& D_1 = \begin{vmatrix} a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
. Then  $D_1 = -D$ .

- (c) If all the elements of a row (or column) are zero, then the value of the determinant is zero.
- (d) If all the elements of any row (or column) are multiplied by the same number, then the determinant is multiplied by that number.

e.g. If 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and  $D_1 = \begin{vmatrix} Ka_1 & Kb_1 & Kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ . Then  $D_1 = KD$ 

(e) If all the elements of a row (or column) are proportional (or identical) to the element of any other row, then the determinant vanishes, i.e. its value is zero.

$$e.g. If D = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{3} & c_{3} \end{vmatrix} \Rightarrow D = 0; If D_{1} = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} \Rightarrow D_{1} = 0$$

$$Illustration 3: Prove that \begin{vmatrix} a & b & c \\ p & q & r \end{vmatrix} = \begin{vmatrix} y & b & q \\ p & q & r \end{vmatrix} = \begin{vmatrix} x & a & p \\ p & q & r \end{vmatrix} = (By ) = a \\ (By interchanging rows & columns)$$

$$= -\begin{vmatrix} x & a & p \\ p & q & r \end{vmatrix} = (C_{1} \leftrightarrow C_{2})$$

$$= \begin{vmatrix} y & b & q \\ z & c & r \end{vmatrix} = (R_{1} \leftrightarrow R_{2})$$

$$Illustration 4: Find the value of the determinant  $\begin{vmatrix} a^{2} & ab & ac \\ ab & b^{2} & bc \\ ac & bc & c^{2} \end{vmatrix}$ 

$$Illustration 4: Find the value of the determinant  $\begin{vmatrix} a^{2} & ab & ac \\ ab & b^{2} & bc \\ ac & bc & c^{2} \end{vmatrix}$ 

$$Solution: D = \begin{vmatrix} a^{2} & ab & ac \\ ab & b^{2} & bc \\ ac & bc & c^{2} \end{vmatrix} = ab \begin{vmatrix} a & b & c \\ a & b & c \\ ab & b \end{vmatrix} = -0$$

$$Since all rows are same, hence value of the determinant is zero.$$

$$Do yourself -2:$$

$$(i) Without expanding the determinant prove that \begin{vmatrix} a & p & c \\ q & b & c \\ 2\gamma & 2\delta \end{vmatrix} is equal to -$$

$$(A) D \qquad (B) 2D \qquad (C) 4D \qquad (D) 16D$$$$$$

(f) If each element of any row (or column) is expressed as a sum of two (or more) terms, then the determinant can be expressed as the sum of two (or more) determinants.

e.g. 
$$\begin{vmatrix} a_1 + x & b_1 + y & c_1 + z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} x & y & z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
  
Note that : If  $D_r = \begin{vmatrix} f(r) & g(r) & h(r) \\ a & b & c \\ a_1 & b_1 & c_1 \end{vmatrix}$ 

where  $r \in N$  and a,b,c,  $a_1, b_1,c_1$  are constants, then

$$\sum_{r=1}^{n} D_{r} = \begin{vmatrix} \sum_{r=1}^{n} f(r) & \sum_{r=1}^{n} g(r) & \sum_{r=1}^{n} h(r) \\ a & b & c \\ a_{1} & b_{1} & c_{1} \end{vmatrix}$$

(g) Row - column operation : The value of a determinant remains unaltered under a column  $(C_i)$  operation of the form  $C_i \rightarrow C_i + \alpha C_j + \beta C_k$  (j,  $k \neq i$ ) or row  $(R_i)$  operation of the form  $R_i \rightarrow R_i + \alpha R_j + \beta R_k$  (j,  $k \neq i$ ). In other words, the value of a determinant is not altered by adding the elements of any row (or column) to the same multiples of the corresponding elements of any other row (or column)

e.g. Let 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
  
 $D = \begin{vmatrix} a_1 + \alpha a_2 & b_1 + \alpha b_2 & c_1 + \alpha c_2 \\ a_2 & b_2 & c_2 \\ a_3 + \beta a_1 & b_3 + \beta b_1 & c_3 + \beta c_1 \end{vmatrix}$   $(R_1 \to R_1 + \alpha R_2; R_3 \to R_3 + \beta R_2)$ 

Note :

- (i) By using the operation  $R_i \rightarrow xR_i + yR_j + zR_k$  (j,  $k \neq i$ ), the value of the determinant becomes x times the original one.
- (ii) While applying this property ATLEAST ONE ROW (OR COLUMN) must remain unchanged.

Illustration 5: If 
$$D_r = \begin{vmatrix} r & r^3 & 2 \\ n & n^3 & 2n \\ \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^2 & 2(n+1) \end{vmatrix}$$
, find  $\sum_{r=0}^{n} D_r$ .  
Solution:  $\sum_{r=0}^{n} D_r = \begin{vmatrix} r & r & r^3 & r^3 & r^3 \\ n & n^3 & 2n \\ \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^2 & 2(n+1) \end{vmatrix} = \begin{vmatrix} \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^2 & 2(n+1) \\ n & n^3 & 2n \\ \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^2 & 2(n+1) \end{vmatrix} = \begin{vmatrix} \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^2 & 2(n+1) \\ n & n^3 & 2n \\ \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^2 & 2(n+1) \end{vmatrix}$ 

$$IIIustration 6: If \begin{vmatrix} 3^{2} + k & 4^{2} & 3^{2} + 3 + k \\ 4^{2} + k & 5^{2} & 4^{2} + 4 + k \\ 5^{2} + k & 6^{2} & 5^{2} + 5 + k \end{vmatrix} = 0, \text{ then the value of k is-}$$

$$(A) 2 (B) 1 (C) -1 (D) 0$$
Solution: Applying  $(C_{3} \rightarrow C_{3} - C_{1})$ 

$$D = \begin{vmatrix} 3^{2} + k & 4^{2} & 3 \\ 4^{2} + k & 5^{2} & 4 \\ 5^{2} + k & 6^{2} & 5 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 9 + k & 16 & 3 \\ 7 & 9 & 1 \\ 9 & 11 & 1 \end{vmatrix} = 0 (R_{3} \rightarrow R_{3} - R_{2}; R_{2} \rightarrow R_{2} - R_{1})$$

$$\Rightarrow k - 1 = 0 \Rightarrow k = 1$$
Ans. (B)
$$Do yourself - 3:$$

$$(i) Find the value of \begin{vmatrix} 53 & 106 & 159 \\ 52 & 65 & 91 \\ 102 & 153 & 221 \end{vmatrix}. (ii) Solve for x : \begin{vmatrix} x & 2 & 0 \\ 2 + x & 5 & -1 \\ 5 - x & 1 & 2 \end{vmatrix} = 0$$

$$(iii) If D_{r} = \begin{vmatrix} 2r & 1 & n \\ 1 & -2 & 3 \\ 3 & 2 & 1 \end{vmatrix}, \text{ then find the value of } \sum_{r=1}^{n} D_{r}.$$

(h) Factor theorem : If the elements of a determinant D are rational integral functions of x and two rows (or columns) become identical when x = a then (x - a) is a factor of D. Note that if r rows become identical when a is substituted for x, then  $(x - a)^{r-1}$  is a factor of D.

**Illustration 7:** Prove that 
$$\begin{vmatrix} a & a & x \\ m & m & m \\ b & x & b \end{vmatrix} = m(x-a)(x-b)$$

Solution :

Using factor theorem, Put x = a

$$D = \begin{vmatrix} a & a & a \\ m & m & m \\ b & a & b \end{vmatrix} = 0$$

Since  $R_1$  and  $R_2$  are proportional which makes D = 0, therefore (x - a) is a factor of D. Similarly, by putting x = b, D becomes zero, therefore (x - b) is a factor of D.

$$D = \begin{vmatrix} a & a & x \\ m & m & m \\ b & x & b \end{vmatrix} = \lambda(x-a)(x-b) \qquad \dots\dots\dots\dots(i)$$

5 = 0

To get the value of  $\lambda$ , put x = 0 in equation (i)  $\begin{vmatrix} a & a & 0 \\ m & m & m \\ b & 0 & b \end{vmatrix} = \lambda ab$   $amb = \lambda ab \implies \lambda = m$   $\therefore \quad D = m(x - a)(x - b)$ 

Do yourself - 4 :

(i) Without expanding the determinant prove that  $\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = (a-b)(b-c)(c-a)$ 

(ii) Using factor theorem, find the solution set of the equation  $\begin{vmatrix} 1 & -2 & 5 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{vmatrix}$ 

#### 6. MULTIPLICATION OF TWO DETERMINANTS :

 $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \times \begin{vmatrix} l_1 & m_1 \\ l_2 & m_2 \end{vmatrix} = \begin{vmatrix} a_1 l_1 + b_1 l_2 & a_1 m_1 + b_1 m_2 \\ a_2 l_1 + b_2 l_2 & a_2 m_1 + b_2 m_2 \end{vmatrix}$ 

Similarly two determinants of order three are multiplied.

- (a) Here we have multiplied row by column. We can also multiply row by row, column by row and column by column.
- (b) If  $D_1$  is the determinant formed by replacing the elements of determinant D of order n by their corresponding cofactors then  $D_1 = D^{n-1}$

Illustration 8: Let  $\alpha \& \beta$  be the roots of equation  $ax^2 + bx + c = 0$  and  $S_n = \alpha^n + \beta^n$  for  $n \ge 1$ . Evaluate the value of the determinant  $\begin{vmatrix} 3 & 1+S_1 & 1+S_2 \\ 1+S_1 & 1+S_2 & 1+S_3 \\ 1+S_2 & 1+S_3 & 1+S_4 \end{vmatrix} = \begin{vmatrix} 1+1+1 & 1+\alpha+\beta & 1+\alpha^2+\beta^2 \\ 1+\alpha+\beta & 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 \\ 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 & 1+\alpha^4+\beta^4 \end{vmatrix}$  $= \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \end{vmatrix} | x \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \end{vmatrix}^2 = [(1-\alpha)(1-\beta)(\alpha-\beta)]^2$  $D = (\alpha-\beta)^2 (\alpha+\beta-\alpha\beta-1)^2$  $\therefore \ \alpha \& \beta \text{ are roots of the equation as }^2 + bx + c = 0$  $\Rightarrow \ \alpha+\beta=\frac{-b}{a} \& \ \alpha\beta=\frac{c}{a} \Rightarrow \ |\alpha-\beta|=\frac{\sqrt{b^2-4ac}}{a^4}$  $D = \frac{(b^2-4ac)}{a^2} \left(\frac{a+b+c}{a}\right)^2 = \frac{(b^2-4ac)(a+b+c)^2}{a^4}$  Do yourself - 5: (i) If the determinant  $D = \begin{vmatrix} 1 & 1 & 1 \\ \alpha + \beta & \alpha^2 + \beta^2 & 2\alpha\beta \\ \alpha + \beta & 2\alpha\beta & \alpha^2 + \beta^2 \end{vmatrix}$  and  $D_1 = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{vmatrix}$ , then find the determinant  $D_2$  such that  $D_2 = \frac{D}{D_1}$ . (ii) If  $D_1 = \begin{vmatrix} ab^2 - ac^2 & bc^2 - a^2b & a^2c - b^2c \\ ac - ab & ab - bc & bc - ac \\ c - b & a - c & b - a \end{vmatrix} \& D_2 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ac & ab \end{vmatrix}$ , then  $D_1D_2$  is equal to -(A) 0 (B)  $D_1^2$  (C)  $D_2^2$  (D)  $D_2^3$ 

#### 7. SPECIAL DETERMINANTS :

#### (a) Cyclic Determinant :

The elements of the rows (or columns) are in cyclic arrangement.

 $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = -(a^3 + b^3 + c^3 - 3abc) = -(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)$ 

$$= -\frac{1}{2}(a+b+c) \times \{(a-b)^2 + (b-c)^2 + (c-a)^2\}$$

 $= -(a + b + c) (a + b\omega + c\omega^2) (a + b\omega^2 + c\omega), \text{ where } \omega, \omega^2 \text{ are cube roots of unity}$  **(b) Other Important Determinants :** 

(i) 
$$\begin{vmatrix} 0 & b & -c \\ -b & 0 & a \\ c & -a & 0 \end{vmatrix} = 0$$
  
(ii)  $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ac & ab \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$   
(iii)  $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$   
(iv)  $\begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(ab+bc+ca)$   
(v)  $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^4 & b^4 & c^4 \end{vmatrix} = (a-b)(b-c)(c-a)(a^2+b^2+c^2-ab-bc-ca)$ 



 Exactly one solution
 Infinite solutions

 or
 |

 Unique solution
 Non trivial solution

 |
 Infinite solution

 |
 Non trivial solution

 |
 Infinite solution

#### (a) Equations involving two variables :

| -     |                                |                                                 |
|-------|--------------------------------|-------------------------------------------------|
| (i)   | Consistent Equations :         | Definite & unique solution (Intersecting lines) |
| (ii)  | Inconsistent Equations :       | No solution (Parallel lines)                    |
| (iii) | Dependent Equations :          | Infinite solutions (Identical lines)            |
| Let,  | $a_1x + b_1y + c_1 = 0$        |                                                 |
|       | $a_2x + b_2y + c_2 = 0$ then : |                                                 |

(1) 
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \Rightarrow$$
 Given equations are consistent with unique solution

(2) 
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \implies \text{Given equations are inconsistent}$$

(3) 
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \implies$$
 Given equations are consistent with infinite solutions

#### (b) Equations Involving Three variables :

Let 
$$a_1x + b_1y + c_1z = d_1$$
 .....(i)  
 $a_2x + b_2y + c_2z = d_2$  .....(ii)  
 $a_3x + b_3y + c_3z = d_3$  .....(iii)

Then,  $x = \frac{D_1}{D}$ ,  $y = \frac{D_2}{D}$ ,  $z = \frac{D_3}{D}$ .

Where 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
;  $D_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$ ;  $D_2 = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$  &  $D_3 = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$ 

Note :

- (i) If  $D \neq 0$  and atleast one of  $D_1$ ,  $D_2$ ,  $D_3 \neq 0$ , then the given system of equations is consistent and has unique non trivial solution.
- (ii) If  $D \neq 0 \& D_1 = D_2 = D_3 = 0$ , then the given system of equations is consistent and has trivial solution only.
- (iii) If D = 0 but at least one of  $D_1, D_2, D_3$  is not zero then the equations are inconsistent and have no solution.
- (iv) If  $D = D_1 = D_2 = D_3 = 0$ , then the given system of equations may have infinite or no solution.

Note that In case 
$$\begin{vmatrix} a_1x + b_1y + c_1z = d_1 \\ a_1x + b_1y + c_1z = d_2 \\ a_1x + b_1y + c_1z = d_3 \end{vmatrix}$$
 (Atleast two of  $d_1$ ,  $d_2$  &  $d_3$  are not equal)

 $D = D_1 = D_2 = D_3 = 0$ . But these three equations represent three parallel planes. Hence the system is inconsistent.

#### (c) Homogeneous system of linear equations :

If x, y, z are not all zero, the condition for

 $a_{1}x + b_{1}y + c_{1}z = 0$   $a_{2}x + b_{2}y + c_{2}z = 0$   $a_{3}x + b_{3}y + c_{3}z = 0$  $|a_{1}|$ 

to be consistent in x, y, z is that  $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$ 

Remember that if a given system of linear equations have **Only Zero** Solution for all its variables then the given equations are said to have **TRIVIAL SOLUTION**.

#### 9. APPLICATION OF DETERMINANTS IN GEOMETRY :

(a) The lines :  $a_1x + b_1y + c_1 = 0$ ...... (i)  $a_2x + b_2y + c_2 = 0$ ...... (ii)  $a_3x + b_3y + c_3 = 0$ ...... (iii)  $|a_3 - b_3|$ 

are concurrent or all three parallel if  $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$ 

This is the necessary condition for consistency of three simultaneous linear equations in 2 variables but may not be sufficient.

(b) Equation  $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$  represents a pair of straight lines if:

 $abc + 2 fgh - af^{2} - bg^{2} - ch^{2} = 0 = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$ 

(c) Area of a triangle whose vertices are  $(x_r, y_r)$ ; r = 1, 2, 3 is  $D = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ 

If D = 0, then the three points are collinear.

(d) Equation of a straight line passing through points  $(x_1, y_1) \& (x_2, y_2)$  is  $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$ 

Illustration 10: Find the nature of solution for the given system of equations :  

$$x + 2y + 3z = 1; \ 2x + 3y + 4z = 3; \ 3x + 4y + 5z = 0$$
Solution:
$$D = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = 0$$
Now, 
$$D_{1} = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 3 & 4 \\ 0 & 4 & 5 \end{vmatrix} = 5$$

$$\therefore D = 0 \text{ but } D_{1} \neq 0$$
Hence no solution.

Ans. 11

| Illustration 11 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Find the value of $\lambda$ , if the following equations are consistent :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $x + y - 3 = 0; (1 + \lambda)x + (2 + \lambda)y - 8 = 0; x - (1 + \lambda)y + (2 + \lambda) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Solution :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The given equations in two unknowns are consistent, then $\Delta = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1 -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i.e. $\begin{vmatrix} 1 & 1 & -3 \\ 1+\lambda & 2+\lambda & -8 \\ 1 & -(1+\lambda) & 2+\lambda \end{vmatrix} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{vmatrix} 1 & -(1+\lambda) & 2+\lambda \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 + 3C_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\therefore  \begin{vmatrix} 1 & 0 & 0 \\ 1+\lambda & 1 & 3\lambda-5 \\ 1 & -2-\lambda & 5+\lambda \end{vmatrix} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{vmatrix} 1 & -2 - \lambda & 5 + \lambda \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Rightarrow (5+\lambda) - (3\lambda - 5)(-2 - \lambda) = 0 \Rightarrow 3\lambda^2 + 2\lambda - 5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\lambda = 1, -5/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Illustration 12 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | If the system of equations $x + \lambda y + 1 = 0$ , $\lambda x + y + 1 = 0$ & $x + y + \lambda = 0$ . is consisten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | then find the value of $\lambda$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Solution :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For consistency of the given system of equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ 1 \lambda 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{D} = \begin{vmatrix} 1 & \lambda & 1 \\ \lambda & 1 & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{vmatrix} 1 & 1 & \lambda \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Rightarrow 3\lambda = 1 + 1 + \lambda^3 \text{ or } \lambda^3 - 3\lambda + 2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$<br>$\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} 2x + \\ \textbf{(ii)} & \text{If the} \\ \text{solut} \\ \textbf{(A) I} \\ \textbf{(iii)} & \text{The solut} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$<br>$\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (i) Find<br>2x +<br>(ii) If the<br>solut<br>(A) I<br>(iii) The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$<br>$\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Anse<br>eff -7:<br>nature of solution for given system of equations<br>y + z = 3;  x + 2y + z = 4;  3x + z = 2<br>e system of equations $x + y + z = 2,  2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique<br>tion, then<br>$k \neq 0$ (B) $-1 < k < 1$ (C) $-2 < k < 1$ (D) $k = 0$<br>system of equations $\lambda x + y + z = 0,  -x + \lambda y + z = 0 = 0 & -x - y + \lambda z = 0$ has a non-trivial<br>tion, then possible values of $\lambda$ are -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (i) Find<br>2x +<br>(ii) If the<br>solut<br>(A) I<br>(iii) The<br>solut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$<br>$\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Anse<br>elf -7:<br>nature of solution for given system of equations<br>y + z = 3;  x + 2y + z = 4;  3x + z = 2<br>e system of equations $x + y + z = 2,  2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique<br>tion, then<br>$k \neq 0$ (B) $-1 < k < 1$ (C) $-2 < k < 1$ (D) $k = 0$<br>system of equations $\lambda x + y + z = 0,  -x + \lambda y + z = 0 = 0 & -x - y + \lambda z = 0$ has a non-trivial<br>tion, then possible values of $\lambda$ are -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (i) Find<br>2x +<br>(ii) If the<br>solut<br>(A) I<br>(iii) The<br>solut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$<br>$\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Anse<br>elf -7:<br>nature of solution for given system of equations<br>y + z = 3;  x + 2y + z = 4;  3x + z = 2<br>e system of equations $x + y + z = 2,  2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique<br>tion, then<br>$k \neq 0$ (B) $-1 < k < 1$ (C) $-2 < k < 1$ (D) $k = 0$<br>system of equations $\lambda x + y + z = 0,  -x + \lambda y + z = 0 = 0 & -x - y + \lambda z = 0$ has a non-trivial<br>tion, then possible values of $\lambda$ are -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (i) Find<br>2x +<br>(ii) If the<br>solut<br>(A) I<br>(iii) The<br>solut<br>(A) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$<br>$\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Anseed F-7:<br>nature of solution for given system of equations<br>y + z = 3; x + 2y + z = 4; 3x + z = 2<br>e system of equations $x + y + z = 2, 2x + y - z = 3 \& 3x + 2y + kz = 4$ has a unique tion, then<br>$k \neq 0$ (B) $-1 < k < 1$ (C) $-2 < k < 1$ (D) $k = 0$<br>system of equations $\lambda x + y + z = 0, -x + \lambda y + z = 0 = 0 \& -x - y + \lambda z = 0$ has a non-trivial tion, then possible values of $\lambda$ are -<br>0 (B) 1 (C) $-3$ (D) $\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>(i) Find<br/>2x +</li> <li>(ii) If the<br/>solut<br/>(A) I</li> <li>(iii) The<br/>solut<br/>(A) (</li> </ul> 1. (i) minors 2. (ii) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$<br>$\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Ansider of solution for given system of equations<br>y + z = 3;  x + 2y + z = 4;  3x + z = 2 e system of equations $x + y + z = 2, 2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique tion, then<br>$k \neq 0 \qquad (B) -1 < k < 1 \qquad (C) -2 < k < 1 \qquad (D) k = 0$ system of equations $\lambda x + y + z = 0, -x + \lambda y + z = 0 = 0 \& -x - y + \lambda z = 0$ has a non-trivial tion, then possible values of $\lambda$ are -<br>$0 \qquad (B) 1 \qquad (C) -3 \qquad (D) \sqrt{3}$ ANSWERS FOR DO YOURSELF<br>s: 4, -1, -4, 4; cofactors : -4, -1, 4, 4 \qquad (ii) -98 \qquad (iii) B \qquad (iv) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>(i) Find<br/>2x +</li> <li>(ii) If the<br/>solut<br/>(A) I</li> <li>(iii) The<br/>solut<br/>(A) 0</li> </ul> 1. (i) minors 2. (ii) C 3. (i) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$<br>$\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Answelf -7:<br>nature of solution for given system of equations<br>y + z = 3;  x + 2y + z = 4;  3x + z = 2<br>e system of equations $x + y + z = 2,  2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique<br>tion, then<br>$k \neq 0$ (B) $-1 < k < 1$ (C) $-2 < k < 1$ (D) $k = 0$<br>system of equations $\lambda x + y + z = 0,  -x + \lambda y + z = 0 = 0 & -x - y + \lambda z = 0$ has a non-trivial<br>tion, then possible values of $\lambda$ are -<br>0 (B) 1 (C) $-3$ (D) $\sqrt{3}$<br><b>ANSWERS FOR DO YOURSELF</b><br>s: 4, -1, -4, 4; cofactors : -4, -1, 4, 4 (ii) $-98$ (iii) B (iv) 0<br>(ii) 2 (iii) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>(i) Find<br/>2x +</li> <li>(ii) If the<br/>solut<br/>(A) I</li> <li>(iii) The<br/>solut<br/>(A) (</li> </ul> 1. (i) minors 2. (ii) C 3. (i) 0 4. (ii) x = -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$<br>$\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Answelf -7:<br>nature of solution for given system of equations<br>y + z = 3;  x + 2y + z = 4;  3x + z = 2<br>e system of equations $x + y + z = 2,  2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique<br>tion, then<br>$k \neq 0$ (B) $-1 < k < 1$ (C) $-2 < k < 1$ (D) $k = 0$<br>system of equations $\lambda x + y + z = 0,  -x + \lambda y + z = 0 = 0 & -x - y + \lambda z = 0$ has a non-trivial<br>tion, then possible values of $\lambda$ are -<br>0 (B) 1 (C) $-3$ (D) $\sqrt{3}$<br><b>ANSWERS FOR DO YOURSELF</b><br>s: 4, -1, -4, 4; cofactors : -4, -1, 4, 4 (ii) $-98$ (iii) B (iv) 0<br>(ii) 2 (iii) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>(i) Find<br/>2x +</li> <li>(ii) If the<br/>solut<br/>(A) I</li> <li>(iii) The<br/>solut<br/>(A) (</li> </ul> 1. (i) minors 2. (ii) C 3. (i) 0 4. (ii) x = -1<br> 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$ $\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Anse<br>eff -7:<br>nature of solution for given system of equations<br>$\therefore y + z = 3;  x + 2y + z = 4;  3x + z = 2$ e system of equations $x + y + z = 2,  2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique<br>tion, then<br>$k \neq 0$ (B) $-1 < k < 1$ (C) $-2 < k < 1$ (D) $k = 0$<br>system of equations $\lambda x + y + z = 0,  -x + \lambda y + z = 0 = 0 & -x - y + \lambda z = 0$ has a non-trivial<br>tion, then possible values of $\lambda$ are -<br>0 (B) 1 (C) $-3$ (D) $\sqrt{3}$<br><b>ANSWERS FOR DO YOURSELF</b><br>s: 4, -1, -4, 4; cofactors : -4, -1, 4, 4 (ii) $-98$ (iii) B (iv) 0<br>(ii) 2 (iii) 0<br>, 2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (i) Find<br>2x +<br>(ii) If the<br>solut<br>(A) I<br>(iii) The solut<br>(A) (<br>(iii) The solut<br>(A) (<br>(A) ((A) (<br>( | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$ $\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Anse<br>eff -7:<br>nature of solution for given system of equations<br>$\therefore y + z = 3;  x + 2y + z = 4;  3x + z = 2$ e system of equations $x + y + z = 2,  2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique<br>tion, then<br>$k \neq 0$ (B) $-1 < k < 1$ (C) $-2 < k < 1$ (D) $k = 0$<br>system of equations $\lambda x + y + z = 0,  -x + \lambda y + z = 0 = 0 & -x - y + \lambda z = 0$ has a non-trivial<br>tion, then possible values of $\lambda$ are -<br>0 (B) 1 (C) $-3$ (D) $\sqrt{3}$<br><b>ANSWERS FOR DO YOURSELF</b><br>s: 4, -1, -4, 4; cofactors : -4, -1, 4, 4 (ii) $-98$ (iii) B (iv) 0<br>(ii) 2 (iii) 0<br>, 2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>(i) Find<br/>2x +</li> <li>(ii) If the<br/>solut<br/>(A) I</li> <li>(iii) The<br/>solut<br/>(A) (</li> <li>(i) The<br/>solut</li> <li>(i) C</li> <li>(i) C</li> <li>(i) C</li> <li>(i) 0</li> <li>(i) x = -1<br/> 1 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$ $\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Anse<br>eff -7:<br>nature of solution for given system of equations<br>$\therefore y + z = 3;  x + 2y + z = 4;  3x + z = 2$ e system of equations $x + y + z = 2,  2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique<br>tion, then<br>$k \neq 0$ (B) $-1 < k < 1$ (C) $-2 < k < 1$ (D) $k = 0$<br>system of equations $\lambda x + y + z = 0,  -x + \lambda y + z = 0 = 0 & -x - y + \lambda z = 0$ has a non-trivial<br>tion, then possible values of $\lambda$ are -<br>0 (B) 1 (C) $-3$ (D) $\sqrt{3}$<br><b>ANSWERS FOR DO YOURSELF</b><br>s: 4, -1, -4, 4; cofactors : -4, -1, 4, 4 (ii) $-98$ (iii) B (iv) 0<br>(ii) 2 (iii) 0<br>, 2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (i) Find<br>2x +<br>(ii) If the<br>solut<br>(A) I<br>(iii) The<br>solut<br>(A) (<br>(iii) The<br>solut<br>(A) (<br>(A) ((A) (<br>(A) ((A) ((A) ((A) (   | $\Rightarrow 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0$ $\Rightarrow (\lambda - 1)^{2} (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$ Ansight of solution for given system of equations $y + z = 3;  x + 2y + z = 4;  3x + z = 2$ e system of equations $x + y + z = 2, 2x + y - z = 3 & 3x + 2y + kz = 4$ has a unique tion, then $k \neq 0 \qquad (B) -1 < k < 1 \qquad (C) -2 < k < 1 \qquad (D) k = 0$ system of equations $\lambda x + y + z = 0, -x + \lambda y + z = 0 = 0 & -x - y + \lambda z = 0$ has a non-trivial tion, then possible values of $\lambda$ are - $0 \qquad (B) 1 \qquad (C) -3 \qquad (D) \sqrt{3}$ $\frac{ANSWERS FOR DO YOURSELF}{s: 4, -1, -4, 4; \text{ cofactors } :-4, -1, 4, 4 \qquad (ii) -98 \qquad (iii) B \qquad (iv) 0$ $(ii) 2 \qquad (iii) 0$ $2 \qquad 1 \\ \beta \\ \alpha \\ (ii) D \qquad (ii$ |

## EXERCISE (O-1)

1.  $\begin{vmatrix} y+z & x & x \\ y & z+x & y \\ z & z & x+y \end{vmatrix}$  equals-(A)  $x^2y^2z^2$ (B)  $4x^2y^2z^2$ (C) xyz (D) 4xyz If  $\begin{vmatrix} 1 & 3 & 4 \\ 1 & x-1 & 2x+2 \\ 2 & 5 & 9 \end{vmatrix} = 0$ , then x is equal to-2. (D) 0 (A) 2 **(B)** 1 (C) 4 If a, b, c are in AP, then  $\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$  equals -3. (B) x + a + b + c(A) a + b + c(D) none of these (C) 0 4. If  $px^4 + qx^3 + rx^2 + sx + t = \begin{vmatrix} x^2 + 3x & x - 1 & x + 3 \\ x + 1 & 2 - x & x - 3 \\ x - 3 & x + 4 & 3x \end{vmatrix}$  then t is equal to -(A) 33 (B) 0 (C) 21 (D) none For positive numbers x, y and z, the numerical value of the determinant  $\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log x & \log_z y & 1 \end{vmatrix}$  is-5. log<sub>a</sub> x log<sub>a</sub> v (B) log xyz (A) 0 (C)  $\log(x + y + z)$  (D)  $\log x \log y \log z$ Let a determinant is given by  $A = \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$  and suppose det. A = 6. If  $B = \begin{vmatrix} p+x & q+y & r+z \\ a+x & b+y & c+z \\ a+p & b+q & c+r \end{vmatrix}$ 6. then (A) det. B = 6(B) det. B = -6 (C) det. B = 12 (D) det. B = -12If  $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$  and  $A_2$ ,  $B_2$ ,  $C_2$  are respectively cofactors of  $a_2$ ,  $b_2$ ,  $c_2$  then  $a_1A_2 + b_1B_2 + c_1C_2$  is 7. equal to- $(A) - \Delta$ **(B)** 0 (D) none of these (C)  $\Delta$ 

The value of an odd order determinant in which  $a_{ij} + a_{ji} = 0 \forall i, j; i \neq j$  is -8. (D) 0(A) perfect square (B) negative  $(C) \pm 1$ If in the determinant  $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_4 & c_1 \end{vmatrix}$ ,  $A_1, B_1, C_1$  etc. be the co-factors of  $a_1, b_1, c_1$  etc., then which 9. of the following relations is incorrect-(B)  $a_2A_2 + b_2B_2 + c_2C_2 = \Delta$ (D)  $a_1A_2 + b_1B_2 + c_1C_2 = \Delta$ (A)  $a_1A_1 + b_1B_1 + c_1C_1 = \Delta$ (C)  $a_{3}A_{3} + b_{3}B_{3} + c_{3}C_{3} = \Delta$ **10.** If  $S_r = \begin{vmatrix} 2r & x & n(n+1) \\ 6r^2 - 1 & y & n^2(2n+3) \\ 4r^3 - 2nr & z & n^3(n+1) \end{vmatrix}$  then  $\sum_{r=1}^n S_r$  does not depend on-(A) x (B) v (D) all of these (C) n a b c If a, b, c are sides of a scalene triangle, then the value of b c a is : [JEE-MAIN Online 2013] 11. c a b (A) non-negative (B) negative (C) positive (D) non-positive The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z = 0 and 2x+3y-4z=0 has 12. a non-trivial solution is-(A) 15 (B) 16 (C) 31/2(D) 33/2 13. If the system of linear equations [JEE-MAIN Online 2013]  $x_1 + 2x_2 + 3x_3 = 6$  $x_1 + 3x_2 + 5x_3 = 9$  $2x_1 + 5x_2 + ax_3 = b$ is consistent and has infinite number of solutions, then :-(A)  $a \in \mathbb{R} - \{8\}$  and  $b \in \mathbb{R} - \{15\}$ (B) a = 8, b can be any real number (C) a = 8, b = 15(D) b = 15, a can be any real number 14. Consider the system of equations : x + ay = 0, y + az = 0 and z + ax = 0. Then the set of all real values of 'a' for which the system has a unique solution is : [JEE-MAIN Online 2013] (A)  $\{1, -1\}$ (B)  $R - \{-1\}$ (C)  $\{1, 0, -1\}$ (D)  $R - \{1\}$ If a, b, c > 0 and x, y, z  $\in$  R, then the determinant  $\begin{vmatrix} (a^{x} + a^{-x})^{2} & (a^{x} - a^{-x})^{2} & 1 \\ (b^{y} + b^{-y})^{2} & (b^{y} - b^{-y})^{2} & 1 \\ (c^{z} + c^{-z})^{2} & (c^{z} - c^{-z})^{2} & 1 \end{vmatrix}$  is equal to -15. (C)  $a^{2x}b^{2y}c^{2z}$ (B)  $a^{-x}b^{-y}c^{-z}$ (A)  $a^{x}b^{y}c^{x}$ (D) zero

Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that 16. x = cy + bz, y = az + cx and z = bx + ay, then  $a^2 + b^2 + c^2 + 2abc$  is equal to [AIEEE - 2008] (2) - 1(3)0(4)1(1)2There are two numbers x making the value of the determinant  $\begin{vmatrix} 2 & x & -1 \\ 0 & 4 & 2x \end{vmatrix}$  equal to 86. The sum of 17. these two numbers, is-(D) 9 (A) - 4(B) 5 (C) - 3If  $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$  and  $A_1$ ,  $B_1$ ,  $C_1$  denote the co-factors of  $a_1$ ,  $b_1$ ,  $c_1$  respectively, then the value of 18. the determinant  $\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_2 & B_2 & C_2 \end{vmatrix}$  is -(A)  $\Delta$ (B)  $\Delta^2$ (C)  $\Delta^3$ (D) 0EXERCISE (O-2) Let  $f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 2x \end{vmatrix}$ , then the maximum value of f(x), is-1. (B) 4 (A) 2 (C) 6 (D) 8  $\cos(\theta + \phi) - \sin(\theta + \phi) \cos 2\phi$ 2. The determinant  $\sin \theta$  $\cos\theta$ sin ø is - $-\cos\theta$  $\sin \theta$  $\cos\phi$ (A) 0(B) independent of  $\theta$ (C) independent of  $\phi$ (D) independent of  $\theta \& \phi$  both a+p 1+xu + fIf the determinant |b+q| + |m+y| + |p+q|splits into exactly K determinants of order 3, each 3. n+z w+hc + relement of which contains only one term, then the value of K, is-(A) 6 (B) 8 (C) 9 (D) 12

4. Let 
$$D_1 = \begin{vmatrix} a & b & a+b \\ c & d & c+d \\ b & a-b \end{vmatrix}$$
 and  $D_2 = \begin{vmatrix} a & c & a+c \\ b & a & b+d \\ c & a+b+c \end{vmatrix}$  then the value of  $D_1 \\ D_2$  where  $b \neq 0$  and  $ad \neq bc$ , is  
(A) -2 (B) 0 (C) -2b (D) 2b  
5. If  $a^2 + b^2 + c^2 = -2$  and  $f(x) = \begin{vmatrix} 1+a^2x & (1+b^2)x & (1+c^2)x \\ (1+a^2)x & (1+b^2)x & (1+c^2)x \\ (1+a^2)x & (1+b^2)x & 1+c^2x \end{vmatrix}$  then  $f(x)$  is a polynomial of degree-  
(A) 0 (B) 1 (C) 2 (D) 3  
6. If the system of equation,  $a^3x - ay = 1 - a & bx + (3 - 2b)y = 3 + a$  possess a unique solution  $x = 1, y = 1$  than:  
(A)  $a = 1; b = -1$  (B)  $a = -1, b = 1$  (C)  $a = 0, b = 0$  (D) nonc  
7. The number of real values of x satisfying  $\begin{vmatrix} x & 3x + 2 & 2x - 1 \\ 7x - 2 & 17x + 6 & 12x - 1 \end{vmatrix} = 0$  is -  
(A) 3 (B) 0 (C) 1 (D) infinite  
[ONE OR MORE THAN ONE ARE CORRECT]  
8. The determinant  $\begin{vmatrix} a^2 & a^2 - (b-e)^2 & bc \\ b^2 & b^2 - (c-a)^2 & ab \\ c^2 & c^2 - (a-b)^2 & ab \end{vmatrix}$  is divisible by -  
(A)  $a + b + c$  (B)  $(a + b) (b + c) (c + a)$   
(C)  $a^2 + b^2 + c^2$  (D)  $(a - b)(b - c) (c - a)$   
9. The value of 0 lying between  $-\frac{\pi}{4} & \frac{\pi}{2}$  and  $0 \le A \le \frac{\pi}{2}$  and satisfying the equation  
 $\begin{vmatrix} 1+\sin^2 A & \cos^2 A & 2\sin 40 \\ \sin^2 A & 1+\cos^2 A & 2\sin 40 \\ \sin^2 A & 1+\cos^2 A & 2\sin 40 \\ \sin^2 A & 1+\cos^2 A & 2\sin 40 \\ \sin^2 A & \cos^2 A & 1+2\sin 40 \end{vmatrix} = 0$  are -  
(A)  $A = \frac{\pi}{4}, 0 = -\frac{\pi}{8}$  (B)  $A = \frac{3\pi}{8} = 0$   
(C)  $A = \frac{\pi}{5}, \theta = -\frac{\pi}{8}$  (D)  $A = \frac{\pi}{6}, \theta = \frac{3\pi}{8}$ 

**10.** Which of the following determinant(s) vanish(es) ?



## EXERCISE (S-1)

1. (a) On which one of the parameter out of a, p, d or x the value of the determinant

 $\begin{vmatrix} 1 & a & a^2 \\ \cos(p-d)x & \cos px & \cos(p+d)x \\ \sin(p-d)x & \sin px & \sin(p+d)x \end{vmatrix}$  does not depend.

**(b)** If 
$$\begin{vmatrix} x^3 + 1 & x^2 & x \\ y^3 + 1 & y^2 & y \\ z^3 + 1 & z^2 & z \end{vmatrix} = 0$$
 and x, y, z are all different then, prove that  $xyz = -1$ .  
Prove that :

#### **2.** Prove that :

(a) 
$$\begin{vmatrix} a^2 + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (a - 1)^3$$
 (b)  $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{vmatrix} = [(x - y)(y - z)(z - x)(x + y + z)]$   
 $\begin{vmatrix} x & 1 & \frac{-3}{2} \end{vmatrix}$ 

3. (a) Let 
$$f(x) = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 2 & 1 \\ \frac{1}{x-1} & 0 & \frac{1}{2} \end{bmatrix}$$
. Find the minimum value of  $f(x)$  (given  $x > 1$ ).

(b) If  $a^2 + b^2 + c^2 + ab + bc + ca \le 0 \forall a, b, c \in R$ , then find the value of the determinant

$$\begin{vmatrix} (a+b+2)^2 & a^2+b^2 & 1 \\ 1 & (b+c+2)^2 & b^2+c^2 \\ c^2+a^2 & 1 & (c+a+2)^2 \end{vmatrix}.$$

4. If 
$$D = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$$
 and  $D' = \begin{bmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c \end{bmatrix}$ , then prove that  $D' = 2D$ .

5. Prove that 
$$\begin{vmatrix} (\beta + \gamma - \alpha - \delta)^4 & (\beta + \gamma - \alpha - \delta)^2 & 1 \\ (\gamma + \alpha - \beta - \delta)^4 & (\gamma + \alpha - \beta - \delta)^2 & 1 \\ (\alpha + \beta - \gamma - \delta)^4 & (\alpha + \beta - \gamma - \delta)^2 & 1 \end{vmatrix} = -64(\alpha - \beta)(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)(\gamma - \delta)(\gamma - \delta)(\alpha - \beta)(\alpha - \beta)(\alpha - \beta)(\alpha - \beta)(\alpha - \beta)(\alpha - \beta)(\beta - \beta)($$

6. (a) Solve for x, 
$$\begin{vmatrix} x+2 & 2x+3 & 3x+4 \\ 2x+3 & 3x+4 & 4x+5 \\ 3x+5 & 5x+8 & 10x+17 \end{vmatrix} = 0.$$
 (b)  $\begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{vmatrix} = 0$ 

7. If 
$$a+b+c=0$$
, solve for  $x : \begin{vmatrix} a-x & c & b \\ c & b-x & a \\ b & a & c-x \end{vmatrix} = 0.$ 

8. Let a, b, c are the solutions of the cubic  $x^3 - 5x^2 + 3x - 1 = 0$ , then find the value of the determinant

 $\begin{vmatrix} a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b \end{vmatrix}$ 

9. Show that,  $\begin{vmatrix} a^2 + \lambda & ab & ac \\ ab & b^2 + \lambda & bc \\ ac & bc & c^2 + \lambda \end{vmatrix}$  is divisible by  $\lambda^2$  and find the other factor.

**10.** Prove that : 
$$\begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} = 4 \begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$$

11. If  $\Delta(x) = \begin{vmatrix} 0 & 2x-2 & 2x+8 \\ x-1 & 4 & x^2+7 \\ 0 & 0 & x+4 \end{vmatrix}$  and  $f(x) = \sum_{j=1}^{3} \sum_{i=1}^{3} a_{ij} c_{ij}$ , where  $a_{ij}$  is the element of i<sup>th</sup> and j<sup>th</sup> column

in  $\Delta(x)$  and  $c_{ij}$  is the cofactor  $a_{ij} \forall i$  and j, then find the greatest value of f(x), where  $x \in [-3, 18]$ 

12. If 
$$S_r = \alpha^r + \beta^r + \gamma^r$$
 then show that  $\begin{vmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \end{vmatrix} = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2$ .

13. Solve the following sets of equations using Cramer's rule and remark about their consistency.

14. For what value of K do the following system of equations x + Ky + 3z = 0, 3x + Ky - 2z = 0, 2x + 3y - 4z = 0 possess a non trivial (i.e. not all zero) solution over the set of rationals Q. For that value of K, find all the solutions of the system.

15. If the equations 
$$a(y + z) = x$$
,  $b(z + x) = y$ ,  $c(x + y) = z$  (where  $a, b, c \neq -1$ ) have nontrivial solutions,

then find the value of  $\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c}$ .

16. Show that the system of equations 3x - y + 4z = 3, x + 2y - 3z = -2 and  $6x + 5y + \lambda z = -3$  has alteast one solution for any real number  $\lambda$ . Find the set of solutions of  $\lambda = -5$ .

#### EXERCISE (S-2)

|    |            | $1+a^2-b^2$ | 2ab             | -2b         |                    |
|----|------------|-------------|-----------------|-------------|--------------------|
| 1. | Prove that | 2 ab        | $1 - a^2 + b^2$ | 2a          | $=(1+a^2+b^2)^3$ . |
|    |            | 2b          | -2a             | $1-a^2-b^2$ |                    |

In a  $\triangle$  ABC, determine condition under which  $\begin{vmatrix} \cot\frac{A}{2} & \cot\frac{B}{2} & \cot\frac{C}{2} \\ \tan\frac{B}{2} + \tan\frac{C}{2} & \tan\frac{C}{2} + \tan\frac{A}{2} & \tan\frac{A}{2} + \tan\frac{B}{2} \\ 1 & 1 & 1 \end{vmatrix} = 0$ 2.

3. Prove that : 
$$\begin{vmatrix} (a-p)^2 & (a-q)^2 & (a-r)^2 \\ (b-p)^2 & (b-q)^2 & (b-r)^2 \\ (c-p)^2 & (c-q)^2 & (c-r)^2 \end{vmatrix} = \begin{vmatrix} (1+ap)^2 & (1+aq)^2 & (1+ar)^2 \\ (1+bp)^2 & (1+bq)^2 & (1+br)^2 \\ (1+cp)^2 & (1+cq)^2 & (1+cr)^2 \end{vmatrix}$$

- 4. Given x = cy + bz; y = az + cx; z = bx + ay, where x, y, z are not all zero, then prove that  $a^2 + b^2 + c^2 + 2abc = 1$ .
- Investigate for what values of  $\lambda$ ,  $\mu$  the simultaneous equations x + y + z = 6; x + 2y + 3z =5. 10 &  $x+2y+\lambda z = \mu$  have :
  - A unique solution. (b) An infinite number of solutions. (a)

- For what values of p, the equations : x+y+z = 1; x+2y+4z = p &  $x+4y+10z = p^2$ 6. have a solution ? Solve them completely in each case.
- Solve the equations : Kx+2y-2z = 1, 4x+2Ky-z = 2, 6x+6y+Kz = 3 considering 7. specially the case when K = 2.
- Find the sum of all positive integral values of a for which every solution to the system of equation 8. x + ay = 3 and ax + 4y = 6 satisfy the inequalities x > 1, y > 0.
- Given  $a = \frac{x}{y-z}$ ;  $b = \frac{y}{z-x}$ ;  $c = \frac{z}{x-y}$ , where x, y, z are not all zero, prove that : 1 + ab + bc + ca = 0. 9.
- $z + ay + a^{2}x + a^{3} = 0$ Solve the system of equations :  $z + by + b^2x + b^3 = 0$  where  $a \neq b \neq c$ . **10.**  $z + cy + c^2x + c^3 = 0$

## **EXERCISE (JM)**

1. Let a, b, c be such that  $b(a + c) \neq 0$ . If  $\begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} + \begin{vmatrix} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2}a & (-1)^{n+1}b & (-1)^n c \end{vmatrix} = 0$ ,

then the value of n is :-

[AIEEE - 2009]

- (4) Any even integer
- (3) Zero (1) Any odd integer (2) Any integer Consider the system of linear equations :  $x_1 + 2x_2 + x_3 = 3$ ,  $2x_1 + 3x_2 + x_3 = 3$ ,  $3x_1 + 5x_2 + 2x_3 = 1$ 2. The system has [AIEEE - 2010] (1) Infinite number of solutions (2) Exactly 3 solutions
  - (4) No solution (3) A unique solution

| 3.  | The number of values of k for which the linear equations                                               |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
|-----|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
|     | 4x + ky + 2z = 0, $kx + 4y + z = 0$ , $2x + 2y + z = 0$ possess a non-zero solution is : [AIEEE - 201  |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
|     | (1) 1                                                                                                  | (2) zero                                                                  | (3) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4) 2                                               |  |
| 4.  | If the trivial solution is                                                                             | the only solution of t                                                    | he system of equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1S                                                  |  |
|     | x - ky + z = 0, $kx + 3y - kz = 0$ , $3x + y - z = 0$ Then the set of all values of k is: [AIEEE - 20] |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
|     | $(1)$ {2, -3}                                                                                          | (2) $R - \{2, -3\}$                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4) $R - \{-3\}$                                    |  |
| 5.  | The number of values of                                                                                | , ,                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [ <b>JEE</b> ( <b>Main</b> )-2013]                  |  |
|     | (k + 1)x + 8y = 4 (1) infinite                                                                         | (2) 1 $(K + 3)y = 31$                                                     | x - 1 has no solution,<br>(3) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4) 3                                               |  |
|     |                                                                                                        |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
| 6.  | If $\alpha$ , $\beta \neq 0$ , and $f(n) = 0$                                                          | $\alpha^n + \beta^n$ and $\begin{vmatrix} f(1) \\ 1 + f(1) \end{vmatrix}$ | $\begin{vmatrix} 1 + f(2) \\ 1 + f(3) \end{vmatrix} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $K(1-\alpha)^2 (1-\beta)^2 (\alpha-\beta)^2$ , then |  |
|     |                                                                                                        | 1 + f(2)                                                                  | 1 + f(3) $1 + f(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |  |
|     | K is equal to :                                                                                        |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [JEE(Main)-2014]                                    |  |
|     | (1) αβ                                                                                                 | (2) $\frac{1}{\alpha\beta}$                                               | (3) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4) -1                                              |  |
|     | (1) wp                                                                                                 | $(2) \alpha\beta$                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
| 7.  | The set of all values of                                                                               | •                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:                                                  |  |
|     | $2x_1 - 2x_2 + x_3 = \lambda x_1, 2$<br>has a non-trivial solutio                                      | 1 2 5                                                                     | $x_2, -x_1 + 2x_2 = \lambda x_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [JEE(Main)-2015]                                    |  |
|     | (1) contains two element                                                                               |                                                                           | (2) contains mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ore than two elements                               |  |
|     | (3) is an empty set                                                                                    |                                                                           | (4) is a singleto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |  |
| 8.  |                                                                                                        | tations $x + \lambda y - z = 0$ ,                                         | $\lambda \mathbf{x} - \mathbf{y} - \mathbf{z} = 0,  \mathbf{x} + \mathbf{y} + \mathbf{z} = 0,  \mathbf{x} + \mathbf{z} = 0,  \mathbf{z} = 0,$ | $\lambda z = 0$ has a non-trivial solution          |  |
|     | for :                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [JEE(Main)-2016]                                    |  |
|     | <ul><li>(1) exactly three values</li><li>(3) exactly one value or</li></ul>                            |                                                                           | (2) infinitely m<br>(4) exactly two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | any values of $\lambda$ .                           |  |
| 9.  | If S is the set of distinc                                                                             |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
|     |                                                                                                        | $\mathbf{x} + \mathbf{y} + \mathbf{z} = 1$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                   |  |
|     |                                                                                                        | x + ay + z = 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
|     | has no solution than C                                                                                 | ax + by + z = 0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [TEE(Main) 2017]                                    |  |
|     | has no solution, then S (1) a singleton                                                                | 1S :                                                                      | (2) an empty se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [JEE(Main)-2017]                                    |  |
|     | (3) an infinite set                                                                                    |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | containing two or more elements                     |  |
|     |                                                                                                        |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                   |  |
| 10. | If $\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix} =$                   | $(A + Bx) (x - A)^2$ , 1                                                  | then the ordered pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (A, B) is equal to :                                |  |
|     | $\begin{vmatrix} 2x & 2x & x-4 \end{vmatrix}$                                                          |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
|     |                                                                                                        |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [ <b>JEE</b> ( <b>Main</b> )-2018]                  |  |
| 11. | (1) (-4, 3)<br>If the system of linear e                                                               | (2)(-4,5)                                                                 | (3) (4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4) (-4, -5)                                        |  |
| 11. | If the system of mear c                                                                                | x + ky + 3z = 0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
|     |                                                                                                        | 3x + ky - 2z = 0                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
|     |                                                                                                        | 2x + 4y - 3z = 0                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |
|     | has a non-zero solution                                                                                | (x, y, z), then $\frac{xz}{y^2}$ is                                       | equal to :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [JEE(Main)-2018]                                    |  |
|     | (1) 10                                                                                                 | (2) - 30 y                                                                | (3) 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4) –10                                             |  |
|     |                                                                                                        |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • •                                                 |  |

The number of all possible values of  $\theta$ , where  $0 < \theta < \pi$ , for which the system of equations 1.  $(y+z)\cos 3\theta = (xyz)\sin 3\theta$  $x\sin 3\theta = \frac{2\cos 3\theta}{v} + \frac{2\sin 3\theta}{z}$  $(xyz)\sin 3\theta = (y + 2z)\cos 3\theta + y\sin 3\theta$ have a solution  $(x_0, y_0, z_0)$  with  $y_0 z_0 \neq 0$ , is [JEE 2010, 3] Which of the following values of  $\alpha$  satisfy the equation  $\begin{vmatrix} (1+\alpha)^2 & (1+2\alpha)^2 & (1+3\alpha)^2 \\ (2+\alpha)^2 & (2+2\alpha)^2 & (2+3\alpha)^2 \\ (3+\alpha)^2 & (3+2\alpha)^2 & (3+3\alpha)^2 \end{vmatrix} = -648\alpha$ ? 2. [JEE(Advanced)-2015, 4M, -2M] (B) 9 (A) -4 (C) –9 (D) 4  $\begin{vmatrix} x & x^2 & 1+x^3 \\ 2x & 4x^2 & 1+8x^3 \end{vmatrix} = 10 \text{ is}$ The total number of distinct  $x \in R$  for which 3.  $9x^2$  1+27 $x^3$ 3x [JEE(Advanced)-2016, 3(0)] 4. Let  $a, \lambda, m \in \mathbb{R}$ . Consider the system of linear equations

$$ax + 2y = \lambda$$
$$3x - 2y = \mu$$

Which of the following statement(s) is(are) correct ?

(A) If a = -3, then the system has infinitely many solutions for all values of  $\lambda$  and  $\mu$ 

(B) If a  $\neq$  -3, then the system has a unique solution for all values of  $\lambda$  and  $\mu$ 

(C) If  $\lambda + \mu = 0$ , then the system has infinitely many solutions for a = -3

(D) If  $\lambda + \mu \neq 0$ , then the system has no solution for a = -3 [JEE(Advanced)-2016, 4(-2)]

|          |                             |                                       |                                        | ANSWE                                        | R KEY                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|----------|-----------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|          |                             |                                       |                                        | EXERCIS                                      | E (O-1)                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 1.       | D                           | <b>2.</b> A                           | <b>3.</b> C                            | <b>4.</b> C                                  | <b>5.</b> A                                                       | <b>6.</b> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7. B                        |
| 8.       | D                           | <b>9.</b> D                           | <b>10.</b> D                           | <b>11.</b> B                                 | <b>12.</b> D                                                      | <b>13.</b> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>14.</b> B                |
| 15.      | D                           | <b>16.</b> 4                          | 17. A                                  | <b>18.</b> B                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|          |                             |                                       |                                        | EXERCIS                                      | E (O-2)                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 1.       | С                           |                                       | <b>3.</b> B                            |                                              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 8.<br>14 |                             |                                       |                                        |                                              | <b>11.</b> B,D 1                                                  | 2. A,B,D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>13.</b> B,C,D            |
| 14.      | (A)                         | ( <b>Q</b> ), ( <b>D</b> )→( <b>I</b> | '); (C)→(Q,S);                         | EXERCIS                                      | E (S-1)                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 1.       | ( <b>a</b> ) p              | 3.                                    | ( <b>a</b> ) 4, ( <b>b</b> ) 6         |                                              |                                                                   | = -2; (b) x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 4                         |
|          | -                           |                                       |                                        |                                              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 7.       | $\mathbf{x} = 0 \mathbf{c}$ | or $x = \pm \sqrt{\frac{3}{2}} $      | $a^2 + b^2 + c^2 \Big)$                | <b>8.</b> 80                                 | 9. $\lambda^2(a^2)$                                               | $+b^2+c^2+\lambda$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>11.</b> 0                |
| 13.      | (a) x                       | = 1, y = 2,                           | z = 3; consistent                      | ent ( <b>b</b> ) $x = 2$ ,                   | y = -1, z =                                                       | 1; consistent (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) inconsistent             |
|          | 32                          | 3                                     | 15                                     |                                              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                           |
| 14.      | $K = \frac{1}{2}$           | -, x : y : z = -                      | $\frac{15}{2}$ :1:-3 1                 | 15. 2                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|          |                             | Λ                                     | 0                                      |                                              | 1-5K                                                              | 13K _ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 16.      | Ifλ≠·                       | $-5$ then $x = \frac{7}{7}$           | $\frac{1}{7}; y = -\frac{7}{7} \& z =$ | $= 0; \text{ If } \lambda = -5 \text{ th}$   | $\operatorname{hen} \mathbf{x} = \frac{4 \cdot 5 \mathbf{R}}{7};$ | $y = \frac{15R}{7}$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $d z = K$ , where $K \in R$ |
|          |                             |                                       |                                        | EXERCIS                                      | SE (S-2)                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 2.       | Triang                      | le ABC is iso                         |                                        |                                              | - ()                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 5.       | (a) λ                       | ≠ 3 (b)2                              | $\lambda = 3, \mu = 10$                | (c) $\lambda = 3, \mu \neq$                  | 10                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 6.       | x = 1 +                     | -2k, y = -3K,                         | z = K, when $p =$                      | = 1; x = 2K, y =                             | = 1 - 3K, z = K                                                   | when $p = 2$ ; where | here $K \in R$              |
| 7.       | If V                        | + 2X                                  | y                                      | z                                            | 1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|          | 11 K                        | $-2, \frac{1}{2(K+6)}$                | $=\frac{y}{2K+3}=\frac{1}{6(K)}$       | $(\overline{-2})^{-2} \overline{2(K^2 - 2)}$ | +2K+15)                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|          | × 0.77                      |                                       | $1-2\lambda$                           | 1 6 1                                        | 4 D                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|          | If $K =$                    | 2, then $x = \lambda$                 | $y = \frac{1-2\lambda}{2}$ ar          | nd $z = 0$ where                             | $\lambda \in \mathbf{R}$                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 8.       | 4                           | <b>10.</b> x = -                      | -(a+b+c), y =                          | ab + bc + ca, z                              | z = -abc                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|          |                             |                                       |                                        | EXERCIS                                      | SE (JM)                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 1.       | 1                           | <b>2.</b> 4                           | 3. 4                                   | <b>4.</b> 2                                  | <b>5.</b> 2                                                       | <b>6.</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>7.</b> 1                 |
| 8.       | 1                           | <b>9.</b> 1                           | <b>10.</b> 2                           |                                              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|          |                             |                                       |                                        | EXERCIS                                      | SE (JA)                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 1        | 2                           | <b>)</b> PC                           | 3 7                                    |                                              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |

**1.** 3 **2.** B,C **3.** 2 **4.** B,C,D