Concentration terms

CONCENTRATION TERMS

1. SOLUTIONS

A solution is a homogenous mixture of two or more pure substances whose composition may be altered within certain limits. Though the solution is homogenous in nature, yet it retains the properties of its constituents.
Generally solution is composed of two components, solute and solvent. Such type of solution is known as binary solutions.
Solvent is that component in solution whose physical state is the same as that of the resulting solution while other component is called as solute. If the physical state of both component is same, than the component in excess is known as solvent and other one is called as solute. Each component in a binary solution can be in any physical state such as liquid, solid and gaseous state.

Table 2.1: Types of Solutions

Type of Solutions		Solute	
Gaseous Solutions	Gas	Galvent	Common Example
	Liquid	Gas	Mixture of oxygen and nitrogen gases
	Solid	Gas	Chloroform mixed with nitrogen gas
	Gas Solutions	Liquid	Oxygen dissolved in water
	Liquid	Liquid	Ethanol dissolved in water
Solid Solutions	Solid	Liquid	Glucose dissolved in water
	Gas	Solid	Solution of hydrogen in palladium
	Liquid	Solid	Amalgam of mercury with sodium
	Solid	Solid	Copper dissolved in gold

2. CONCENTRATION TERMS :

The concentration of a solution is the amount of solute dissolved in a known amount of the solvent or solution. Solution can be described as dilute or concentrated solution as per their concentration. A dilute solution has a very small quantity of solute while concentrated solution has a large quantity of solute in solution. Various concentration terms are as follows.

2.1 Mass percentage :

It may be defined as the number of parts of mass of solute per hundred parts by mass of solution.

$$
\% \text { by mass }\left(\frac{\mathrm{w}}{\mathrm{~W}}\right):=\frac{\mathrm{wt} \text {. of solute }}{\mathrm{wt} . \text { of solution }} \times 100
$$

[$\mathrm{X} \%$ by mass means 100 gm solution contains X gm solute ; $\therefore(100-\mathrm{X}) \mathrm{gm}$ solvent]

2.2 Mass-volume percentage (W/V \%) :

It may be defined as the mass of solute present in $100 \mathrm{~cm}^{3}$ of solution. For example, If $100 \mathrm{~cm}^{3}$ of solution contains 5 g of sodium hydroxide, than the mass-volume percentage will be 5% solution.

$$
\begin{aligned}
& \%\left(\frac{w}{V}\right)=\frac{w t . \text { of solute }}{\text { volume of solution }} \times 100 \text { [for liq. solution] } \\
& {\left[\mathrm{X} \%\left(\frac{\mathrm{w}}{\mathrm{~V}}\right) \text { means } 100 \mathrm{ml} \text { solution contains } \mathrm{X} \text { gm solute }\right]}
\end{aligned}
$$

2.3 Volume Percent :

It can be represented as $\% \mathrm{v} / \mathrm{v}$ or $\%$ volume and used to prepare such solutions in which both components are in liquids state. It is the number of parts of by volume of solute per hundred parts by volume of solution. Therefore,

$$
\%\left(\frac{\mathrm{v}}{\mathrm{~V}}\right)=\frac{\text { volume of solute }}{\text { volume of solution }} \times 100
$$

2.4 Mole $\%=\frac{\text { Moles of solute }}{\text { Total moles }} \times 100$

- For gases \% by volume is same as mole \%

2.5 Mole Fraction (X) :

Mole fraction may be defined as the ratio of number of moles of one component to the total number of moles of all the components (solute and solvent) present in solution. It is denoted by letter X and the sum of all mole fractions in a solution always equals one.

Mole fraction $(X)=\frac{\text { Moles of solute }}{\text { Total moles }}$

Mole fraction does not depend upon temperature and can be extended to solutions having more than two components.
2.6 Molarity (M) :

Molarity is most common unit for concentration of solution. It is defined as the number of moles of solute present in one litre or one dm^{3} of the solution or millimol of solute present in one mL of solution.

$$
\operatorname{Molarity}(M)=\frac{\text { Mole of solute }}{\text { volume of solution in litre }}
$$

2.7 Molality (m) : The number of gram mole of the solute present in 1000 g of the solvent is known as molality of solution. It represented by letter ' m '.

$$
\text { Molality }(\mathrm{m})=\frac{\text { Moles of solute }}{\text { Mass of solvent (in kg) }}
$$

The unit of molality is $\mathrm{mol} / \mathrm{kg}$ and it does not effect by temperature.
2.8 Parts per million ($\mathbf{p p m}$) : The very low concentration of solute in solution can be expressed in ppm. It is the numbers of parts by mass of solute per million parts by mass of the solution.

$$
\text { Parts per million }(\mathrm{ppm})=\frac{\text { Mass of solute }}{\text { Mass of solvent }} \times 10^{6} \cong \frac{\text { Mass of solute }}{\text { Mass of solution }} \times 10^{6}
$$

Get yourselves very much confortable in their inter conversion. It is very handy.

Concentration Type	Mathematical Formula	Concept
Percentage by mass	$\%\left(\frac{\mathrm{w}}{\mathrm{w}}\right)=\frac{\text { Mass of solute } \times 100}{\text { Mass of solution }}$	Mass of solute present in 100 gm of solution.
Volume percentage	$\%\left(\frac{\mathrm{v}}{\mathrm{v}}\right)=\frac{\text { Volume of solute } \times 100}{\text { Volume of solution }}$	Volume of solute present in $100 \mathrm{~cm}^{3}$ of solution.
Mass-volume percentage	$\%\left(\frac{\mathrm{~W}}{\mathrm{~V}}\right)=\frac{\text { Mass of solute } \times 100}{\text { Volume of solution }}$	Mass of solute present in $100 \mathrm{~cm}^{3}$ of solution.
Parts per million	$\mathrm{ppm}=\frac{\text { Mass of solute } \times 10^{6}}{\text { Mass of solution }}$	Parts by mass of solute per million parts by mass of the solution
Mole fraction	$\begin{aligned} & \mathrm{X}_{\mathrm{A}}=\frac{\text { Mole of A }}{\text { Mole of } \mathrm{A}+\text { Mole of } \mathrm{B}+\text { Mole of } \mathrm{C}+\ldots .} \\ & \mathrm{X}_{\mathrm{B}}=\frac{\text { Mole of } \mathrm{B}}{\text { Mole of } \mathrm{A}+\text { Mole of } \mathrm{B}+\text { Mole of } \mathrm{C}+\ldots .} \end{aligned}$	Ratio of number of moles ofone component to the total number of moles.
Molarity	$\mathrm{M}=\frac{\text { Mole of solute }}{\text { Volume of solution (in } \mathrm{L})}$	Moles of solute in one litre of solution.
Molality	$\mathrm{m}=\frac{\text { Mass of solute } \times 1000}{\text { Molar mass of solute } \times \text { Mass of solvent }(\mathrm{g})}$	Moles of solute in one kg of solvent

Ex. 1 Calculate the mole fractions of the components of the solution composed by 92 g glycerol and
90 g water? $\quad(M($ water $)=18 ; M($ glycerol $)=92)$
Ans. Moles of water $=90 \mathrm{~g} / 18 \mathrm{~g}=5 \mathrm{~mol}$ water
Moles of glycerol $=92 \mathrm{~g} / 92 \mathrm{~g}=1 \mathrm{~mol}$ glycerol
Total moles in solution $=5+1=6 \mathrm{~mol}$
Mole fraction of water $=5 \mathrm{~mol} / 6 \mathrm{~mol}=0.833$
Mole fraction of glycerol $=1 \mathrm{~mol} / 6 \mathrm{~mol}=0.167$
Ex. 2 What will be the Molarity of solution when water is added to 10 g CaCO to make 100 mL of solution?

Ans. Mol of $\mathrm{CaCO}_{3}=10 / 100=0.1$
Molarity $=$ Mole of solute $/$ Volume of solution $(\mathrm{L})=0.10 \mathrm{~mol} / 0.10 \mathrm{~L}$
Therefore ; Molarity of given solution $=1.0 \mathrm{M}$
Ex. 3 Calculate the molality of a solution containing 20 g of sodium hydroxide (NaOH) in 250 g of water?

Ans. \quad Moles of sodium hydroxide $=20 / 40=0.5 \mathrm{~mol} \mathrm{NaOH}$
$250 \mathrm{gm}=0.25 \mathrm{~kg}$ of water
Hence molality of solution $=$ Mole of solute $/$ Mass of solvent $(\mathrm{kg})=0.5 \mathrm{~mol} / 0.25 \mathrm{~kg}$ or $\operatorname{Molality}(\mathrm{m})=2.0 \mathrm{~m}$

Ex.4 Calculate the grams of copper sulphate $\left(\mathrm{CuSO}_{4}\right)$ needed to prepare 250.0 mL of $1.00 \mathrm{MCuSO}_{4}$?
Ans. Moles of $\mathrm{CuSO}_{4}=\mathrm{M} \times \mathrm{V}=1 \times \frac{250}{1000}$
Molar mass of copper sulphate $=159.6 \mathrm{~g} / \mathrm{mol}$
Hence Mass of copper sulphate (gm) $=$ Moles of $\mathrm{CuSO}_{4} \times$ Molar mass of copper sulphate.

$$
\begin{aligned}
& =1 \times \frac{250}{1000} \times 159.6 \mathrm{~g} / \mathrm{mol} \\
& =39.9 \mathrm{gm} \text { of Copper sulphate }
\end{aligned}
$$

Ex. 5 How many grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are present in 500 ml of $0.2 \mathrm{M}_{2} \mathrm{SO}_{4}$ solution?
Ans. $\quad \mathrm{M}=\frac{\text { moles }}{\text { vol. }} \Rightarrow$ moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{M} \times \mathrm{V}=0.2 \times \frac{500}{1000} \mathrm{~L}=0.1$
Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.1 \times 98=9.8 \mathrm{~g}$

Ex. 6 Calculate the ppm of mercury in water in given sample contain 30 mg of Hg in 500 ml of solution.
Ans. \quad Parts per million $=\frac{\text { Mass of solute } \times 10^{6}}{\text { Mass of solution }}$
Mass of $\mathrm{Hg}=30 \mathrm{mg}$
Mass of water $=500 / 1=500 \mathrm{~g}=50 \times 10^{4} \mathrm{mg}$
(density $=$ mass $/$ volume ; density of water $1 \mathrm{~g} / \mathrm{ml}) \mathrm{w}=\frac{\mathrm{v}}{\mathrm{d}}$
Therefore, ppm of mercury $=\frac{30 \times 10^{6}}{50 \times 10^{4}}=60 \mathrm{ppm}$ of mercury
3. MIXING OF SOLUTIONS :

It is based on law of conservation of moles.
(i) Two solutions having same solute

$$
\text { Final molarity }=\frac{\text { Total moles }}{\text { Total volume }}=\frac{M_{1} V_{1}+M_{2} V_{2}}{V_{1}+V_{2}}
$$

(ii) Dilution Effect : When a solution is diluted, the moles of solute do not change but molarity changes while on taking out a small volume of solution from a larger volume, the molarity of solution do not change but moles change proportionately.

Final molarity $=\frac{M_{1} V_{1}}{V_{1}+V_{2}}$

$\Rightarrow \quad$ Final volume $=V_{1}+V_{2}=n\left(V_{1}\right)$

Ans. $\quad \mathrm{M}_{\mathrm{f}}=\frac{\text { Total moles of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { Total volume }}=\frac{50 \times 0.2 \times 10^{-3}+50 \times 10^{-3} \times 0.3}{(50+50) \times 10^{-3}}=0.25 \mathrm{M}$

Ex. 8 Find final molarity in each case :

Ans. (i) $500 \mathrm{ml} 0.1 \mathrm{M} \mathrm{HCl}+500 \mathrm{ml} 0.2 \mathrm{M} \mathrm{HCl}$

$$
\mathrm{M}_{\mathrm{f}}=\frac{500 \times 0.1+500 \times 0.2}{500+500}=0.15 \mathrm{M}
$$

(ii) $\quad 50 \mathrm{ml} 0.1 \mathrm{M} \mathrm{HCl}+150 \mathrm{ml} \quad 0.3 \mathrm{MHCl}+300 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$

$$
M_{f}=\frac{50 \times 0.1+150 \times 0.3}{50+150+300}=\frac{50}{500}=0.1 \mathrm{M}
$$

(iii) $4.9 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}+250 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}+250 \mathrm{ml} 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\mathrm{M}_{\mathrm{f}}=\frac{\frac{4.9}{98}+\frac{250}{1000} \times 0.1}{\left(\frac{250+250}{1000}\right)}=\frac{50+25}{500}=0.15 \mathrm{M}
$$

Ex.9 How much water should be added to 2 M HCl solution to form 1 litre of 0.5 M HCl ?

Ans. Let V be initial volume
Then mol of $\mathrm{HCl}=$ constant
$2 \times \mathrm{V}=1 \times 0.5 \Rightarrow \mathrm{~V}=0.25 \mathrm{~L}$
Volume of water added $=1-0.25=0.75 \mathrm{~L}$

Ex. 10 Find number of $\mathrm{Na}^{+} \& \mathrm{PO}_{4}^{-3}$ ions in 250 ml of $0.2 \mathrm{M} \mathrm{Na}{ }_{3} \mathrm{PO}_{4}$ solution.
Ans. $\mathrm{Na}_{3} \mathrm{PO}_{4}+$ aq. $\longrightarrow 3 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{-3}(\mathrm{aq})$ [Ionic compound when added to water ionize completely]. 50 millimoles (m.m.) $\quad 150 \mathrm{~mm} \quad 50 \mathrm{~mm}$

No. of Na^{+}ions $=150 \times 10^{-3} \times \mathrm{N}_{\mathrm{A}} ;$ No. of PO_{4}^{-3} ions $=50 \times 10^{-3} \times \mathrm{N}_{\mathrm{A}}$

Ex. $111.11 \mathrm{~g} \mathrm{CaCl}{ }_{2}$ is added to water forming 500 ml of solution. 20 ml of this solution is taken and diluted

 10 folds. Find moles of Cl ions in 2 ml of diluted solution.Ans. $\frac{1.11}{111}=0.01 \mathrm{~mol} \mathrm{CaCl}_{2}$

Moles of CaCl_{2} in 20 ml solution $=\frac{0.01}{500} \times 20=\frac{0.01}{25}$
In 200 ml solution moles of $\mathrm{CaCl}_{2}=\frac{0.01}{25}$ [Note : Dilution does not change moles of solute]
In 2 ml of dilute solution moles of $\mathrm{CaCl}_{2}=\frac{\frac{0.01}{\frac{25}{200}} \times 2=\frac{0.01}{2500}=8 \times 10^{-6} \text {. }{ }^{-1} \text {. }}{}$ \therefore moles of $\mathrm{Cl}^{-}=2 \times 8 \times 10^{-6}=1.6 \times 10^{-5}$

Ex. 12 What volumes of $1 M \& 2 M H_{2} \mathrm{SO}_{4}$ solution are required to produce 2 L of $1.75 \mathrm{M}_{2} \mathrm{SO}_{4}$ solution?
Ans. Let XL be vol. of 1 M solution.
$\therefore(2-\mathrm{X}) \mathrm{L}$ is vol. of 2 M solution.
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=2 \times 1.75=1(\mathrm{X})+(2-\mathrm{X}) 2$

$$
3.5=4-X ; X=0.5 L
$$

i.e. 0.5 L of $1 \mathrm{M} \& 1.5 \mathrm{~L}$ of 2 M solution required.

Ex. 1380 g NaOH was added to 2 L water. Find molality of solution if density of water = $1 \mathrm{~g} / \mathrm{mL}$

Ans. $\mathrm{m}=\frac{\text { moles of } \mathrm{NaOH}}{\text { mass of } \mathrm{H}_{2} \mathrm{O}} \times 1000=\frac{80 / 40}{2 \times 1000} \times 1000=1$ molal

Ex. 14 A 100 g NaOH solution has 20 g NaOH . Find molality.

Ans. $\mathrm{m}=\frac{20 / 40}{100-20} \times 1000=\frac{500}{80}=6.25 \mathrm{~mol} / \mathrm{kg}$

Ex. 15 Find molality of aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$ whose molarity is 2 M and density $d=1.2 \mathrm{~g} / \mathrm{mL}$.
Hint: $\mathbf{m = \frac { \mathbf { M } } { \mathbf { d - M M } } \times \mathbf { 1 0 0 0 }}$
where $\mathrm{d}=$ density in $\mathrm{gL}^{-1}, \mathrm{M}=$ Molarity, $\mathrm{m}=$ molality, $\mathrm{M}_{\mathrm{S}}=$ molar mass of solute.
Ans. $\mathrm{m}=\frac{2}{1200-2 \times 60} \times 1000=1.85 \mathrm{~m}$

Ex. 16 A solution is made by mixing $300 \mathrm{ml} 1.5 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+300 \mathrm{ml} 2 \mathrm{M} \mathrm{CaSO}_{4}+400 \mathrm{ml} 3.5 \mathrm{M} \mathrm{CaCl}_{2}$
Find final molarity of (1) SO_{4}^{-2}, (2) Ca^{2+}, (3) Cl . [Assume complete dissociation of these compounds].
Ans. (1) $\left[\mathrm{SO}_{4}^{-2}\right]_{\mathrm{f}}=\frac{\text { Total moles }}{\text { Total volume }}=\frac{300 \times 1.5 \times 10^{-3} \times 3+300 \times 2 \times 10^{-3}}{(300+300+400) \times 10^{-3}}=1.95 \mathrm{M}$
(2) $\left[\mathrm{Ca}^{+2}\right]_{\mathrm{f}}=\frac{300 \times 2+400 \times 3.5}{1000}=2 \mathrm{M}$
(3) $[\mathrm{Cl}]_{\mathrm{f}}=\frac{400 \times 3.5 \times 2}{1000}=2.8 \mathrm{M}$

Ex. 17 A solution has $80 \% \frac{\mathrm{w}}{\mathrm{w}} \mathrm{NaOH}$ with density $2 g L^{-1}$. Find (a) Molarity (b) Molality of solution.
Ans. Let $\mathrm{V}_{\text {lit }}$ be vol. of solution

Mass of solute $=(\mathrm{d} \times \mathrm{V}) \times \frac{\left(\% \frac{\mathrm{w}}{\mathrm{w}}\right)}{100}=2 \times \mathrm{V} \times \frac{80}{100}=1.6 \mathrm{~V}$
(a) $\mathrm{M}=\frac{1.6 \mathrm{~V} / 40}{\mathrm{~V}}=0.04 \mathrm{M}$
(b) $\mathrm{m}=\frac{1.6 \mathrm{~V} / 40}{2 \mathrm{~V}-1.6 \mathrm{~V}} \times 1000=100 \mathrm{~mol} \mathrm{~kg}^{-1}$

Ex. 184.450 g 100 per cent sulphuric acid was added to 82.20 g water and the density of the solution was found to be $1.029 \mathrm{~g} / \mathrm{cc}$ at $25^{\circ} \mathrm{C}$ and 1 atm pressure. Calculate (a) the weight percent, (b) the mole fraction, (c) the mole percent, (d) the molality, (e) the molarity of sulphuric acid in the solution under these conditions.

Ans. \quad Sulphuric acid $=4.450 \mathrm{~g}$, Water $=82.20 \mathrm{~g} \Rightarrow$ Wt. of solution $=86.65 \mathrm{~g}$
\therefore Density of solution $=1.029 \mathrm{~g} / \mathrm{cc}$.
(a) Weight percent $=\frac{\mathrm{wt} \text {. of solute }}{\text { wt. of solution }} \times 100=\frac{4.450}{86.65} \times 100=5.14$
(b) Mole fraction :

Mole of solute $=\frac{\mathrm{wt} \text {. of solute }}{\mathrm{mol} \mathrm{wt} \text {. of solute }}=\frac{4.45}{98}=0.0454$
Mole of solvent $=\frac{82.20}{18}=4.566$
Total moles in solution $=0.0454+4.566=4.6114$
Mole fraction of solute $=\frac{0.0454}{4.6114}=0.0098$
(c) Mole percent $=\frac{\text { moles of solute }}{\text { Total moles in solution }} \times 100$

$$
=\text { mole fraction of solute } \times 100=0.0098 \times 100=0.98
$$

(d) Molality $=\frac{\text { moles of solute }}{\text { mass of solvent }(\text { in } \operatorname{gm})} \times 1000$

$$
=\frac{0.0454 \times 1000}{82.2}=0.552
$$

(e) Molarity $=\frac{\text { moles of solute }}{\text { litre of solution }}$

Volume of solution $=\frac{\text { Mass }}{\text { Density }}=\frac{86.65}{1.029} \mathrm{ml}$

$$
=\frac{86.65}{1.029 \times 1000} \text { litre }
$$

Molarity $=\frac{0.0454}{\frac{86.54}{1.029 \times 1000}}=\frac{0.0454 \times 1000 \times 1.029}{86.65}=0.539$

Ex. 19 A solution of KCl has a density of $1.69 \mathrm{~g} \mathrm{~mL}^{-1}$ and is 67% by weight. Find the density of the solution if it is diluted so that the percentage by weight of KCl in the diluted solution is 30\%.

Ans. Let the volume of the KCl solution be 100 mL ,
Weight of KCl solution $=100 \times 1.69=169 \mathrm{~g}$
100 g of solution contains $=67 \mathrm{~g}$ of KCl

169 g of solution $=\frac{67}{100} \times 169=113.23 \mathrm{~g}$

Lex x mL of $\mathrm{H}_{2} \mathrm{O}$ be added.
New volume of solution $=(100+x) \mathrm{mL}$
New weight of solution $=(169+x) g$
(Since x mL of $\mathrm{H}_{2} \mathrm{O}=\mathrm{x}$ g of $\mathrm{H}_{2} \mathrm{O}, \mathrm{d}_{\mathrm{H}_{2} \mathrm{O}}=1$)
New percentage of the solution $=30 \%$
$\%$ by weight $=\frac{\text { weight of solute } \times 100}{\text { weight of solution }}$
$30=\frac{113.23}{(169+x)} \times 100$
$\mathrm{x}=208.43 \mathrm{~mL}=208.43 \mathrm{~g}$
New density $=\frac{\text { New weight of solution }}{\text { New volume of solution }}$

$$
\begin{aligned}
& =\frac{(169+x)}{(100+x)} \\
& \frac{(169+208.43)}{(100+208.43)}=\frac{377.43}{308.43}
\end{aligned}
$$

$\therefore \mathrm{d}=1.224$

4. SOME TYPICAL CONCENTRATION TERMS

4.1 PERCENTAGE LABELLING OF OLEUM :

Labelled as '\% oleum' , it means maximum amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that can be obtained from 100 gm of such oleum (mix of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and SO_{3}) by adding sufficient water. For ex. 109% oleum sample means, with the addition of sufficient water to 100 gm oleum sample $109 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$ is obtained. $\%$ labelling of oleum sample $=(100+x) \%$
$x=$ mass of $\mathrm{H}_{2} \mathrm{O}$ required for the complete conversion of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$
Ex. 20 Find the mass of free SO_{3} present in $100 \mathrm{gm}, 109$ \% oleum sample.
Sol. $\quad 109 \%$ means, 9 gm of $\mathrm{H}_{2} \mathrm{O}$ is requried.
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
9 gm
$1 / 2$ mole $\quad 1 / 2$ mole
40 gm
$\therefore \quad$ Mass of free $\mathrm{SO}_{3}=40 \mathrm{gm}$, Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=60 \mathrm{gm}$
Note: Work out, what are the maximum and minimum value of the $\%$ labelling.

Ex. 21 Find the \% labelling of 100 gm oleum sample if it contains $20 \mathrm{gm} \mathrm{SO}_{3}$.

Sol. $\quad \%$ labelling of oleum sample $=(100+x) \%$

$$
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}
$$

20 gm
$1 / 4$ mole $1 / 4$ mole

$$
4.5 \mathrm{gm}
$$

$\therefore \quad \%$ labelling of oleum sample $=(100+4.5) \%=104.5 \%$
II. VOLUME STRENGTH OF $\mathbf{H}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}}$ SOLUTION :

Labelled as 'volume $\mathrm{H}_{2} \mathrm{O}_{2}$, it means volume of O_{2} (in litre) at STP that can be obtained from 1 litre of such a sample when it decomposes according to

$$
\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}
$$

Volume Strength of $\mathbf{H}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}}$ Solution $=\mathbf{1 1 . 3 5} \times$ molarity

Ex. 22 Find the \% w/v of '10 V' $\mathrm{H}_{2} \mathrm{O}_{2}$ solution-
Sol. Molarity (M) of solution $=\frac{\text { volume strength }}{11.35}=\frac{10}{11.35}$
$\%\left(\frac{w}{v}\right)=\frac{M \times \text { mol. wt. of solute }}{10}=\frac{10}{11.35} \times \frac{34}{10}=3 \%$

EXERCISE \# S-I

CONCENTRATION TERMS

Q. 1 Calculate the molarity of the following solutions :
(a) 4 g of caustic soda is dissolved in 200 mL of the solution.
(b) 5.3 g of anhydrous sodium carbonate is dissolved in 100 mL of solution.
(c) 0.365 g of pure HCl gas is dissolved in 50 mL of solution.
Q. 2 Density of a solution containing 13% by mass of sulphuric acid is $0.98 \mathrm{~g} / \mathrm{mL}$. Then molarity of solution will be
Q. 3 The density of a solution containing 7.3% by mass of HCl is $1.2 \mathrm{~g} / \mathrm{mL}$. Calculate the molarity of the solution.
Q. 415 g of methyl alcohol is present in 100 mL of solution. If density of solution is $0.90 \mathrm{~g} \mathrm{~mL}^{-1}$. Calculate the mass percentage of methyl alcohol in solution
Q. 5 Units of parts per million (ppm) or per billion (ppb) are often used to describe the concentrations of solutes in very dilute solutions. The units are defined as the number of grams of solute per million or per billion grams of solvent. Bay of Bengal has 2.1 ppm of lithium ions. What is the molality of Li^{+}in this water? $(\mathrm{Li}=7)$
Q.6 A 7.0 M solution of KOH in water contains 28% by mass of KOH . What is density of solution in $\mathrm{gm} / \mathrm{ml}$?
Q. 7 The average concentration of Na^{+}ion in human body is 3.0 to 3.9 gm per litre. The molarity of Na^{+}ion is about.
Q. 8 What is the concentration of chloride ion, in molarity, in a solution containing $10.56 \mathrm{gm} \mathrm{BaCl}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ per litre of solution? $(\mathrm{Ba}=137)$
Q. 9 The concentration of a solution is $8 \%(\mathrm{w} / \mathrm{w})$ and $10 \%(\mathrm{w} / \mathrm{v})$. Calculate density (in gm/mℓ) of solution?
Q. 10 The mole fraction of solute in aqueous urea solution is 0.2 . Calculate the mass percent of solute ?
Q. 11 The concentration of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ in a sample of hard water is 405 ppm . The density of water sample is $1.0 \mathrm{gm} / \mathrm{ml}$. Calculate the molarity of solution?
Q. 120.115 gm of sodium metal was dissolved in 500 ml of the solution in distilled water. Calculate the molarity of the solution?
Q. 13 How much BaCl_{2} (in gm) would be needed to make 250 ml of a solution having the same concentration of Cl^{-}as one containing 1.825 gm HCl per $100 \mathrm{ml} ?(\mathrm{Ba}=137)$
Q. 14 Calculate molality (m) of each ion present in the aqueous solution of $\mathbf{2} \mathbf{M} \mathbf{N H}_{\mathbf{4}} \mathbf{C l}$ assuming 100% dissociation according to reaction.

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Given : Density of solution $=3.107 \mathrm{gm} / \mathrm{ml}$.
Q. 151200 gm aqueous solution contains 200 gm calcium bromide $\left(\mathrm{CaBr}_{2}\right)$. Calculate molality of solution.
Q. 16 Find out the volume of $98 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{SO}_{4}$ (density $=1.8 \mathrm{gm} / \mathrm{ml}$), must be diluted to prepare 12.6 litres of 2.0 M sulphuric acid solution.
Q. 17 Determine the volume (in $\mathrm{m} \ell$) of diluted nitric acid ($\mathrm{d}=1.11 \mathrm{~g} \mathrm{~mL}^{-1}, 20 \% \mathrm{w} / \mathrm{v} \mathrm{HNO}_{3}$) that can be prepared by diluting 50 mL of conc. HNO_{3} with water ($\mathrm{d}=1.42 \mathrm{~g} \mathrm{~mL}^{-1}, 70 \% \mathrm{w} / \mathrm{v}$).
Q. 18500 ml of 2 M NaCl solution was mixed with 200 ml of 2 M NaCl solution. Calculate the molarity of NaCl in final solution.
Q. 19 Calculate the amount of the water "in $\mathrm{m} \ell$ "which must be added to a given solution of concentration of 40 mg silver nitrate per ml , to yield a solution of concentration of 16 mg silver nitrate per ml ?
Q.20 A mixture containing equimolar amounts of $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ requires 0.5 L of 4.0 M HCl to react with it completely. Total moles of the mixture are :
Q. 21500 gm of urea solution of mole fraction 0.2 is diluted to 1500 gm . Calculate the mole fraction of solute in the diluted solution?
Q. 22 When V ml of $2.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is mixed with 10 V ml of water, the volume contraction of 2% take place. Calculate the molarity of diluted solution?
Q. 23 What volume (in $\mathrm{m} \ell$) of $0.8 \mathrm{M} \mathrm{AlCl}_{3}$ solution should be mixed with 50 ml of $0.2 \mathrm{M} \mathrm{CaCl}_{2}$ solution to get solution of chloride ion concentration equal to 0.6 M ?
Q. 24 A solution containing 200 ml 0.5 M KCl is mixed with $50 \mathrm{ml} 19 \% \mathrm{w} / \mathrm{v} \mathrm{MgCl}_{2}$ and resulting solution is diluted 8 times. Molarity of chloride ion is final solution is :
Q. $25100 \mathrm{~mL}, 3 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaOH}$ solution is mixed with $100 \mathrm{ml}, 9 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaOH}$ solution. The molarity of final solution is-

SOME TYPICAL CONCENTRATION TERMS

Q. 26 An oleum sample is labelled as 118%, Calculate
(i) Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 gm oleum sample.
(ii) Maximum mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that can be obtained if 30 gm sample is taken.
(iii) Composition of mixture (mass of components) if 40 gm water is added to 30 gm given oleum sample.
Q. 27 A mixture is prepared by mixing $10 \mathrm{gm}_{2} \mathrm{SO}_{4}$ and $40 \mathrm{gm} \mathrm{SO}_{3}$ calculate,
(a) mole fraction of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(b) $\%$ labelling of oleum
Q. 28500 ml of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution on complete decomposition produces 2 moles of $\mathrm{H}_{2} \mathrm{O}$. Calculate the volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution?
Q. $292 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$

Under conditions where 1 mole of gas occupies $24 \mathrm{dm}^{3}$, XL of $\frac{1}{24} \mathrm{M}$ solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ produces $3 \mathrm{dm}^{3}$ of O_{2}. Thus X is :-
Q.30 The volume strength of $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$ solution which produce 5.6 litre of oxygen gas at 1 bar \& $0^{\circ} \mathrm{C}$.

EXERCISE \# S-II

Q. 1 What volume of 0.2 M NaOH (in ml) solution should be mixed to 500 ml of 0.5 M NaOH solution so that 300 ml of final solution is completely neutralised by 20 ml of $2 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution.

[Assuming 100\% dissociation]

Q. 2 How much minimum volume (in $\mathrm{m} \ell$) of $\left(\frac{5}{51}\right)$ M aluminium sulphate solution should be added to excess calcium nitrate to obtain atleast 1 gm of each salt in the reaction.

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CaSO}_{4}
$$

Q. 3 One litre of milk weighs 1.035 kg . The butter fat is $4 \%(\mathrm{v} / \mathrm{v})$ of milk and has density of $875 \mathrm{~kg} / \mathrm{m}^{3}$. If the density of fat free skimed milk is ' x ' $\mathrm{kg} / \mathrm{m}^{3}$, the value of $(4.8 \mathrm{x})$ is?
Q. 4100 ml of 0.1 M solution of $\mathrm{AB}(\mathrm{d}=1.5 \mathrm{gm} / \mathrm{ml})$ is mixed with 100 ml of 0.2 M solution of CB_{2} $(\mathrm{d}=2.5 \mathrm{gm} / \mathrm{ml})$. Calculate the molarity of B^{-}in final solution if the density of final solution is $4 \mathrm{gm} / \mathrm{ml}$. Assuming AB and CB_{2} are non reacting \& dissociates completely into $\mathrm{A}^{+}, \mathrm{B}^{-}, \mathrm{C}^{+2}$.
Q. 560 ml of a " x " $\% \mathrm{w} / \mathrm{w}$ alcohol by weight $\left(\mathrm{d}=0.6 \mathrm{~g} / \mathrm{cm}^{3}\right)$ must be used to prepare $200 \mathrm{~cm}^{3}$ of 12% alcohol by weight $\left(\mathrm{d}=0.90 \mathrm{~g} / \mathrm{cm}^{3}\right)$. Calculate the value of " x "?
Q. 6 If 0.5 M methanol undergo self dissociation like $\mathrm{CH}_{3} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{O}^{-}+\mathrm{H}^{+}$\& if concentration of H^{+}is $2.5 \times 10^{-4} \mathrm{M}$ then calculate $\%$ dissociation of methanol.
Q. 71120 gm of 2 ' \mathbf{m} ' urea solution is mixed with 2480 gm of 4 ' \mathbf{m} ' urea solution. Calculate the molality of the resulting solution?
Q. 850 ml of ' $20 \mathrm{~V}^{\prime} \mathrm{H}_{2} \mathrm{O}_{2}$ is mixed with $200 \mathrm{ml}, ~ ' 10 \mathrm{~V}^{\prime} \mathrm{H}_{2} \mathrm{O}_{2}$. The volume strength of resulting solution is
Q. 9500 ml of $2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution is mixed with $600 \mathrm{ml} 12 \% \mathrm{w} / \mathrm{v} \mathrm{CH}_{3} \mathrm{COOH}$ solution then calculate the final molarity of solution.
Q. $1045.4 \mathrm{~V} \mathrm{H}_{2} \mathrm{O}_{2}$ solution (500 ml) when exposed to atmosphere looses 11.2 litre of O_{2} at 1 atm , \& 273 K . New molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution. (Assume no change in volume)

EXERCISE \# O-I

Q. $1 \quad 125 \mathrm{ml}$ of $8 \% \mathrm{w} / \mathrm{w} \mathrm{NaOH}$ solution (sp. gravity 1) is added to 125 ml of $10 \% \mathrm{w} / \mathrm{v} \mathrm{HCl}$ solution. The nature of resultant solution would be \qquad .
(A) Acidic
(B) Basic
(C) Neutral
(D) Can not be predicted
Q. 28 g NaOH is dissolved in one litre of solution, its molarity is :
(A) 0.8 M
(B) 0.4 M
(C) 0.2 M
(D) 0.1 M
Q. 3 If 18 g of glucose is present in 1000 g of solvent, the solution is said to be :
(A) 1 molar
(B) 0.1 molar
(C) 0.5 molar
(D) 0.1 molal
Q. 4 The molarity of pure water is :
(A) 100 M
(B) 55.6 M
(C) 50 M
(D) 18 M
Q. 5 Mole fraction of $\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3}$ (glycerine) in a solution of 36 g of water and 46 g of glycerine is :
(A) 0.46
(B) 0.36
(C) 0.20
(D) 0.40
Q. 6 A molal solution is one that contains one mole of a solute in
(A) 1000 g of the solvent
(B) one litre of the solution
(C) one litre of the solvent
(D) 22.4 litres of the solution
Q. 7 The mole fraction of oxygen in a mixture of 7 g of nitrogen and 8 g of oxygen is :
(A) $\frac{8}{15}$
(B) 0.5
(C) 0.25
(D) 1.0
Q. 8 The molarity of a solution of sodium chloride (mole wt. $=58.5$) in water containg 5.85 gm of sodium chloride in 500 ml of solution is :-
(A) 0.25
(B) 2.0
(C) 1.0
(D) 0.2
Q. 9 The molarity of 98% by wt. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~d}=1.8 \mathrm{~g} / \mathrm{ml})$ is
(A) 6 M
(B) 18 M
(C) 10 M
(D) 4 M
Q. 10 Which one of the following modes of expressing concentration of solution is independent of temperature -
(A) Molarity
(B) Molality
(C) $\% \mathrm{w} / \mathrm{v}$
(D) Grams per litre
Q. 11 For preparing 0.1 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in one litre, we need $\mathrm{H}_{2} \mathrm{SO}_{4}$:
(A) 0.98 g
(B) 4.9 g
(C) 49.0 g
(D) 9.8 g
Q. 121000 g aqueous solution of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ contains 10 g of calcium nitrate. Concentration of the solution is :
(A) 10 ppm
(B) 100 ppm
(C) 1000 ppm
(D) $10,000 \mathrm{ppm}$
Q. 13 How much volume of $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is required for the preparation of 1.0 litre of 1.0 M solution?
(A) 300 ml
(B) 320 ml
(C) 333.3 ml
(D) 350.0 ml
Q. 14 Equal weight of NaCl and KCl are dissolved separately in equal volumes of solutions. Molarity of the solutions will be-
(A) Equal
(B) Greater for NaCl
(C) Greater for KCl
(D) Uncomparable.
Q. 15 How much water should be added to 200 cc of semimolar solution of NaOH to make it exactly decimolar:-
(A) 1000 cc
(B) 400 cc
(C) 800 cc
(D) 600 cc
Q. 16100 ml of 0.3 M HCl solution is mixed with 200 ml of $0.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. What is the molarity of H^{+}in resultant solution?
(A) 0.9
(B) 0.6
(C) 0.4
(D) 0.5
Q. $17 \quad \mathrm{H}_{2} \mathrm{O}_{2}$ solution used for hair bleaching is sold as a solution of approximately $5.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$ per 100 mL of the solution. The molecular mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 34 . The molarity of this solution is approximately:-
(A) 0.15 M
(B) 1.5 M
(C) 3.0 M
(D) 3.4 M
Q. 18171 g of cane sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is dissolved in 1 litre of water. The molarity of the solution is :
(A) 2.0 M
(B) 1.0 M
(C) 0.5 M
(D) 0.25 M
Q. 19 How much grams of $\mathrm{CH}_{3} \mathrm{OH}$ should be dissolved in water for preparing 150 ml of $2.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{OH}$ solution?
(A) 9.6
(B) 2.4
(C) 9.6×10^{3}
(D) 4.3×10^{2}
Q. 20 Molality of $20 \%(\mathrm{w} / \mathrm{w})$ aq.glucose solution is :
(A) $\frac{25}{18} \mathrm{~m}$
(B) $\frac{10}{9} \mathrm{~m}$
(C) $\frac{25}{9} \mathrm{~m}$
(D) $\frac{5}{18} \mathrm{~m}$
Q. 21 Molarity of liquid HCl , if density is $1.17 \mathrm{~g} / \mathrm{cc}$. :
(A) 36.5 M
(B) 18.25 M
(C) 32.05 M
(D) 42.10 M
Q. 22 The molarity of a solution made by mixing 50 ml of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(18 \mathrm{M})$ with 50 ml of water, is:
(A) 36 M
(B) 18 M
(C) 9 M
(D) 6 M
Q. 23 Equal volumes of $10 \%(\mathrm{w} / \mathrm{v})$ of HCl is mixed with $10 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaOH}$ solution. The resultant solution be.
(A) basic
(B) neutral
(C) acidic
(D) can't be predicted.
Q. 24 What volume of 0.2 M NaOH solution is needed for complete neutralisation of 0.49 gm orthophosphoric acid -
(A) 75 ml
(B) 300 ml
(C) 0.075 ml
(D) 50 ml
Q. 2534 g of hydrogen peroxide is present in 1135 mL of solution. Volume strength of solution is:
(A) 10 V
(B) 20 V
(C) 30 V
(D) 32 V
Q. 26 Label an oleum sample which has mass fraction of SO_{3} equal to 0.6 :
(A) 115%
(B) 109%
(C) 104.5%
(D) 113.5%
Q. 27 If 50 gm oleum sample rated as 118% is mixed with 18 gm water, then the correct option is
(A) The resulting solution contains 18 gm of water and $118 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$
(B) The resulting solution contains 9 gm water and $59 \mathrm{gmH}_{2} \mathrm{SO}_{4}$
(C) The resulting solution contains only 118 gm pure $\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) The resulting solution contains 68 gm of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$
Q. $28 \quad 12.5 \mathrm{gm}$ of fuming $\mathrm{H}_{2} \mathrm{SO}_{4}$ (labelled as 112%) is mixed with 100 lit water. Molar concentration of H^{+}in resultant solution is :
[Note : Assume that $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissociate completely and there is no change in volume on mixing]
(A) $\frac{2}{700}$
(B) $\frac{2}{350}$
(C) $\frac{3}{350}$
(D) $\frac{3}{700}$
Q. 2920 ml of ' 20 vol' $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is diluted to 80 ml . The final volume strength of solution is -
(A) '80 vol'
(B) '25 vol'
(C) '5 vol'
(D) '8 vol'
Q. 30 Assuming complete precipitation of AgCl , calculate the sum of the molar concentration of all the ions if 2 lit of $2 \mathrm{M} \mathrm{Ag}_{2} \mathrm{SO}_{4}$ is mixed with 4 lit of 1 M NaCl solution is :
(A) 4 M
(B) 2 M
(C) 3 M
(D) 2.5 M
Q. 31 Molarity and Molality of a solute $(\mathrm{M} . \mathrm{wt}=50)$ in aqueous solution is 9 and 18 respectively. What is the density of solution.
(A) $1 \mathrm{~g} / \mathrm{cc}$
(B) $0.95 \mathrm{~g} / \mathrm{cc}$
(C) $1.05 \mathrm{~g} / \mathrm{cc}$
(D) $0.662 \mathrm{~g} / \mathrm{cc}$
Q. 32 The relationship between mole fraction $\left(\mathrm{X}_{\mathrm{A}}\right)$ of the solute $\&$ molality ' m ' of its solution in ammonia would be
(A) $\frac{55.56\left(\mathrm{X}_{\mathrm{A}}\right)}{1-\mathrm{X}_{\mathrm{A}}}=\mathrm{m}$
(B) $\frac{58.82\left(\mathrm{X}_{\mathrm{A}}\right)}{1-\mathrm{X}_{\mathrm{A}}}=\mathrm{m}$
(C) $\frac{58.82\left(1-\mathrm{X}_{\mathrm{A}}\right)}{\mathrm{X}_{\mathrm{A}}}=\mathrm{m}$
(D) $\frac{55.56\left(1-X_{A}\right)}{X_{A}}=m$
Q. 333.0 molal NaOH solution has a density of $1.12 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is-
(A) 2.97
(B) 3
(C) 3.05
(D) 3.5

EXERCISE \# O-II

Q. 1 Statement -1: Molality of pure ethanol is lesser than pure water.

Statement -2 : As density of ethanol is lesser than density of water.

$$
\left[\text { Given : } d_{\text {ethanol }}=0.789 \mathrm{gm} / \mathrm{ml} ; d_{\text {water }}=1 \mathrm{gm} / \mathrm{ml}\right]
$$

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is false, statement-2 is true.
(D) Statement-1 is true, statement-2 is false.
Q. 2 Statement-1: Molarity and molality have almost same value for a very dilute aqueous solution.

Statement-2 : In all very dilute solution, the mass of solvent (in $\mathrm{gm}_{_}$) is equal to the volume of solution (in ml).
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D) Statement- 1 is false, statement- 2 is true.
Q. 3 Statement-1 : Molarity of a solution depends on temperature but molality is independent of temperature. Statement-2 : Molarity depends on volume of solution but molality depends on mass of solvent.
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement- 1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.
Q. 4 Statement-1 : The mass fraction of solute in a solution is always greater than its mole fraction.

Statement-2 : Mole fraction of solvent in an aqueous solution of ethanol must be greater than that of solute.
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.
Q. 5 Statement-1: 0.5 M - aq. NaOH solution is identical to $2 \%(\mathrm{w} / \mathrm{v}) \mathrm{aq}$. NaOH solution.

Statement-2 : Concentration in $\%(\mathrm{w} / \mathrm{v})$ is 4 times the molar concentration for all aqueous solution.
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.
Q. 6 The molar concentration of HCl (aq.) is $10^{-5} \mathrm{M}$. Which of the following statements are correct. $\left(d_{\text {solution }}=1 \mathrm{gm} / \mathrm{cc}\right)$
(A) The mole fraction of $\mathrm{HCl} \cong 1.8 \times 10^{-7}$
(B) The concentration of HCl in ppm is 3.65 ppm
(C) The molality of HCl solution is approximately $10^{-5} \mathrm{~m}$
(D) The $(\mathrm{w} / \mathrm{v}) \%$ of solution is $3.65 \times 10^{-5} \%$
Q. 7 Solution(s) containing 40 gm NaOH is/are
(A) 50 gm of $80 \%(\mathrm{w} / \mathrm{w}) \mathrm{NaOH}$
(B) 50 gm of $80 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaOH}\left[\mathrm{d}_{\text {soln. }}=1.2 \mathrm{gm} / \mathrm{ml}\right]$
(C) 50 gm of $20 \mathrm{M} \mathrm{NaOH}\left[\mathrm{d}_{\text {soln. }}=1 \mathrm{gm} / \mathrm{ml}\right]$
(D) 50 gm of 5 m NaOH
Q. 8 The incorrect statement(s) regarding $2 \mathrm{M} \mathrm{MgCl}_{2}$ aqueous solution is/are $\left(\mathrm{d}_{\text {solution }}=1.09 \mathrm{gm} / \mathrm{ml}\right)$
(A) Molality of Cl^{-}is $\mathbf{4 . 4 4} \mathrm{m}$
(B) Mole fraction of MgCl_{2} is exactly $\mathbf{0 . 0 3 5}$
(C) The conc. of MgCl_{2} is $\mathbf{1 9 \%} \mathbf{w} / \mathbf{v}$
(D) The conc. of MgCl_{2} is $\mathbf{1 9} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{~ p p m}$
Q. 9 A sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution labelled as 56.75 volume has density of $530 \mathrm{gm} / \mathrm{L}$. Mark the correct option(s) representing concentration of same solution in other units. (Solution contains only $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$)
(A) $\mathrm{M}_{\mathrm{H}_{2} \mathrm{O}_{2}}=6$
(B) $\% \frac{\mathrm{w}}{\mathrm{v}}=17$
(C) Mole fraction of $\mathrm{H}_{2} \mathrm{O}_{2}=0.25$
(D) $\mathrm{m}_{\mathrm{H}_{2} \mathrm{O}_{2}}=\frac{1000}{72}$
Q. 10100 mL of $0.06 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 50 mL of $0.06 \mathrm{M} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. After the reaction is complete $\left(\mathrm{CaC}_{2} \mathrm{O}_{4}\right.$ is precipitated)
(A) 0.003 moles of calcium oxalate will get precipitated
(B) $0.003 \mathrm{M} \mathrm{Ca}^{2+}$ will remain in excess
(C) $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is the limiting reagent
(D) Oxalate ion $\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right)$ concentration in final solution is 0.003 M

Comprehension Q. 11 and Q. 12 (2 questions)

2 litre of $9.8 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~d}=1.5 \mathrm{gm} / \mathrm{ml})$ solution is mixed with 3 litre of 1 M KOH solution.
Q. 11 The number of moles $\mathrm{H}_{2} \mathrm{SO}_{4}$ added are
(A) 1
(B) 2
(C) 3
(D) 0.5
Q. 12 The concentration of H^{+}if solution is acidic or concentration of OH^{-}if solution is basic in the final solution is
(A) 0
(B) $\frac{3}{10}$
(C) $\frac{3}{5}$
(D) $\frac{2}{5}$

Comprehension Q. 13 and Q. 14 (2 questions)

$30 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 20 gram SO_{3} to form mixture.
Q. 13 Find mole fraction of SO_{3}.
(A) 0.2
(B) 0.45
(C) 0.6
(D) 0.8
Q. 14 Determine \% labelling of oleum solution.
(A) 104.5
(B) 106
(C) 109
(D) 110

Comprehension Q. 15 and Q.16 (2 questions)

Estimation of halogens :

Carius method : A known mass of compound is heated with conc. HNO_{3} in the presence of AgNO_{3} contained in a hard glass tube known as carius tube in a furnce. C and H are oxidised to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The halogen forms the corresponding AgX . It is filtered, dried, and weighed.
Estimation of sulphur : A known mass of compound is heated with fuming HNO_{3} or sodium peroxide $\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right)$ in the presence of BaCl_{2} solution in Carius tube. Sulphur is oxidised to $\mathrm{H}_{2} \mathrm{SO}_{4}$ and precipitated as BaSO_{4}. It is filerted, dried and weighed.
Q. 150.15 gm of an organic compound gave 0.12 gm of silver bromide by the Carius method. Find the percentage of bromine in the compound. $(\mathrm{Ag}=108, \mathrm{Br}=80)$
(A) 34.0
(B) 46.0
(C) 80.0
(D) 50.0
Q. 160.32 gm of an organic substance when treated by Carius method gave 0.466 gm of BaSO_{4}. Calculate the percentage of sulphur in the compound. $(\mathrm{Ba}=137)$
(A) 10.0
(B) 34.0
(C) 20.0
(D) 30.0

Comprehension Q. 17 and Q. 18 (2 questions)

(d) Estimation of phosphorous :

A known mass of compound is heated with fuming HNO_{3} or sodium peroxide $\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right)$ in Carius tube which converts phosphorous to $\mathrm{H}_{3} \mathrm{PO}_{4}$. Magnesia mixture $\left(\mathrm{MgCl}_{2}+\mathrm{NH}_{4} \mathrm{Cl}\right)$ is then added, which gives the precipitate of magnesium ammonium phosphate $\left(\mathrm{MgNH}_{4} \cdot \mathrm{PO}_{4}\right)$ which on heating gives magnesium pyrophosphate $\left(\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)$, which is weighed.
Q. 170.124 gm of an organic compound containing phosphorus gave 0.222 gm of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ by the usual analysis.

Calculate the percentage of phosphorous in the compound. $(\mathrm{Mg}=24, \mathrm{P}=31)$
(A) 25
(B) 75
(C) 62
(D) 50
Q. 18 An organic compound has 6.2% of phosphorus. On sequence of reaction, the phosphorous present in the 10 gm of organic compound is converted to $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Find the weight of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ formed.
(A) 2.22 gm
(B) 10.0 gm
(C) 4.44 gm
(D) 1.11 gm

Comprehension Q. 19 and Q. 22 (4 questions)

Estimation of nitrogen : There are two methods for the estimation of nitrogen (i) Dumas method and (ii) Kjedahl's method.
i. Dumas method : A known mass of compound is heated with copper oxide (CuO) in an atomsphere of CO_{2}, which gives free nitrogen along with CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{N}_{\mathrm{z}}+(2 \mathrm{x}+\mathrm{y} / 2) \mathrm{CuO} \rightarrow \mathrm{xCO}_{2}+\mathrm{y} / 2\left(\mathrm{H}_{2} \mathrm{O}\right)+\mathrm{z} / 2\left(\mathrm{~N}_{2}\right)+(2 \mathrm{x}+\mathrm{y} / 2) \mathrm{Cu}$.
The gaseous mixture is passed over a heated copper gauze which converts traces of nitrogen oxides formed to N_{2}. The gaseous mixture is collected over an aqueous solution of KOH which absorbs CO_{2}, and nitrogen is collected in the upper part of the graduated tube.
ii. Kjeldahl's method : A known mass of organic compound (0.5 gm) is mixed with $\mathrm{K}_{2} \mathrm{SO}_{4}(10 \mathrm{gm})$ and $\mathrm{CuSO}_{4} \cdot(1.0 \mathrm{gm})$ or a drop of mercury (Hg) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(25 \mathrm{ml})$, and heated in Kjeldahl's flask. CuSO_{4} or Hg acts as a catalyst, while $\mathrm{K}_{2} \mathrm{SO}_{4}$ raises the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The nitrogen in the organic compound is quantitatively converted to ammonium sulphate. The resulting mixture is then distilled with excess of NaOH solution and the NH_{3} evolved is passed into a known but excess volume of standard HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$. The acid left unused is estimated by titration with some standard alkali. The amount of acid used against NH_{3} can thus be known and from this the percentage of nitrogen is calculated.
(a)

$$
\mathrm{C}+\mathrm{H}+\mathrm{S} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\text { conc. }} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}
$$

(b) $\quad \mathrm{N} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\text { conc. }}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(d) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
iii. This method is not applicable to compounds containing N in nitro and azo groups, and N present in the ring (e.g., pyridine) as N of these compounds does not change to $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ (ammonium sulphate) under these reaction condtions.
Q. 190.30 gm of an organic compound gave 82.1 ml of nitrogen collected at 300 K and 775 mm pressure in Dumas method. Calculate the percentage of nitrogen in the compound. (Vapour pressure of water or aqueous tension of water at 300 K is 15 mm .
(A) 31.11
(B) 15.56
(C) 28.0
(D) 31.72
Q. 200.50 gmof an organic compound was treated according to Kjeldahl's method. The ammonia evolved was absorbed in 50 ml of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The residual acid required 60 ml of $\mathrm{M} / 2 \mathrm{NaOH}$ solution. Find the percentage of nitrogen in the compound.
(A) 50
(B) 56
(C) 66
(D) 40
Q. 210.4 gm of an organic compound was treated according to Kjeldahl's method. The ammonia evolved was absorbed in 50 ml of $0.5 \mathrm{M}_{3} \mathrm{PO}_{3}$. The residual acid required $30 \mathrm{mlof} 0.5 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$. Find the percentage of N_{2} in the compound.
(A) 20
(B) 50
(C) 70
(D) 45
Q. 220.002 gm of an organic compound was treated according to Kjeldahl's method. $0.2 \times 10^{-4} \mathrm{molofH}_{2} \mathrm{SO}_{4}$ was required to neutralise NH_{3}. Calculate the percentage of N_{2}.
(A) 50
(B) 28
(C) 70
(D) 18

TABLE TYPE QUESTION

Column-I

(A) 2 M -aqueous

NaOH solution (density $=1.25 \mathrm{gm} / \mathrm{ml}$)
(B) 1.5 m -aqueous

NaOH solution
(density $=1.06 \mathrm{gm} / \mathrm{ml}$)
(C) 0.5 M aqueous

Glucose solution
(density $=1.09 \mathrm{gm} / \mathrm{ml}$)
(D) 1.5 M aqueous

Urea solution
(density $=1.15 \mathrm{gm} / \mathrm{ml}$)

Column-II

(P) 2 mole solute/litre solution
(Q) 1.5 mole solute/litre solution
(R) 0.5 mole solute/litre solution
(S) 1.5 mole solute $/ \mathrm{kg}$ solvent

Column-III

(I) $6 \%(\mathrm{w} / \mathrm{v})$ solution
(II) $8 \%(\mathrm{w} / \mathrm{v})$ solution
(III) $9 \%(\mathrm{w} / \mathrm{v})$ solution
(IV) 9 gm solute per

100 gm solvent
Q. 23 Which of the following is correct match?
(A) $\mathrm{A}-\mathrm{P}$ - II
(B) $\mathrm{B}-\mathrm{Q}-\mathrm{I}$
(C) $\mathrm{C}-\mathrm{R}$ - IV
(D) $\mathrm{D}-\mathrm{S}-\mathrm{III}$
Q. 24 Which of the following is correct match ?
(A) $\mathrm{A}-\mathrm{P}$ - II
(B) $\mathrm{B}-\mathrm{S}-\mathrm{I}$
(C) $\mathrm{C}-\mathrm{R}-\mathrm{I}$
(D) $\mathrm{D}-\mathrm{Q}-\mathrm{I}$
Q. 25 Which of the following is correct match ?
(A) A - Q - III
(B) $\mathrm{B}-\mathrm{Q}-\mathrm{III}$
(C) $\mathrm{C}-\mathrm{Q}-\mathrm{III}$
(D) $\mathrm{D}-\mathrm{Q}-\mathrm{III}$

MATCH THE COLUMN :

Q. 26 Match the column-

Column-I

(Concentration of aqueous solution)
(A) 2 M NaOH solution
(B) $8 \%\left(\frac{\mathrm{w}}{\mathrm{V}}\right) \mathrm{KOH}$ solution
(C) $25 \%\left(\frac{\mathrm{w}}{\mathrm{W}}\right) \mathrm{CaCO}_{3}$ solution
(D) $\quad \mathrm{X}_{\mathrm{C}_{3} \mathrm{H}^{2} \text { OH }}=\frac{1}{11}$
(S) 30 gm solute in 100 ml solution
(T) 1 mole solute in 400 gm solution
Q. 27 Match the column:

Column I

(A) $20 \mathrm{~V} \mathrm{H}_{2} \mathrm{O}_{2}$
(B) $24.5 \% \mathrm{w} / \mathrm{v} \mathrm{H}_{2} \mathrm{SO}_{4}$
(C) Pure water
(D) $5 \% \mathrm{w} / \mathrm{w} \mathrm{NaOH}\left(\mathrm{d}_{\text {solution }}=1.2 \mathrm{gm} / \mathrm{ml}\right)$

Column II

(P) $\quad 2.5 \mathrm{M}$
(Q) $\quad 1.76 \mathrm{M}$
(R) $\quad 1.5 \mathrm{M}$
(S) $\quad 55.5 \mathrm{M}$

Column-II

(P) $\mathrm{M}=2$
(Q) $10 \% \mathrm{w} / \mathrm{w}$ solution
(R) $12 \% \mathrm{w} / \mathrm{v}$ solution
(C) $\mathrm{X}_{\mathrm{NH}_{2} \mathrm{CONH}_{2}}=1 / 31$ (aqueous solution)
(D) $19.6 \%(\mathrm{w} / \mathrm{v}) \mathrm{H}_{2} \mathrm{SO}_{4}$ solution \rightarrow
$\left(\mathrm{d}_{\text {solution }}=1.2 \mathrm{~g} / \mathrm{mL}\right)$
(S) $\mathrm{m}=1.85$
(T) $\mathrm{m}=0.617$

EXERCISE : J-MAINS

1. 6.02×10^{21} molecules of urea are present in 100 ml of its solution. The concentration of urea solution is -
[AIEEE-2004]
(1) 0.001 M
(2) 0.01 M
(3) 0.02 M
(4) 0.1 M
2. A 5.2 molal aqueous solution of methyl alcohol, $\mathrm{CH}_{3} \mathrm{OH}$, is supplied. What is the mole fraction of methyl alcohol in the solution?
[AIEEE-2011]
(1) 0.086
(2) 0.050
(3) 0.100
(4) 0.190
3. The concentrated sulphuric acid that is peddled commercially is $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight. If the density of this commerical acid is $1.834 \mathrm{~g} \mathrm{~cm}^{-3}$, the molarity of this solution is :-
[JEE-(Main)-2012]
(1) 17.8 M
(2) 15.7 M
(3) 10.5 M
(4) 12.0 M
4. The density of a solution prepared by dissolving 120 g of urea (mol. mass $=60 \mathrm{u}$) in 1000 g of water is $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity of this solution is
[JEE-(Main)-2012]
(1) 2.05 M
(2) 0.50 M
(3) 1.78 M
(4) 1.02 M
5. 10 mL of $2(\mathrm{M}) \mathrm{NaOH}$ solution is added to 200 mL of $0.5(\mathrm{M})$ of NaOH solution. What is the final concentration?
[JEE(Main-online)-2013]
(1) 0.57 M
(2) 5.7 M
(3) 11.4 M
(4) 1.14 M
6. The density of 3 M solution of sodium chloride is $1.252 \mathrm{~g} \mathrm{~mL}^{-1}$. The molality of the solution will be (molar mass, $\mathrm{NaCl}=58.5 \mathrm{~g} \mathrm{~mol}^{-1}$)
[JEE(Main-online)-2013]
(1) 2.18 m
(2) 3.00 m
(3) 2.60 m
(4) 2.79 m
7. The amount of BaSO_{4} formed upon mixing 100 mL of $20.8 \% \mathrm{BaCl}_{2}$ solution with 50 mL of $9.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution will be :
[JEE(Main-online)-2014]
($\mathrm{Ba}=137, \mathrm{Cl}=35.5, \mathrm{~S}=32, \mathrm{H}=1$ and $\mathrm{O}=16$)
(1) 33.2 g
(2) 11.65 g
(3) 23.3 g
(4) 30.6 g
8. For the estimation of nitrogen, 1.4 g of an organic compound was digested by Kjeldahl method and the evolved ammonia was absorbed in 60 mL of $\frac{\mathrm{M}}{10}$ sulphuric acid. The unreacted acid required 20 mL of $\frac{\mathrm{M}}{10}$ sodium hydroxide for complete neutralizaton. The percentage of nitrogen in the compound is :
[JEE(Main-online)-2014]
(1) 3%
(2) 5%
(3) 6%
(4) 10%

EXERCISE \# J-ADVANCE

Q. 1 Calculate the molarity of pure water using its density to be $1000 \mathrm{~kg} \mathrm{~m}^{-3}$.
[JEE'2003]
Q. 2 Dissolving 120 g of urea (mol. wt. 60) in 1000 g of water gave a solution of density $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is
(A) 1.78 M
(B) 2.00 M
(C) 2.05 M
(D) 2.22 M
[JEE 2011]
Q. 3 A compound $\mathbf{H}_{2} \mathbf{X}$ with molar weight of 80 g is dissolved in a solvent having density of $0.4 \mathrm{~g} / \mathrm{ml}$, Assuming no change in volume upon dissolution, the molality of a 3.2 molar solution is.
[JEE 2014]

ANSWER-KEY

EXERCISE \# S-I

Q. 1	(a) 0.5 M , (b) 0.5 M , (c) 0.2 M	Q. $2 \quad 1.3 \mathrm{M}$	Q. 3	2.4M
Q. 4	16.66\%	Q. 53.0×10^{-4}	Q. 6	1.4
Q. 7	$\mathbf{0 . 1 5}$ M	Q. 80.06 M	Q. 9	$1.25 \mathrm{gm} / \mathrm{ml}$
Q. 10	45.45\%	Q. $112.5 \times 10^{-3} \mathrm{M}$	Q. 12	0.01 M
Q. 13	13 gm	Q. 14 0.6667, 0.6667	Q. 14	(1)
Q. 16	1.4 litre	Q. 17175 ml	Q. 18	2 M
Q. 19	1.5 ml	Q. 20 (0.8)	Q. 21	0.05
Q. 22	0.204 M	Q. 235.56 ml	Q. 24	(0.15)
Q. 25	(1.5)			
Q. 26	(i) 20 gm ; (ii) 35.4 gm ; (iii) $\mathrm{H}_{2} \mathrm{SO}_{4}=35.4 \mathrm{gm}, \mathrm{H}_{2} \mathrm{O}=34.6 \mathrm{gm}$			
Q. 27	(a) 0.169; (b) 118%	Q. 2845.4 V	Q. 29	(6)
Q. 30	(56)			

EXERCISE \# S-II

Q. 1	Ans.250	Q. 2	Ans. 25 ml	Q. 3	Ans. 5
Q. 4	Ans. 0.5	Q. 5	Ans. 60	Q. 6	Ans. 0.05
Q. 7	Ans. 3.33 m	Q. 8	Ans.(12)	Q. 9	Ans.(2)

Q. 10 Ans. (2)

EXERCISE \# O-I

Q. 1	Ans.(A)	Q. 2 Ans.(C)	Q. 3	Ans.(D)
Q. 4	Ans.(B)	Q. 5 Ans.(C)	Q. 6	Ans.(A)
Q. 7	Ans.(B)	Q. 8 Ans.(D)	Q. 9	Ans.(B)
Q. 10	Ans.(B)	Q. 11 Ans.(D)	Q. 12	Ans.(D)
Q. 13	Ans.(C)	Q. 14 Ans.(B)	Q. 15	Ans.(C)
Q. 16	Ans.(D)	Q. 17 Ans.(B)	Q. 18	Ans.(C)
Q. 19	Ans.(A)	Q. 20 Ans. (A)	Q. 21	Ans.(C)
Q.22.	Ans.(C)	Q. 23 Ans.(C)	Q. 24	Ans.(A)
Q. 25	Ans.(A)	Q. 26 Ans.(D)	Q. 27	Ans.(B)
Q. 28	Ans.(A)	Q. 29 Ans.(C)	Q. 30	Ans.(B)
Q. 31	Ans.(B)	Q. 32 Ans.(B)		
Q. 33	Ans.(B)			

EXERCISE \# O-II

Q. 1	Ans.(B)	Q. 2	Ans. (C)	Q. 3	Ans. (A)
Q. 4	Ans. (D)	Q. 5	Ans. (C)	Q. 6	Ans. (A,C,D)
Q. 7	Ans.(A,C)	Q. 8	Ans.(B,D)	Q. 9	Ans.(B,D)
Q. 10	Ans.(A,C)	Q. 11	Ans.(C)	Q. 12	Ans.(C)
Q. 13	Ans.(B)	Q. 14	Ans.(C)	Q. 15	Ans.(A)
Q. 16	Ans.(C)	Q. 17	Ans.(D)	Q. 18	Ans.(A)
Q. 19	Ans.(A)	Q. 20	Ans.(B)	Q. 21	Ans.(C)
Q. 22	Ans.(B)	Q. 23	Ans.(A)	Q. 24	Ans.(B)
Q. 25	Ans.(D)				
Q. 26 Ans.(A)-P, R ; (B) - P, R ; (C) - Q, S, T ; (D) -					
Q. 27 Ans.(A)-Q ; (B) - P ; (C) - S ; (D)					
Q.28. Ans.(A) - P,Q,R,S ; (B) - Q,R,T ; (C) - Q,S ; (D) - P					

EXERCISE \# J-MAINS

| 1. | Ans.(4) | 2. | Ans.(1) | 3. | Ans.(1) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4. | Ans.(1) | 5. | Ans.(1) | 6. | Ans.(4) |
| 7. | Ans.(2) | 8. | Ans.(4) | | |

EXERCISE \# J-ADVANCE
Q. 1 Ans. $55.5 \mathrm{~mol} \mathrm{~L}^{-1} \quad$ Q. 2 Ans.(C) Q. 3 Ans.(8)

