AREA UNDER CURVES

Excerise-1: Single Choice Problems

1. The area enclosed by the curve $[x+3 y]=[x-2]$ where $x \in[3,4]$ is : (where [.] denotes greatest integer function.)
(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) 1
2. The area of region enclosed by the curves $y=x^{2}$ and $y=\sqrt{|x|}$ is :
(a) $\frac{1}{3}$
(b) $\frac{2}{3}$
(c) $\frac{4}{3}$
(d) $\frac{16}{3}$
3. Area enclosed by the figure described by the equation $x^{4}+1=2 x^{2}+y^{2}$, is :
(a) 2
(b) $\frac{16}{3}$
(c) $\frac{8}{3}$
(d) $\frac{4}{3}$
4. The area defined by $|y| \leq e^{-|x|}-\frac{1}{2}$ in Cartesian co-ordinate system, is :
(a) $(4-2 \operatorname{In} 2)$
(b) $(4-\operatorname{In} 2)$
(c) $(2-\operatorname{In} 2)$
(d) $(2-2 \operatorname{In} 2)$
5. For each positive integer $n>1 ; A_{n}$ represents the area of the region restricted to the following to inequalities: $\frac{x^{2}}{n^{2}}+y^{2} \leq 1$ and $x^{2}+\frac{y^{2}}{n^{2}} \leq 1$. Find $\lim _{n \rightarrow \infty} A_{n}$.
(a) 4
(b) 1
(c) 2
(d) 3
6. The ratio in which the area bounded by curves $y^{2}=12 x$ and $x^{2}=12 y$ is divided by the line $\mathrm{x}=3$ is :
(a) $7: 15$
(b) $15: 49$
(c) $1: 3$
(d) $17: 49$
7. The value of positive real parameter ' a ' such that area of region bounded by parabolas $y=x-a x^{2}$,ay $=x^{2}$ attains its maximum value is equal to :
(a) $\frac{1}{2}$
(b) 2
(c) $\frac{1}{3}$
(d) 1
8. For $0<r<1$, let n_{r} denotes the line that is normal to the curve $y=x^{r}$ at the point $(1,1)$. Let S_{r} denotes the region in the first quadrant bounded by the curve $y=x^{r}$; the x -axis and the line n_{r}. Then the value of r that minimizes the area of S_{r} is :
(a) $\frac{1}{\sqrt{2}}$
(b) $\sqrt{2}-1$
(c) $\frac{\sqrt{2}-1}{2}$
(d) $\sqrt{2}-\frac{1}{2}$
9. The area bounded by $|x|=1-y^{2}$ and $|x|+|y|=1$ is :
(a) $\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) 1
10. Point A lies on curve $\mathrm{y}=\mathrm{e}^{-\mathrm{x}^{2}}$ and has the coordinate $\left(\mathrm{x}, \mathrm{e}^{-\mathrm{x}^{2}}\right)$ where $\mathrm{x}>0$. Point B has coordinates ($x, 0$). If ' O ' is the origin, then the maximum area of $\triangle A O B$ is :
(a) $\frac{1}{\sqrt{8 e}}$
(b) $\frac{1}{\sqrt{4 \mathrm{e}}}$
(c) $\frac{1}{\sqrt{2 e}}$
(d) $\frac{1}{\sqrt{\text { e }}}$
11. The area enclosed between the curves $y=a x^{2}$ and $x=a y^{2}(a>0)$ is 1 sq. unit, then the value of a is :
(a) $\frac{1}{\sqrt{3}}$
(b) $\frac{1}{2}$
(c) 1
(d) $\frac{1}{3}$
12. Let $f(x)=x^{3}-3 x^{2}+3 x+1$ and gbe the inverse of it ; then area bounded by the curve $\mathrm{y}=\mathrm{g}(\mathrm{x})$ with x -axis between $\mathrm{x}=1$ to $\mathrm{x}=2$ is (in square units) :
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{3}{4}$
(d) 1
13. Area bounded by $x^{2} y^{2}+y^{4}-x^{2}-5 y^{2}+4=0$ is equal to :
(a) $\frac{4 \pi}{3}+\sqrt{2}$
(b) $\frac{4 \pi}{3}-\sqrt{2}$
(c) $\frac{4 \pi}{3}+2 \sqrt{3}$
(d) None of these
14. Let $f: R^{+} \rightarrow R^{+}$is an invertible function such that $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>$ $0 \forall x \in[1,5]$. If $f(1)=1$ and $f(5)=5$ and area bounded by $y=f(x), x-$ axis, $x=$ 1 and $x=5$ is 8 sq. units. Then the area bounded by $y=f^{(-1)}(x), x-$ axis, $x=$ 1 and $x=5$ is :
(a) 12
(b) 16
(c) 18
(d) 20
15. A particle centered at origin and having radius π units is divided by the curve $y=\sin x$ in two parts. Then area of the upper part equals to :
(a) $\frac{\pi^{2}}{2}$
(b) $\frac{\pi^{3}}{4}$
(c) $\frac{\pi^{3}}{2}$
(d) $\frac{\pi^{3}}{8}$
16. The area of the loop formed by $y^{2}=x\left(1-x^{3}\right) d x$ is:
(a) $\int_{0}^{1} \sqrt{x-x^{4}} d x$
(b) $2 \int_{0}^{1} \sqrt{x-x^{4}} d x$
(c) $\int_{-1}^{1} \sqrt{x-x^{4}} d x$
(d) $4 \int_{0}^{1 / 2} \sqrt{x-x^{4}} d x$
17. If $f(x)=\min \left[x^{2}, \sin \frac{x}{2},(x-2 \pi)^{2}\right]$, the area bounded by the curve $y=f(x)$, x-axis, $x=0$ and $x=2 \pi$ is given by
(Note : x_{1} is the point of intersection of the curves x^{2} and $\sin \frac{x}{2} ; x_{2}$ is the point of intersection of the curves $\sin \frac{x}{2}$ and $\left.(x-2 \pi)\right)$
(a) $\int_{0}^{x_{1}}\left(\sin \frac{x}{2}\right) d x+\int_{x_{1}}^{\pi} x^{2} d x+\int_{\pi}^{x_{2}}(x-2 \pi)^{2} d x+\int_{x_{2}}^{2 \pi}\left(\sin \frac{x}{2}\right) d x$
(b) $\int_{0}^{x_{1}} x^{2} d x+\int_{x_{1}}^{x_{2}}\left(\sin \frac{x}{2}\right) d x+\int_{x_{2}}^{2 \pi}(x-2 \pi)^{2} d x$, where $\quad x_{1} \in\left(0, \frac{\pi}{3}\right) \quad$ and $x_{2} \in\left(\frac{5 \pi}{3}, 2 \pi\right)$
(c) $\int_{0}^{x_{1}} x^{2} d x+\int_{x_{1}}^{x_{2}} \sin \left(\frac{x}{2}\right) d x+\int_{x_{2}}^{2 \pi}(x-2 \pi)^{2} d x$, where $\quad x_{1} \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right) \quad$ and $x_{2} \in\left(\frac{3 \pi}{2}, 2 \pi\right)$
(d) $\int_{0}^{x_{1}} x^{2} d x+\int_{x_{1}}^{x_{2}} \sin \left(\frac{x}{2}\right) d x+\int_{x_{2}}^{2 \pi}(x-2 \pi)^{2} d x$, where $\quad x_{1} \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right) \quad$ and $x_{2} \in(\pi, 2 \pi)$
18. The area enclosed between the curves $|x|\left||y| \geq 2\right.$ and $y^{2}=4\left(1-\frac{x^{2}}{9}\right)$ is :
(a) $(6 \pi-4)$ sq.units
(b) $(6 \pi-8)$ sq.units
(c) $(3 \pi-4)$ sq.units
(d) $(3 \pi-2)$ sq.units

Answer

1.	$(\mathrm{~b})$	2.	(b)	3.	(c)	4.	(d)	5.	(a)	6.	(b)	7.	(d)	8.	(b)	9.	(c)	10.	(a)
11.	(d)	12.	(b)	13.	(c)	14.	(b)	15.	(c)	16.	(b)	17.	(b)	18.	(b)				

Excerise-2: One or More than One Answer is/are Correct

1. Let $\mathrm{f}(\mathrm{x})$ be a polynomial function of degree 3 where $\mathrm{a}<\mathrm{b}<\mathrm{c}$ and $\mathrm{f}(\mathrm{a})=$ $f(b)=f(c)$. If the graph of $f(x)$ is as shown, which of the following statements are INCORRECT ? (where $c>|a|$)
(a) $\left.\int_{a}^{c} f 9 x\right) d x=\int_{b}^{c} f(x) d x+\int_{a}^{b} f(x) d x$
(b) $\int_{\mathrm{a}}^{\mathrm{c}} \mathrm{f}(\mathrm{x}) \mathrm{dx}<0$
(c) $\int_{a}^{b} f(x) d x<\int_{c}^{b} f(x) d x$
(d) $\frac{1}{b-a} \int_{a}^{b} f(x) d x>\frac{1}{c-b} \int_{b}^{c} f(x) d x$
2. $\mathrm{T}_{\mathrm{n}}=\sum_{\mathrm{r}=2 \mathrm{n}}^{3 \mathrm{n}-1} \frac{\mathrm{r}}{\mathrm{r}^{2}+\mathrm{n}^{2}}, \mathrm{~S}_{\mathrm{n}}=\sum_{\mathrm{r}=2 \mathrm{n}+1}^{3 \mathrm{n}} \frac{\mathrm{r}}{\mathrm{r}^{2}+\mathrm{n}^{2}}$, then $\forall \mathrm{n} \in\{1,2,3, \ldots\}$:
(a) $\mathrm{T}_{\mathrm{n}}>\frac{1}{2} \operatorname{In} 2$
(b) $\mathrm{S}_{\mathrm{n}}<\frac{1}{2} \operatorname{In} 2$
(c) $\mathrm{T}_{\mathrm{n}}<\frac{1}{2} \operatorname{In} 2$
(d) $\mathrm{S}_{\mathrm{n}}>\frac{1}{2} \operatorname{In} 2$
3. If a curve $y=a \sqrt{x}+b x$ passes through point $(1,2)$ and the area bounded by curve, line $x=4$ and x - axis is 8 , then :
(a) $a=3$
(b) $\mathrm{b}=3$
(c) $a=-3$
(d) $b=-1$
4. Area enclosed by the curves $y=x^{2}+1$ and a normal drawn to it with gradient -1 ; is equal to :
(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) $\frac{3}{4}$
(d) $\frac{4}{3}$

Answers

1.	(b, c, d)	2.	(a, b)	3.	(a, d)	4.	(d)

