(Paper - 02)
 SOLUTIONS TO JEE(ADVANCED)-2021 PHYSICS

SECTION 1

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MOER THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Mark : +4 If only (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.
*Q. $1 \quad$ One end of a horizontal uniform beam of weight W and length L is hinged on a vertical wall at point O and its other end is supported by a light inextensible rope. The other end of the rope is fixed at point Q , at a height L above the hinge at point O . A block of weight $\alpha \mathrm{W}$ is attached at the point P of the beam, as shown in the figure (not to scale). The rope can sustain a maximum tension of $(2 \sqrt{2}) \mathrm{W}$. Which of the following statement(s) is(are) correct?

(A) The vertical component of reaction force at O does not depend on α
(B) The horizontal component of reaction force at O is equal to W for $\alpha=0.5$
(C) The tension in the rope is 2 W for $\alpha=0.5$
(D) The rope breaks if $\alpha>1.5$

Sol. A, B, D
Free body diagram of rod

$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{R}_{1}=\mathrm{T} \cos 45^{\circ}$
$\mathrm{R}_{1}=\frac{\mathrm{T}}{\sqrt{2}}$

$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{R}_{2}+\mathrm{T} \sin 45^{\circ}=\mathrm{W}+\alpha \mathrm{W}$
$\mathrm{R}_{2}+\frac{\mathrm{T}}{\sqrt{2}}=\mathrm{W}(1+\alpha)$
$\Sigma \tau_{0}=0$
$\mathrm{W} \frac{\mathrm{L}}{2}+\alpha \mathrm{WL}=\frac{\mathrm{T}}{\sqrt{2}} \mathrm{~L}$
$\mathrm{T}=\sqrt{2} \mathrm{~W}\left[\alpha+\frac{1}{2}\right]$
From (ii) and (iii)
$\mathrm{R}_{2}+\mathrm{W}\left[\alpha+\frac{1}{2}\right]=\mathrm{W}(1+\alpha)$
$\mathrm{R}_{2}=\frac{\mathrm{W}}{2}$
Hence, option (A) is correct.

From (i) and (iii)
$\mathrm{R}_{1}=\mathrm{W}\left[\alpha+\frac{1}{2}\right]$
$\alpha=0.5, \mathrm{R}_{1}=\mathrm{W}$
Hence, option (B) is correct.
From equation (iii) if $\alpha=0.5$
$\mathrm{T}=\sqrt{2} \mathrm{~W}$
$\mathrm{T}_{\text {max }}=2 \sqrt{2} \mathrm{~W}$
For rope to break
$\mathrm{T}>2 \sqrt{2} \mathrm{~W}$
$\sqrt{2} \mathrm{~W}\left[\alpha+\frac{1}{2}\right]>2 \sqrt{2} \mathrm{~W}$
$\alpha>\frac{3}{2}$
Hence, option (D) is correct.
*Q. 2 A source, approaching with speed u towards the open end of a stationary pipe of length L, is emitting a sound of frequency f_{s}. The farther end of the pipe is closed. The speed of sound in air is v and f_{0} is the fundamental frequency of the pipe. For which of the following combination(s) of u and f_{S}, will the sound reaching the pipe lead to a resonance?
(A) $u=0.8 v$ and $f_{s}=f_{0}$
(B) $\mathrm{u}=0.8 \mathrm{v}$ and $\mathrm{f}_{\mathrm{s}}=2 \mathrm{f}_{0}$
(C) $u=0.8 v$ and $f_{s}=0.5 f_{0}$
(D) $u=0.5 v$ and $f_{s}=1.5 f_{0}$

Sol. A, D
Natural frequency of closed pipe
$\mathrm{f}=(2 \mathrm{n}+1) \mathrm{f}_{0}$
f_{0} is fundamental frequency
$\mathrm{n}=0,1,2$,
frequency of source received by pipe
$f^{\prime}=f_{s}\left[\frac{v-0}{v-u}\right]$

For resonance
$\mathrm{f}^{\prime}=\mathrm{f}$
$\mathrm{f}_{\mathrm{s}}\left[\frac{\mathrm{v}}{\mathrm{v}-\mathrm{u}}\right]=(2 \mathrm{n}+1) \mathrm{f}_{0}$
If $u=0.8 v \quad f_{s}=f_{0}$
$\mathrm{f}^{\prime}=\frac{\mathrm{v}}{0.2 \mathrm{v}} \mathrm{f}_{0}=5 \mathrm{f}_{0}$
for $n=2$ pipe can be in resonance
Hence, option (A) is correct.
If $u=0.8 v \quad f_{s}=2 f_{0}$
$\mathrm{f}^{\prime}=\frac{\mathrm{v}}{0.2 \mathrm{v}} \times 2 \mathrm{f}_{0}=10 \mathrm{f}_{0}$
If $u=0.8 \mathrm{v}, \mathrm{f}_{\mathrm{S}}=0.5 \mathrm{f}_{0}$
$\mathrm{f}^{\prime}=\frac{\mathrm{v}}{0.2 \mathrm{v}} \times 0.5 \mathrm{f}_{0}=2.5 \mathrm{f}_{0}$
Not possible
If $u=0.5 \mathrm{v}, \mathrm{f}_{\mathrm{S}}=1.5 \mathrm{f}_{0}$
$\mathrm{f}^{\prime}=\frac{\mathrm{v}}{0.5 \mathrm{v}} \times 1.5 \mathrm{f}_{0}=3 \mathrm{f}_{0}$
for $\mathrm{n}=1 \mathrm{f}=3 \mathrm{f}_{0}$
pipe can be in resonance
Hence, option (D) is correct.
Q. 3 For a prism of prism angle $\theta=60^{\circ}$, the refractive indices of the left half and the right half are, respectively, n_{1} and $\mathrm{n}_{2}\left(\mathrm{n}_{2} \geq \mathrm{n}_{1}\right)$ as shown in the figure. The angle of incidence i is chosen such that the incident light rays will have minimum deviation if $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}=1.5$. For the case of unequal refractive indices, $\mathrm{n}_{1}=\mathrm{n}$ and $\mathrm{n}_{2}=$ $\mathrm{n}+\Delta \mathrm{n}$ (where $\Delta \mathrm{n} \ll \mathrm{n}$), the angle of emergence $e=i+\Delta e$. Which of the following statement(s) is(are) correct?

(A) The value of Δe (in radians) is greater than that of $\Delta \mathrm{n}$
(B) Δe is proportional to $\Delta \mathrm{n}$
(C) Δe lies between 2.0 and 3.0 milliradians, if $\Delta \mathrm{n}=2.8 \times 10^{-3}$
(C) Δe lies between 1.0 and 1.6 milliradians, if $\Delta \mathrm{n}=2.8 \times 10^{-3}$

Sol. B, C
Diagram at minimum deviation for $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}$
$\mathrm{n}=1.5$
$r_{1}=r_{2}=\theta / 2=30^{\circ}$
for face AQ
$n \sin r_{2}=\sin \mathrm{e}$
$1.5 \sin 30^{\circ}=\frac{3}{2} \times \frac{1}{2}=\sin \mathrm{e}$
$\sin \mathrm{e}=\frac{3}{4}, \quad \cos \mathrm{e}=\frac{\sqrt{7}}{4}$
When n_{2} is given small variation there will be no change in path of light ray inside prism. As deviation on face AC is zero.
So, $\mathrm{r}_{2}=30^{\circ}$

Now for face AQ
$\mathrm{n}_{2} \sin 30^{\circ}=\sin \mathrm{e}$
for small change in n_{2} change in e is given by
$\mathrm{dn}_{2} \sin 30^{\circ}=\cos \mathrm{ede}$
or $\mathrm{dn}_{2}=\Delta \mathrm{n} \quad \mathrm{de}=\Delta \mathrm{e}$
$\Delta \mathrm{n} \sin 30^{\circ}=\cos \mathrm{e} \Delta \mathrm{e}$
$\Delta \mathrm{n} \frac{1}{2}=\frac{\sqrt{7}}{4} \Delta \mathrm{e}$
$\Delta \mathrm{n}=\frac{\sqrt{7}}{2} \Delta \mathrm{e} \quad \ldots$ (i) $\Delta \mathrm{n}>\Delta \mathrm{e}$
$\Delta \mathrm{n} \propto \Delta \mathrm{e}$
Hence, option (B) is correct.
$\Delta \mathrm{e}=\frac{2.8 \times 10^{-3} \times 2}{\sqrt{7}}$
Hence, option (C) is correct.
Q. $4 \quad$ A physical quantity \vec{S} is defined as $\vec{S}=(\vec{E} \times \vec{B}) / \mu_{0}$, where \vec{E} is electric field, \vec{B} is magnetic field and μ_{0} is the permeability of free space. The dimensions of \vec{S} are the same as the dimensions of which of the following quantity(ies)?
(A) $\frac{\text { Energy }}{\text { Charge } \times \text { Current }}$
(B) $\frac{\text { Force }}{\text { Lenght } \times \text { Time }}$
(C) $\frac{\text { Energy }}{\text { Volume }}$
(D) $\frac{\text { Power }}{\text { Area }}$

Sol. B, D
$\vec{S}=\vec{E} \times \vec{B}$
Method - 1:
\vec{S} is pointing vector which is defined as energy flowing per unit area in unit time.
S.I. unit of S is Watt $/ \mathrm{m}^{2}$.

Method 2:

$$
\because \quad \mathrm{B}=\mu_{0} \mathrm{ni} \Rightarrow \frac{1}{\mu_{0}}=\frac{\mathrm{ni}}{\mathrm{~B}}
$$

$S=\frac{1}{\mu_{0}} E B \cos \theta=n i E \cos \theta$
S.I. unit of $S=\frac{1}{\text { meter }} \times \frac{\mathrm{q}}{\text { time }} \times \frac{\text { Force }}{q}=\frac{\text { Force }}{\text { meter }- \text { time }}$
Q. $5 \quad$ A heavy nucleus N , at rest, undergoes fission $\mathrm{N} \rightarrow \mathrm{P}+\mathrm{Q}$, where P and Q are two lighter nuclei. Let $\delta=\mathrm{M}_{\mathrm{N}}$ $-M_{P}-M_{Q}$, where M_{P}, M_{Q} and M_{N} are the masses of P, Q and N, respectively. E_{P} and E_{Q} are the kinetic energies of P and Q, respectively. The speeds of P and Q are v_{P} and v_{Q}, respectively. If c is the speed of light, which of the following statement(s) is(are) correct ?
(A) $E_{P}+E_{Q}=c^{2} \delta$
(B) $\mathrm{E}_{\mathrm{P}}=\left(\frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{Q}}}\right) \mathrm{c}^{2} \delta$
(C) $\frac{\mathrm{v}_{\mathrm{P}}}{\mathrm{v}_{\mathrm{Q}}}=\frac{\mathrm{M}_{\mathrm{Q}}}{\mathrm{M}_{\mathrm{P}}}$
(D) The magnitude of momentum for P as well as Q is $\mathrm{c} \sqrt{2 \mu \delta}$, where $\mu=\frac{\mathrm{M}_{\mathrm{P}} \mathrm{M}_{\mathrm{Q}}}{\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{Q}}\right)}$

Sol. A, C, D
Energy released during process
$\mathrm{Q}=\delta \mathrm{c}^{2}$
\because momentum is conserved in process.
$\Rightarrow \quad 0=\mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}-\mathrm{m}_{\mathrm{Q} .} \mathrm{v}_{\mathrm{Q}}$
$\Rightarrow \frac{\mathrm{v}_{\mathrm{P}}}{\mathrm{v}_{\mathrm{Q}}}=\frac{\mathrm{m}_{\mathrm{Q}}}{\mathrm{m}_{\mathrm{P}}}$
$E_{P}=\frac{1}{2} m_{P} v_{P}^{2}$
$\mathrm{E}_{\mathrm{Q}}=\frac{1}{2} \mathrm{~m}_{\mathrm{Q}} \mathrm{v}_{\mathrm{Q}}^{2}$
$\Rightarrow \frac{\mathrm{E}_{\mathrm{P}}}{\mathrm{E}_{\mathrm{Q}}}=\frac{\mathrm{m}_{\mathrm{Q}}}{\mathrm{m}_{\mathrm{P}}}$
Solving (1) and (3),
$E_{P}=\frac{m_{Q}}{m_{P}+m_{Q}} \delta c^{2}$
$\mathrm{E}_{\mathrm{Q}}=\frac{\mathrm{m}_{\mathrm{P}}}{\mathrm{m}_{\mathrm{P}}+\mathrm{m}_{\mathrm{Q}}} \delta \mathrm{c}^{2}$
Momentum $\mathrm{P}=\sqrt{2 \mathrm{~m}_{\mathrm{P}} \mathrm{E}_{\mathrm{P}}}=\sqrt{2 \mathrm{~m}_{\mathrm{Q}} \mathrm{E}_{\mathrm{Q}}}$
$=\sqrt{2 \mathrm{~m}_{\mathrm{P}} \frac{\mathrm{m}_{\mathrm{Q}}}{\mathrm{m}_{\mathrm{P}}+\mathrm{m}_{\mathrm{Q}}} . \delta \mathrm{c}^{2}}=\mathrm{c} \sqrt{\frac{2 \mathrm{~m}_{\mathrm{P}} \mathrm{m}_{\mathrm{Q}}}{\mathrm{m}_{\mathrm{P}}+\mathrm{m}_{\mathrm{Q}}} . \delta}$
Q. 6 Two concentric circular loops, one of radius R and the other of radius 2 R , lie in the xy -plane with the origin as their common centre, as shown in the figure. The smaller loop carries current I_{1} in the anti-clockwise direction and the larger loop carries current I_{2} in the clock wise direction, with $I_{2}>2 I_{1} . \vec{B}(x, y)$ denotes the magnetic field at a point (x, y) in the $x y$-plane. Which of the following statement(s) is(are) correct?

(A) $\vec{B}(x, y)$ is perpendicular to the xy-plane at any point in the plane
(B) $|\vec{B}(x, y)|$ depends on x and y only through the radial distance $r=\sqrt{x^{2}+y^{2}}$
(C) $|\overrightarrow{\mathrm{B}}(\mathrm{x}, \mathrm{y})|$ is non-zero at all points for $\mathrm{r}<\mathrm{R}$
(D) $\overrightarrow{\mathrm{B}}(\mathrm{x}, \mathrm{y})$ points normally outward from the xy -plane for all the points between the two loops

Sol. A, B
Consider a circular loop of radius r in $x-y$ plane and having centre at origin
$\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} \ell}=0$
$\mathrm{B} \oint \mathrm{d} \ell \cos \theta=0$
$\because \quad B \neq 0$
for given r
$\Rightarrow \cos \theta=0$
$\theta=90^{\circ}$

Here $\mathrm{d} \ell$ is in xy plane $\Rightarrow \mathrm{B}$ is normal to plane (B can't be in xy plane as its magnetic lines would have been in radial direction)
Also, for given r , B must be same in magnitude for all points on loop of radius r .
At centre $B=\left(\frac{\mu_{0} i_{1}}{2 R}-\frac{\mu_{0} i_{2}}{4 R}\right)$
(inwards)
For point P, Let field of inner loop increases x_{1} times and that of outer loop increases X_{2} times
\Rightarrow magnetic field at P
$B_{P}=\left(x_{1} \frac{\mu_{0} i_{1}}{2 R}-x_{2} \frac{\mu_{0_{0}} i_{2}}{4 R}\right)$
For $\mathrm{B}_{\mathrm{P}}=0, \mathrm{i}_{2}=\left(\frac{\mathrm{x}_{1}}{\mathrm{x}_{2}}\right) \cdot\left(2 \mathrm{i}_{1}\right)$
$\because \quad \mathrm{B}$ changes more rapidly as point P come closer to circumference.
$\Rightarrow \quad \mathrm{x}_{1}>\mathrm{X}_{2}$
Or $i_{2}>2 i_{1}$
(which is given condition)
So, there are points inside inner loop where magnetic field will be zero.

SECTION 2

This section contains THREE (03) question stems.

- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
Answer to each question will be evaluated according to the following marking scheme:
Full Mark : $\quad+2$ If ONLY the correct numerical value is entered at the designated place; Zero Marks : $0 \quad$ In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

A Soft plastic bottle, filled with water of density $1 \mathrm{gm} / \mathrm{cc}$, carries an inverted glass test-tube with some air (ideal gas) trapped as shown in the figure. The test-tube has a mass of 5 gm , and it is made of a thick glass of density $2.5 \mathrm{gm} / \mathrm{cc}$. Initially the bottle is sealed at atmospheric pressure $\mathrm{p}_{0}=10^{5} \mathrm{~Pa}$ so that the volume of the trapped air is $\mathrm{v}_{0}=3.3 \mathrm{cc}$. When the bottle is squeezed from outside at constant temperature, the pressure inside rises and the volume of the trapped air reduces. It is found that the test tube begins to sink at pressure $p_{0}+\Delta p$ without changing its orientation. At this pressure, the volume of the trapped air is $v_{0}-\Delta v$.
Let $\Delta \mathrm{v}=\mathrm{X}$ cc and $\Delta \mathrm{p}=\mathrm{Y} \times 10^{3} \mathrm{~Pa}$.

*Q. 7 The value of X is \qquad .

Sol. 0.30

For equilibrium of the test tube
$\mathrm{mg}=\left(\mathrm{v}_{\text {tube }}+\mathrm{v}_{\text {air }}\right) \rho_{\mathrm{w}} \mathrm{g}$
So, $\quad 5=\left(\frac{5}{2.5}+\mathrm{v}_{\text {air }}\right)(1)$
So, $\mathrm{v}_{\mathrm{air}}=3 \mathrm{cc}$
So, $\Delta \mathrm{v}=0.3 \mathrm{cc}$
*Q. $8 \quad$ The value of Y is \qquad .

Sol. $\quad 10.00$

For isothermal process

$$
\begin{aligned}
& \left(10^{5}\right)(3.3)=(\mathrm{P})(3) \\
& \text { So, } \mathrm{P}=1.1 \times 10^{5} \mathrm{~Pa} \\
& \text { So, } \Delta \mathrm{P}=(1.1-1) \times 10^{5}=10 \times 10^{3} \mathrm{~Pa}
\end{aligned}
$$

Question Stem for Question Nos. 9 and 10

Question Stem

A pendulum consists of a bob of mass $m=0.1 \mathrm{~kg}$ and a massless inextensible string of length $\mathrm{L}=1.0 \mathrm{~m}$. It is suspended from a fixed point at height $\mathrm{H}=0.9 \mathrm{~m}$ above a frictionless horizontal floor. Initially, the bob of the pendulum is lying on the floor at rest vertically below the point of suspension. A horizontal impulse $\mathrm{P}=0.2 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$ is imparted to the bob at some instant. After the bob slides for some distance, the string becomes taut and the bob lifts off the floor. The magnitude of the angular momentum of the pendulum about the point of suspension just before the bob lifts off is $\mathrm{J} \mathrm{kg}-\mathrm{m}^{2} / \mathrm{s}$. The kinetic energy of the pendulum just after the lift-off is K Joules.
*Q. $9 \quad$ The value of J is \qquad .

Sol. 0.18
$\mathrm{J}_{\mathrm{i}}=\mathrm{MV}_{\mathrm{i}} \mathrm{H} \sin 90^{\circ}$
$=0.2 \times 0.9=0.18 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$

*Q. 10 The value of K is \qquad .

Sol. 0.16

As bob lifts off due to impulse of string angular momentum will be conserved about suspension point
$\Rightarrow \mathrm{J}_{\mathrm{f}}=\mathrm{J}_{\mathrm{i}}$
$\Rightarrow \mathrm{Mv}_{\mathrm{f}} \ell \sin 90^{\circ}=0.18$
$\Rightarrow \mathrm{v}_{\mathrm{f}}=1.8 \mathrm{~m} / \mathrm{s}$
Kinetic energy after lifting off
$\Rightarrow \mathrm{K}_{\mathrm{f}}=\frac{1}{2} \mathrm{mv}_{\mathrm{f}}^{2}=\frac{1}{2} \times 0.1 \times(1.8)^{2}=0.162 \mathrm{~J}$

Question Stem for Question Nos. 11 and 12

Question Stem

In the circuit, a metal filament lamp is connected in series with a capacitor of capacitance $\mathrm{C} \mu \mathrm{F}$ across a $200 \mathrm{~V}, 50$ Hz supply. The power consumed by the lamp is 500 W while the voltage drop across it is 100 V . Assume that there is no inductive load in the circuit. Take rms values of the voltages. The magnitude of the phase-angle (in degrees) between the current and supply voltage is ϕ. Assume, $\pi \sqrt{3} \approx 5$.
Q. 11 The value of C is \qquad .

Sol. 100.00
$\mathrm{P}_{\text {lamp }}=500 \mathrm{~W}$
$\Rightarrow \mathrm{V}_{\text {lamp }} \mathrm{i}_{\text {lamp }}=500$
$\Rightarrow(100) \mathrm{i}_{\text {lamp }}=500$
$\mathrm{i}_{\text {lamp }}=5 \mathrm{~A}$
Impedance of circuit $Z=\frac{V_{\text {source }}}{\mathrm{i}_{\text {source }}}=\frac{200}{5}=40 \Omega$

Resistance of lamp $\mathrm{R}=\frac{\mathrm{V}_{\text {lamp }}}{\mathrm{i}_{\text {source }}}=20 \Omega$
Reactance of capacitance

$$
\mathrm{X}_{\mathrm{C}}=\sqrt{\mathrm{Z}^{2}-\mathrm{R}^{2}}=20 \sqrt{3} \Omega
$$

$$
\frac{1}{\omega \mathrm{C}}=20 \sqrt{3}
$$

$\mathrm{C}=\frac{1}{20 \sqrt{3} \times 2 \times \pi \times 50}=100 \mu \mathrm{~F}$
Q. 12 The value of ϕ is \qquad .

Sol. $\quad 60.00$
$\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{20}{40}=\frac{1}{2}$
$\Rightarrow \phi=60^{\circ}$

SECTION 3

This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.

- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Mark	$:$	+3	If ONLY the correct option is chosen;
Zero Marks	$:$	0	If none of the options is chosen (i.e. the question is unanswered);
Negative Marks	$:$	-1	In all other cases.

Paragraph

A special metal S conducts electricity without any resistance. A closed wire loop, made of S, does not allow any change in flux through itself by inducing a suitable current to generate a compensating flux. The induced current in the loop cannot decay due to its zero resistance. This current gives rise to a magnetic moment which in turn repels the source of magnetic field or flux. Consider such a loop, of radius a, with its centre at the origin. A magnetic dipole of moment m is brought along the axis of this loop from infinity to a point at distance $r(\gg$ a) from the centre of the loop with its north pole always facing the loop, as shown in the figure below.
The magnitude of magnetic field of a dipole m, at a point on its axis at distance r, is $\frac{\mu_{0}}{2 \pi} \frac{\mathrm{~m}}{\mathrm{r}^{3}}$, where μ_{0} is the permeability of free space. The magnitude of the force between two magnetic dipoles with moments, m_{1} and m_{2}, separated by a distance r on the common axis, with their north poles facing each other, is $\frac{k m_{1} m_{2}}{r^{4}}$, where k is a constant of appropriate dimensions. The direction of this force is along the line joining the two dipoles.

Q. 13 When the dipole m is placed at a distance r from the center of the loop (as shown in the figure), the current induced in the loop will be proportional to
(A) m / r^{3}
(B) $\mathrm{m}^{2} / \mathrm{r}^{2}$
(C) m / r^{2}
(D) $\mathrm{m}^{2} / \mathrm{r}$

Sol. A
$\frac{\mu_{0}}{2 \pi} \frac{\mathrm{~m}}{\mathrm{r}^{3}}=\frac{\mu_{0} \mathrm{i}_{1}}{2 \mathrm{a}}$
$\Rightarrow \mathrm{i}_{1} \propto \frac{\mathrm{~m}}{\mathrm{r}^{3}}$
Q. 14 The work done in bringing the dipole from infinity to a distance r from the center of the loop by the given process is proportional to
(A) m / r^{5}
(B) $\mathrm{m}^{2} / \mathrm{r}^{5}$
(C) $\mathrm{m}^{2} / \mathrm{r}^{6}$
(D) $\mathrm{m}^{2} / \mathrm{r}^{7}$

Sol. C
$\mathrm{dW}=\mathrm{F} . \mathrm{dx}=\frac{-\mathrm{Km}\left(\mathrm{i}_{1} \pi \mathrm{a}^{2}\right)}{\mathrm{r}^{4}}(\mathrm{dr})$
$\mathrm{i}_{1}=\frac{\mathrm{ma}}{\pi \mathrm{r}^{3}}$
$\mathrm{W}=\int_{\infty}^{\mathrm{r}} \frac{\mathrm{km}\left(\frac{\mathrm{ma}}{\pi \mathrm{r}^{3}} \times \pi \mathrm{a}^{2}\right) \mathrm{dr}}{\mathrm{r}^{3}}=\mathrm{km}^{2} \mathrm{a}^{3} \int \frac{\mathrm{dr}}{\mathrm{r}^{7}}$
$\mathrm{W} \alpha \frac{\mathrm{m}^{2}}{\mathrm{r}^{6}}$

Paragraph

A thermally insulating cylinder has a thermally insulating and frictionless movable partition in the middle, as shown in the figure below. On each side of the partition, there is one mole of an ideal gas, with specific heat at constant volume, $\mathrm{C}_{\mathrm{V}}=2 \mathrm{R}$. Here, R is the gas constant. Initially, each side has a volume V_{0} and temperature T_{0}. The left side has an electric heater, which is turned on at very low power to transfer heat Q to the gas on the left side. As a result the partition moves slowly towards the right reducing the right side volume to $\mathrm{V}_{0} / 2$. Consequently, the gas temperatures on the left and the right sides become T_{L} and T_{R}, respectively. Ignore the changes in the temperatures of the cylinder, heater and the partition.

*Q. 15 The value of $\frac{T_{R}}{T_{0}}$ is
(A) $\sqrt{2}$
(B) $\sqrt{3}$
(C) 2
(D) 3

Sol. A
*Q. 16 The value of $\frac{\mathrm{Q}}{\mathrm{RT}_{0}}$ is
(A) $4(2 \sqrt{2}+1)$
(B) $4(2 \sqrt{2}-1)$
(C) $(5 \sqrt{2}+1)$
(D) $(5 \sqrt{2}-1)$

Sol. B
15-16. Pressure on either side is equal $\mathrm{C}_{\mathrm{V}}=2 \mathrm{R} ; \mathrm{C}_{\mathrm{P}}=3 \mathrm{R} \Rightarrow \gamma=3 / 2$

thermally insulated
Left chamber
$\mathrm{Q}=\Delta \mathrm{U}_{1}+\Delta \mathrm{W}_{1}$
Right chamber
$0=\Delta \mathrm{U}_{2}+\Delta \mathrm{W}_{2}$
$\Delta \mathrm{W}_{1}+\Delta \mathrm{W}_{2}=0$
$\Rightarrow \mathrm{Q}=\Delta \mathrm{U}_{1}+\Delta \mathrm{U}_{2}=2 \mathrm{R}\left(\mathrm{T}_{\mathrm{L}}-\mathrm{T}_{0}\right)+2 \mathrm{R}\left(\mathrm{T}_{\mathrm{R}}-\mathrm{T}_{0}\right)$
Also pressure each side of piston is equal
$\Rightarrow \frac{\mathrm{RT}_{\mathrm{L}}}{3 \mathrm{~V}_{0} / 2}=\frac{\mathrm{RT}_{\mathrm{R}}}{\mathrm{V}_{0} / 2}$
$\Rightarrow\left(\mathrm{T}_{\mathrm{L}} / 3\right)=\mathrm{T}_{\mathrm{R}}$
15. For right chamber \Rightarrow adiabatic compression $\Rightarrow \mathrm{TV}^{\gamma-1}=$ constant
$\mathrm{T}_{0} \mathrm{~V}_{0}^{0.5}=\mathrm{T}_{\mathrm{R}}\left(\frac{\mathrm{V}_{0}}{2}\right)^{0.5} \Rightarrow \mathrm{~T}_{\mathrm{R}}=\sqrt{2} \mathrm{~T}_{0}$
$\Rightarrow \mathrm{T}_{\mathrm{L}}=3 \sqrt{2} \mathrm{~T}_{0}$
$\frac{\mathrm{T}_{\mathrm{R}}}{\mathrm{T}_{0}}=\sqrt{2}$
16. $\quad \mathrm{Q}=2 \mathrm{R}\left(3 \sqrt{2} \mathrm{~T}_{0}-\mathrm{T}_{0}\right)=2 \mathrm{R}\left(\sqrt{2} \mathrm{~T}_{0}-\mathrm{T}_{0}\right)=8 \sqrt{2} \mathrm{RT}_{0}-4 \mathrm{RT}_{0}$
$\Rightarrow \frac{\mathrm{Q}}{\mathrm{RT}_{0}}=8 \sqrt{2}-4$

SECTION 4

This section contains THREE (03) questions.

- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designed to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

$$
\begin{array}{llrl}
\text { Full Mark } & : & +4 & \text { If ONLY the correct integer is entered; } \\
\text { Zero Marks } & : & 0 & \text { In all other cases. }
\end{array}
$$

Q. 17 In order to measure the internal resistance r_{1} of a cell of emf E , a meter bridge of wire resistance $\mathrm{R}_{0}=50 \Omega$, a resistance $\mathrm{R}_{0} / 2$, another cell of emf $\mathrm{E} / 2$ (internal resistance r) and a galvanometer G are used in a circuit, as shown in the figure. If the null point is found at $\ell=72 \mathrm{~cm}$, then the value of $\mathrm{r}_{1}=$ \qquad Ω.

Sol. 3
$\mathrm{R}_{\mathrm{AB}}=50 \Omega$
So, $\mathrm{R}_{\mathrm{AP}}=\frac{50}{100} \times 72=36 \Omega$
$\mathrm{I}=\frac{\varepsilon}{\mathrm{r}_{1}+50+25}$
$-36 \mathrm{I}-\frac{\varepsilon}{2}-\mathrm{Ir}_{1}+\varepsilon=0$
Solving equation (i) and (ii) $\mathrm{r}_{1}=3 \Omega$
*Q. 18 The distance between two stars of masses $3 M_{S}$ and $6 M_{S}$ is $9 R$. Here R is the mean distance between the centers of the Earth and the Sun, and M_{S} is the mass of the Sun. The two stars orbit around their common
centre of mass in circular orbits with period nT , where T is the period of Earth's revolution around the Sun. The value of n is \qquad _.

Sol. 9
Both will revolve about common center of mass

$$
\begin{align*}
& x=\frac{3 M_{s}}{6 M_{s}+3 M_{s}} \times 9 R=3 R \tag{i}\\
& \frac{G 6 M_{s} \times 3 M_{s}}{(9 R)^{2}}=6 M_{s}\left(\omega^{2} x\right) \tag{ii}
\end{align*}
$$

Solving equation (i) and (ii) we get

$$
\begin{align*}
\omega^{2} & =\frac{\mathrm{GM}_{\mathrm{S}}}{81 \mathrm{R}^{3}} \\
\mathrm{~T}^{\prime 2} & =\frac{4 \pi^{2} \mathrm{R}^{3}}{\mathrm{GM}_{\mathrm{S}}} \times 81 \tag{iii}
\end{align*}
$$

For the motion of earth around Sun
$\mathrm{T}^{2}=\frac{4 \pi^{2} \mathrm{R}^{3}}{\mathrm{GM}_{\mathrm{S}}}$
From (iii) and (iv)
$\mathrm{T}^{\prime 2}=81 \mathrm{~T}^{2}$
$\mathrm{T}^{\prime}=9 \mathrm{~T}$
Q. 19 In a photoemission experiment, the maximum kinetic energies of photoelectrons from metals P, Q and R are E_{P}, E_{Q} and E_{R}, respectively, and they are related by $E_{P}=2 E_{Q}=2 E_{R}$. In this experiment, the same source of monochromatic light is used for metal P and Q while a different source of monochromatic light is used for the metal R. The work functions for metals P, Q and R are $4.0 \mathrm{eV}, 4.5 \mathrm{eV}$ and 5.5 eV , respectively. The energy of the incident photon used for metal R, in $e V$, is \qquad _.

Sol. 6
Let $\mathrm{E}_{\mathrm{R}}=\mathrm{E}$
Then $E_{Q}=E$
$E_{P}=2 \mathrm{E}$
From Einstein's equation for P, Q and R
$2 \mathrm{E}=\mathrm{h} v-4.0$
$\mathrm{E}=\mathrm{h} v-4.5$
$\mathrm{E}=\mathrm{h} \nu^{\prime}-5.5$
Solving equation (i) and (ii) we get $\mathrm{E}=0.5$
So, $h v^{\prime}=6.0 \mathrm{eV}$

PART II: CHEMISTRY

SECTION 1

This section contains SIX (06) questions.

- Each question has FOUR options (A), (B), (C) and (D). ONE OR MOER THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Mark	$:$	+4	If only (all) the correct option(s) is(are) chosen;
Partial Marks	$:$	+3	If all the four options are correct but ONLY three options are chosen;
Partial Marks	$:$	+2	If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks	$:$	+1	If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks	$:$	0	If unanswered;
Negative Marks	$:$	-2	In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.

1. The reaction sequence(s) that would lead to o-xylene as the major product is(are
(A)

2. $\underset{\text { heat }}{\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{KOH}}$

(B)
3. $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{BaSO}_{4}$
4. $\mathrm{Zn}-\mathrm{Hg}, \mathrm{HCl}$
5. i. BH_{3}
(C)

(D)

6. $\mathrm{O}_{3}, \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}$
7. Zn , dil. HCl

Sol.: A,B

Rankers Offline Centre - Near Keshav Kunj Restaurant

2. Correct option(s) for the following sequence of reactions is (are)

(A) $\mathrm{Q}=\mathrm{KNO}_{2}, \mathrm{~W}=\mathrm{LiAlH}_{4}$
(B) $\mathrm{R}=$ benzenamine, $\mathrm{V}=\mathrm{KCN}$
(C) $\mathrm{Q}=\mathrm{AgNO}_{2}, \mathrm{R}=$ phenylmethanamine
(D) $\mathrm{W}=\mathrm{LiAlH}_{4}, \mathrm{~V}=\mathrm{AgCN}$

Sol.: C, D

(i) KMnO_{4}
KOH , heat
(ii) $\mathrm{H}_{3} \mathrm{O}^{+}$

*3. For the following reaction $2 X+Y \xrightarrow{k} P$ the rate of reaction is $\frac{d[P]}{d t}=k[X]$. Two moles of \mathbf{X} are mixed with one mole of \mathbf{Y} to make 1.0 L of solution. At $50 \mathrm{~s}, 0.5$ mole of \mathbf{Y} is left in the reaction mixture. The correct statement(s) about the reaction is(are)
(Use: $\ln 2=0.693$)
(A) The rate constant, k , of the reaction is $13.86 \times 10^{-4} \mathrm{~s}^{-1}$
(B) Half-life of X is 50 s
(C) At $50 \mathrm{~s},-\frac{\mathrm{d}[\mathrm{X}]}{\mathrm{dt}}=13.86 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
(D) At $100 \mathrm{~s},-\frac{\mathrm{d}[\mathrm{Y}]}{\mathrm{dt}}=3.46 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.

Sol.: B,C,D

$$
\begin{aligned}
& \quad 2 \mathrm{X}+ \\
& \mathrm{t}=0 \begin{array}{ll}
\mathrm{y} & \mathrm{y} \\
\mathrm{t} & =50 \\
2-2 \times 0.5 & 1 \\
1 \text { mole } & 1-0.5
\end{array} \\
& \text { rate }=-\frac{1}{2} \frac{\mathrm{dx}}{\mathrm{dt}}=-\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dP}}{\mathrm{dt}}=\mathrm{K}[\mathrm{X}] \\
&-\frac{1}{2} \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{K}[\mathrm{X}] \\
&-\frac{\mathrm{dx}}{\mathrm{dt}}= 2 \mathrm{~K}[\mathrm{X}]=\mathrm{K}^{1}[\mathrm{X}]
\end{aligned}
$$

Half life is $\mathrm{t}=50 \mathrm{sec}$
$2 \mathrm{~K}=\frac{0.653 \mathrm{~L}}{50}$
$K=\frac{0.6932}{100}=6.332 \times 10^{-3}$
$\mathbf{t}=\mathbf{5 0} \mathbf{~ s e c}$
$-\frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{~K}[\mathrm{X}]$
$-\frac{\mathrm{dx}}{\mathrm{dt}}=2 \times 6.332 \times 10^{-3} \times 1=13.864 \times 10^{-3} \mathrm{~mole} / \mathrm{L} / \mathrm{Sec}$
$-\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{K}[\mathrm{X}]=6.332 \times 10^{-3}\left(\frac{1}{2}\right)=3.46 \times 10^{-3} \mathrm{~mole} / \mathrm{L} / \mathrm{Sec}^{-1}$
4. Some standard electrode potentials at 298 K are given below:

$$
\begin{aligned}
& \mathrm{Pb}^{2+} / \mathrm{Pb}-0.13 \mathrm{~V} \\
& \mathrm{Ni}^{2+/} \mathrm{Ni}-0.24 \mathrm{~V} \\
& \mathrm{Cd}^{2+} / \mathrm{Cd}-0.40 \mathrm{~V} \\
& \mathrm{Fe}^{2+} / \mathrm{Fe}-0.44 \mathrm{~V}
\end{aligned}
$$

To a solution containing 0.001 M of \mathbf{X}^{2+} and 0.1 M of \mathbf{Y}^{2+}, the metal rods \mathbf{X} and \mathbf{Y} are inserted (at 298 K) and connected by a conducting wire. This resulted in dissolution of \mathbf{X}. The correct combination(s) of \mathbf{X} and \mathbf{Y}, respectively, is(are)
(Given: Gas constant, $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$,
Faraday constant, $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$)
(A) Cd and Ni
(B) Cd and Fe
(C) Ni and Pb
(D) Ni and Fe

Sol.: A,B,C
(A) $\mathrm{Cd}+\mathrm{Ni}^{+2} \longrightarrow \mathrm{Cd}^{+2}+\mathrm{Ni}$

$$
\begin{aligned}
& E_{\text {cell }}=0.40+(-24)-\frac{0.0591}{2} \log \frac{0.001}{0.1} \\
& =0.16+\frac{0.0591}{2} \times 2=6.64+0.551=0.71(+\mathrm{ve})
\end{aligned}
$$

(B) $\mathrm{E}_{\text {cell }}=0.40+(-0.44)-\frac{0.591}{2} \log \frac{0.01}{0.1}$

$$
=-0.04+\frac{0.591}{2} \times 2=-0.04+0.06=0.02(+\mathrm{ve})
$$

(C) $\mathrm{E}_{\text {cell }}=0.24+(-0.13)+\frac{.0591}{2} \times 2$

$$
=0.11+0.06=0.33(+\mathrm{ve})
$$

(D) $\mathrm{E}_{\text {cell }}=0.24+(-0.44)+\frac{0.0591}{2} \times 2$

$$
=-0.20+0.06=-0.14(-\mathrm{ve})
$$

5. The pair(s) of complexes wherein both exhibit tetrahedral geometry is(are)
(Note: py = pyridine
Given: Atomic numbers of $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ and Cu are 26, 27,28 and 29 , respectively)
(A) $\left[\mathrm{FeCl}_{4}\right]^{-}$and $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(B) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$and $\left[\mathrm{CoCl}_{4}\right]^{2-}$
(C) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(D) $\left[\mathrm{Cu}(\mathrm{py})_{4}\right]^{+}$and $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$

Sol.: A, B, D
(A) $\left[\mathrm{FeCl}_{4}\right]$

$$
\begin{aligned}
& \mathrm{Fe}^{+3}=3 \mathrm{~d}^{5}, \mathrm{Cl}^{-} \text {weak field liganol } \mathrm{sp}^{3} \\
& {\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{-2}} \\
& \mathrm{Fe}^{-2}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}
\end{aligned}
$$

CO strong field liganol pairing occurs
$\mathrm{Fe}^{-2}=3 \mathrm{~d}^{10}$ hence sp^{3}
(B) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$
$\mathrm{Co}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2} \quad$ due to CO pairing occurs
Hence $=3 d^{10}$
$\left[\mathrm{CoCl}_{4}\right]^{-2}$
$\mathrm{Co}^{+2}=3 \mathrm{~d}^{7}, \quad \mathrm{Cl}^{-} \quad$ weak field liganol sp^{3}
(D) $\left[\mathrm{Cu}(\mathrm{Py})_{4}\right]^{+1}$
$\mathrm{Cu}^{+1}=3 \mathrm{~d}^{10}, \quad \mathrm{sp}^{3}$
$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{-3}$
$\mathrm{Cu}^{+1}=3 \mathrm{~d}^{10}, \mathrm{sp}^{3}$
6. The correct statement(s) related to oxoacids of phosphorous is(are)
(A) Upon heating, $\mathrm{H}_{3} \mathrm{PO}_{3}$ undergoes disproportionation reaction to produce $\mathrm{H}_{3} \mathrm{PO}_{4}$ and PH_{3}.
(B) While $\mathrm{H}_{3} \mathrm{PO}_{3}$ can act as reducing agent, $\mathrm{H}_{3} \mathrm{PO}_{4}$ cannot.
(C) $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a monobasic acid.
(D) The H atom of $\mathrm{P}-\mathrm{H}$ bond in $\mathrm{H}_{3} \mathrm{PO}_{3}$ is not ionizable in water.

Sol.: A,B,D

$\mathrm{H}_{3} \mathrm{PO}_{3} \xrightarrow{\Delta} \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{PH}_{3}$

$\mathrm{P}-\mathrm{H}$ bond is responsible for it is reducing character, $\mathrm{H}_{3} \mathrm{PO}_{4}$ doesnot have.
$\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid in oxyacids of phosphors $\mathrm{O}-\mathrm{H}$ bond is ionisalbe where as $\mathrm{P}-\mathrm{H}$ bond in non ionizable.

SECTION 2

This section contains THREE (03) question stems.
There are TWO (02) questions corresponding to each question stem.
The answer to each question is a NUMERICAL VALUE.
For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
Answer to each question will be evaluated according to the following marking scheme:
Full Mark : +2 If ONLY the correct numerical value is entered at the designated place;
Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

At 298 K , the limiting molar conductivity of a weak monobasic acid is $4 \times 10^{2} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. At 298 K , for an aqueous solution of the acid the degree of dissociation is α and the molar conductivity is $\mathrm{y} \times 10^{2} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. At 298 K , upon 20 times dilution with water, the molar conductivity of the solution becomes $3 \mathrm{y} \times 10^{2} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
7. The value of $\boldsymbol{\alpha}$ is \qquad .

Sol.: 0.22
$\alpha_{1}=\frac{\Lambda_{\mathrm{m}}^{\mathrm{c}}}{\Lambda_{\mathrm{m}}^{0}}=\frac{\mathrm{y} \times 10^{2}}{4 \times 10^{2}}=\frac{\mathrm{y}}{4}=\alpha$
On dilution conductivity increases three times
$\alpha_{2}=\frac{3 \mathrm{y} \times 10^{2}}{4 \times 10^{2}}=3 \alpha_{1}=3 \alpha$

HA	\rightleftharpoons	H^{+}	+
C		A^{-}	
$\mathrm{C}(1-\alpha)$		O	
$\mathrm{C} \alpha$		$\mathrm{C} \alpha$	

$K_{a}=\frac{C \alpha^{2}}{1-\alpha}$
Since temperature is constant K_{a} will be constant
$\frac{\mathrm{C}_{1} \alpha_{1}^{2}}{1-\alpha_{1}}=\frac{\mathrm{C}_{2} \alpha_{2}^{2}}{1-\alpha_{2}}$
$\frac{\mathrm{C} \times \alpha^{2}}{1-\alpha}=\frac{\left(\frac{\mathrm{C}}{20}\right)(3 \alpha)^{2}}{1-3 \alpha}$
$\frac{1}{1-\alpha}=\frac{9}{20}-\frac{1}{(1-3 \alpha)}$
$20-60 \alpha=9-9 \alpha ;$
$\alpha=\frac{11}{51}=0.2156$
$\alpha=0.22$
8. The value of \mathbf{y} is \qquad .

Sol.: 0.88

$$
\alpha=\frac{y}{4} ; \quad y=4 \alpha=4 \times 0.22=0.88
$$

Question Stem

Reaction of $\mathbf{x} g$ of Sn with HCl quantitatively produced a salt. Entire amount of the salt reacted with $\mathbf{y} g$ of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt (quantitatively).
(Use Molar masses (in $\mathrm{g} \mathrm{mol}^{-1}$) of $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$ and Sn as $1,12,14,16,35$ and 119 , respectively).
9. The value of \mathbf{x} is \qquad

Sol.: 3.57
$\mathrm{Sn}+2 \mathrm{HCl} \longrightarrow \mathrm{SnCl}_{2}+\mathrm{H}_{2}$

Moles of $\mathrm{Sn}=\frac{\mathrm{x}}{119}$
Moles of nitrobenzene $=\frac{x}{119} \times \frac{1}{3}$
Moles of anilium chloride $=\frac{\mathrm{x}}{119} \times \frac{1}{3}$
Moles of nitrobenzene $=\frac{x}{357}$
$\frac{y}{123}=\frac{x}{357}$
Moles of anilium chloride $=\frac{x}{357}$
$\frac{1.29}{129}=\frac{\mathrm{x}}{357}$
$\mathrm{x}=3.57$
10. The value of \mathbf{y} is \qquad .

Sol.: 1.23
$\mathrm{y}=1.225 \cong 1.23$

Question Stem for Question Nos. 11 and 12

Question Stem

A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 mL of solution. Titration of 25.0 mL of this solution requires 12.5 mL of $0.03 \mathrm{M} \mathrm{KMnO}_{4}$ solution to reach the end point. Number of moles of Fe^{2+} present in 250 mL solution is $\mathbf{x} \times 10^{-2}$ (consider complete dissolution of $\left.\mathrm{FeCl}_{2}\right)$. The amount of iron present in the sample is $\mathbf{y} \%$ by weight.
(Assume: KMnO_{4} reacts only with Fe^{2+} in the solution
Use: Molar mass of iron as $56 \mathrm{~g} \mathrm{~mol}^{-1}$)
*11. The value of \mathbf{x} is \qquad .

Sol.: 1.875
meq of $\mathrm{Fe}^{+2}=$ meq of KMnO_{4}
$\mathrm{x} \times 10^{-2} \times 1000 \times 1=12.5 \times 0.03 \times 5 \times 10$
$\mathrm{x}=1.875$ mole
*12. The value of \mathbf{y} is \qquad .

Sol.: 18.75

Moles of $\mathrm{Fe}^{+2}=\mathrm{x} \times 10^{-2}=1.875 \times 10^{-2}$
wt.of $\mathrm{Fe}^{+2}=1.875 \times 10^{-2} \times 56$
Hence percentage of Fe^{+2}

$$
=\frac{1.875 \times 10^{-2} \times 56}{5.6} \times 100 \%=18.75 \%
$$

SECTION 3

This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
For each question, choose the option corresponding to the correct answer.
Answer to each question will be evaluated according to the following marking scheme:
Full Mark : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : $-1 \quad$ In all other cases.

Paragraph

The amount of energy required to break a bond is same as the amount of energy released when the same bond is formed. In gaseous state, the energy required for homolytic cleavage of a bond is called Bond Dissociation Energy (BDE) or Bond Strength. BDE is affected by s-character of the bond and the stability of the radicals formed. Shorter bonds are typically stronger bonds. BDEs for some bonds are given below:

*13. Correct match of the $\mathbf{C}-\mathbf{H}$ bonds (shown in bold) in Column \mathbf{J} with their BDE in Column K is

Column J Molecule	Column K BDE $\left(\mathrm{kcl} \mathrm{mol}^{-1}\right)$
(P) $\mathrm{H}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	(i) 132
(Q) $\mathrm{H}-\mathrm{CH}_{2} \mathrm{Ph}$	(ii) 110
(R) $\mathrm{H}-\mathrm{CH}=\mathrm{CH}_{2}$	(iii) 95
(S) $\mathrm{H}-\mathrm{C} \equiv \mathrm{CH}$	(iv) 88

(A) P - iii, Q - iv, R - ii, S - I
(B) P - i, Q - ii, R - iii, S - iv
(C) P - iii, Q - ii, R -i, S - iv
(D) P - ii, Q - i, R - iv, S - iii

Sol.: A
As S character increases bond dissociation energy increases

$\mathrm{H}-\mathrm{C} \equiv \mathrm{CH}$	$\mathrm{H}-\mathrm{CH}=\mathrm{CH}_{2}$
sp	sp^{2}
$\mathrm{H}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{H}-\mathrm{CH}_{2}-\mathrm{Ph}$
sp^{3}	sp^{3}

is more stable then $\mathrm{CH}_{3}-$

*14. For the following reaction

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\text { light }} \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

The correct statement is
(A) Initiation step is exothermic with $\Delta \mathrm{H}^{\circ}=-58 \mathrm{kcal} \mathrm{mol}^{-1}$.
(B) Propagation step involving ${ }^{\bullet} \mathrm{CH}_{3}$ formation is exothermic with $\Delta \mathrm{H}^{\circ}=-2 \mathrm{kcal} \mathrm{mol}^{-1}$.
(C) Propagation step involving $\mathrm{CH}_{3} \mathrm{Cl}$ formation is endothermic with $\Delta \mathrm{H}^{\circ}=+27 \mathrm{kcal} \mathrm{mol}^{-1}$.
(D) The reaction is exothermic with $\Delta \mathrm{H}^{\circ}=-25 \mathrm{kcal} \mathrm{mol}^{-1}$.

Sol.: D
$\mathrm{CH}_{4}+\mathrm{Cl}_{2} \xrightarrow{\text { light }} \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$ this reaction is obtained from given reaction.
$\mathrm{CH}_{3}-\mathrm{H} \longrightarrow \mathrm{CH}_{3}^{\ominus}+\mathrm{H}^{\odot}$
$\mathrm{Cl}-\mathrm{Cl} \longrightarrow \mathrm{Cl}^{\odot}+\mathrm{Cl}^{\odot}$
$\mathrm{CH}_{3}-\mathrm{Cl} \longrightarrow \mathrm{CH}_{3}{ }^{\circ}+\mathrm{Cl}^{\odot}$
$\mathrm{H}-\mathrm{Cl} \longrightarrow \mathrm{H}^{\odot}+\mathrm{Cl}^{\odot}$
$(1)+(2)-(3)-(4)$
Hence $\Delta \mathrm{H}=105+58-85-103=-25 \mathrm{KCal} /$ mole

Paragraph

The reaction of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ with freshly prepared FeSO_{4} solution produces a dark blue precipitate called Turnbull's blue. Reaction of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ with the FeSO_{4} solution in complete absence of air produces a white precipitate \mathbf{X}, which turns blue in air. Mixing the FeSO_{4} solution with NaNO_{3}, followed by a slow addition of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ through the side of the test tube produces a brown ring.
15. Precipitate \mathbf{X} is
(A) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
(B) $\mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(C) $\mathrm{K}_{2} \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(D) $\mathrm{KFe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Sol.: C

$$
\square
$$

$$
\mathrm{FeSO}_{4}+\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \xrightarrow[\text { While ppt. }]{\longrightarrow} \mathrm{K}_{2} \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]
$$

——
16. Among the following, the brown ring is due to the formation of
(A) $\left[\mathrm{Fe}(\mathrm{NO})_{2}\left(\mathrm{SO}_{4}\right)_{2}\right]^{2-}$
(B) $\left[\mathrm{Fe}(\mathrm{NO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+}$
(C) $\left[\mathrm{Fe}(\mathrm{NO})_{4}\left(\mathrm{SO}_{4}\right)_{2}\right]$
(D) $\left[\mathrm{Fe}(\mathrm{NO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$

Sol.: D

$$
\mathrm{FeSO}_{4}+\mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{+2}+\mathrm{SO}_{4}^{-2}
$$

SECTION 4

This section contains THREE (03) questions.

- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designed to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Mark : +4 If ONLY the correct integer is entered;
Zero Marks : $0 \quad$ In all other cases.
*17. One mole of an ideal gas at 900 K , undergoes two reversible processes, I followed by II, as shown below. If the work done by the gas in the two process are same, the value of $\ln \frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}$

(U : internal energy, S : entropy, p : pressure, V : volume, R : gas constant)
(Given: molar heat capacity at constant volume, $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ of the gas is $\frac{5}{2} \mathrm{R}$)
Sol.: 10
$1{ }^{\text {st }}$ process is adiabatic since entropy is constant.
$\mathrm{W}_{1}=\Delta \mathrm{U}$
$\Delta \mathrm{U}=450 \mathrm{R}-2250 \mathrm{R}=-1800 \mathrm{R}$
$\mathrm{W}_{1}=-1800 \mathrm{R}$
In $2^{\text {nd }}$ process internal energy is constant it means it is a isothermal process.
$W_{2}=-2.303 n R T \log \frac{V_{3}}{V_{2}}$

$$
\begin{equation*}
=-\mathrm{nRT} \ln \frac{\mathrm{~V}_{3}}{\mathrm{~V}_{2}} \tag{2}
\end{equation*}
$$

Given, $\mathrm{n}=1$ mole, here temperature is unknown
$\mathrm{U}=\mathrm{nC}_{\mathrm{V}} \mathrm{T} \quad$ for process II
$450 \mathrm{R}=1 \times \frac{5}{2} \mathrm{RT}$
$\mathrm{T}=\frac{450 \times 2}{5}=180 \mathrm{~K}$
Equation (1) = equation (2)
$\mathrm{W}_{1}=\mathrm{W}_{2}$
$-1800 R=-1 \times R \times 180 \ln \frac{V_{3}}{V_{2}}$
$\ln \frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}=\frac{1800}{180}=10$
*18. Consider a helium (He) atom that absorbs a photon of wavelength 330 nm . The change in the velocity (in $\mathrm{cm} \mathrm{s}^{-1}$) of He atom after the photon absorption is \qquad _.
(Assume: Momentum is conserved when photon is absorbed.
Use: Planck constant $=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$, Avogadro number $=6 \times 10^{23} \mathrm{~mol}^{-1}$,
Molar mass of $\mathrm{He}=4 \mathrm{~g} \mathrm{~mol}^{-1}$)

Sol.: 30
$\lambda=\frac{h}{m(\Delta V)}$
$330 \times 10^{-9}=\frac{6.6 \times 10^{-34}}{\left(\frac{4 \times 10^{-3}}{6 \times 10^{23}}\right) \times \Delta \mathrm{V}}$
$\Delta \mathrm{V}=\frac{6.6 \times 6 \times 10^{23} \times 10^{-34}}{4 \times 10^{-3} \times 330 \times 10^{-9}}$
$=0.30 \mathrm{~m} / \mathrm{s}$
$=0.30 \times 100 \mathrm{~cm} / \mathrm{s}$
$=30 \mathrm{~cm} / \mathrm{s}$
19. Ozonolysis of ClO_{2} produces an oxide of chlorine. The average oxidation state of chlorine in this oxide is
\qquad
Sol.: 6
$2 \mathrm{ClO}_{2}+2 \mathrm{O}_{3} \longrightarrow \mathrm{Cl}_{2} \mathrm{O}_{6}+2 \mathrm{O}_{2}$
Average oxidization state of Cl atom is +6

PART III: MATHEMATICS

SECTION 1

This section contains SIX (06) questions.

- Each question has FOUR options (A), (B), (C) and (D). ONE OR MOER THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Mark	$:$	+4	If only (all) the correct option(s) is(are) chosen;
Partial Marks	$:$	+3	If all the four options are correct but ONLY three options are chosen;
Partial Marks	$:$	+2	If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks	$:$	+1	If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks	$:$	0	If unanswered;
Negative Marks	$:$	-2	In all other cases.

For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 mark;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.
*1. Let $S_{1}=\{(i, j, k): i, j, k \in\{1,2, \ldots . ., 10\}\}$,
$S_{2}=\{(i, j): 1 \leq i<j+2 \leq 10, i, j \in\{1,2, \ldots ., 10\}\}$,
$S_{3}=\{(i, j, k, l): 1 \leq i<j<k<l, i, j, k, l \in\{1,2, \ldots . ., 10\}\}$ and
$S_{4}=\{(i, j, k, I): i, j, k$ and I are distinct elements in $\{1,2, \ldots . ., 10\}\}$
If the total number of elements in the set S_{r} is $\mathrm{n}_{\mathrm{r}}, \mathrm{r}=1,2,3,4$, then which of the following statements is(are) TRUE?
(A) $\mathrm{n}_{1}=1000$
(B) $\mathrm{n}_{2}=44$
(C) $\mathrm{n}_{3}=220$
(D) $\frac{\mathrm{n}_{4}}{12}=420$

Sol. A, B, D

$$
\mathrm{n}_{1}=10 \times 10 \times 10=10^{3}
$$

$\mathrm{n}_{2}={ }^{8} \mathrm{C}_{2}+2{ }^{8} \mathrm{C}_{1}=44$
$\mathrm{n}_{3}={ }^{10} \mathrm{C}_{4}=210$
$\mathrm{n}_{4}={ }^{10} \mathrm{P}_{4}=5040$
*2. Consider a triangle $P Q R$ having sides of lengths p, q and r opposite to the angles P, Q and R, respectively. Then which of the following statements is(are) TRUE?
(A) $\cos P \geq 1-\frac{p^{2}}{2 q r}$
(B) $\cos R \geq\left(\frac{q-r}{p+q}\right) \cos P+\left(\frac{p-r}{p+q}\right) \cos Q$
(C) $\frac{q+r}{p}<2 \frac{\sqrt{\sin Q \sin R}}{\sin P}$
(D) If $\mathrm{p}<\mathrm{q}$ and $\mathrm{p}<\mathrm{r}$, then $\cos \mathrm{Q}>\frac{\mathrm{p}}{\mathrm{r}}$ and $\cos R>\frac{\mathrm{p}}{\mathrm{q}}$

Sol. A, B
(A) $\cos P=\frac{q^{2}+r^{2}-p^{2}}{2 q r}, q^{2}+r^{2} \geq 2 q r$, by A.M. \geq G.M
$\Rightarrow \cos \mathrm{P} \geq 1-\frac{\mathrm{p}^{2}}{2 \mathrm{qr}}$
(B) By triangle inequality $q+p>r$
by projection formula
$r \cos P+p \cos R+q \cos R+r \cos Q>p \cos Q+q \cos P$
$\Rightarrow \cos R>\frac{(q-r)}{(p+q)} \cos P+\frac{(p-r)}{(p+q)} \cos Q$
So inequality is true (equality does not hold)
(C) By AM. \geq GM.
$q+r \geq 2 \sqrt{q r}$
$\frac{q+r}{p} \geq \frac{2 \sqrt{q r}}{p}$
$\frac{\sin P}{p}=\frac{\sin Q}{q}=\frac{\sin R}{r}$ by sine rule
$\frac{q+r}{p} \geq \frac{2 \sqrt{\sin Q \sin R}}{\sin P}$
(D) If $\cos Q>\frac{p}{r} \Rightarrow r \cos Q>p$
$\cos R>\frac{p}{q} \Rightarrow q \cos R>p$
Add (i) and (ii)
$r \cos Q+q \cos R>2 P \Rightarrow p>2 p$
\Rightarrow p<0, false
3. Let $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow R$ be a continuous function such that $f(0)=1$ and $\int_{0}^{\frac{\pi}{3}} f(t) d t=0$. Then which of the following statements is(are) TRUE?
(A) The equation $f(x)-3 \cos 3 x=0$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$
(B) The equation $f(x)-3 \sin 3 x=-\frac{6}{\pi}$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$
(C) $\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} f(t) d t}{1-e^{x^{2}}}=-1$
(D) $\lim _{x \rightarrow 0} \frac{\sin x \int_{0}^{x} f(t) d t}{x^{2}}=-1$

Sol. A, B, C

$$
\begin{aligned}
& \text { (A) } \quad \begin{array}{l}
\text { Let } g(x)=f(x)-3 \cos 3 x \\
\int_{0}^{\pi / 3} g(x) d x=\int_{0}^{\pi / 3}(f(x)-3 \cos 3 x) d x=\int_{0}^{\pi / 3} f(x) d x-\int_{0}^{\pi / 3} 3 \cos 3 x d x=0 \\
\Rightarrow g(x)=0 \text { has at least one solution in }[0, \pi / 3]
\end{array} .
\end{aligned}
$$

(B) Let $h(x)=f(x)-3 \sin 3 x+6 / \pi$

$$
\int_{0}^{\pi / 3} h(x)=\int_{0}^{\pi / 3}\left(f(x)-3 \sin 3 x+\frac{6}{\pi}\right) d x=0
$$

$$
\Rightarrow \mathrm{h}(\mathrm{x})=0 \text { has atleast one solution in }[0, \pi / 3]
$$

(C) $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(t) d t}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{1}=f(0)=1$

$$
\Rightarrow \lim _{x \rightarrow 0} \frac{x \int_{0}^{x} f(t) d t}{x^{2}\left(\frac{1-e^{x^{2}}}{x^{2}}\right)}=\lim _{x \rightarrow 0} \frac{-\int_{0}^{x} f(t)}{x} \cdot \frac{x^{2}}{\left(e^{x^{2}}-1\right)}=-1
$$

(D) $\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\int_{0}^{x} f(t)}{x}=1$
4. For any real numbers α and β, let $y_{\alpha, \beta}(x), x \in R$, be the solution of the differential equation

$$
\frac{d y}{d x}+\alpha y=x e^{\beta x}, y(1)=1
$$

Let $S=\left\{y_{\alpha, \beta}(x): \alpha, \beta \in R\right\}$. Then which of the following functions belong(s) the set S ?
(A) $f(x)=\frac{x^{2}}{2} e^{-x}+\left(e-\frac{1}{2}\right) e^{-x}$
(B) $f(x)=-\frac{x^{2}}{2} e^{-x}+\left(e+\frac{1}{2}\right) e^{-x}$
(C) $f(x)=\frac{e^{x}}{2}\left(x-\frac{1}{2}\right)+\left(e-\frac{e^{2}}{4}\right) e^{-x}$
(D) $f(x)=\frac{e^{x}}{2}\left(\frac{1}{2}-x\right)+\left(e+\frac{e^{2}}{4}\right) e^{-x}$

Sol. A, C

$$
\begin{align*}
& \frac{d y}{d x}+\alpha y=x e^{\beta x} \\
& d\left(e^{\alpha x} \cdot y\right) x e^{\alpha x} \cdot e^{\beta x} \\
& d\left(e^{\alpha x} \cdot y\right)=x e^{(\alpha+\beta) x} \tag{i}
\end{align*}
$$

Case-I : $\alpha+\beta \neq 0$
$d\left(e^{\alpha x} \cdot y\right)=x e^{(\alpha+\beta) x}$
$e^{\alpha x} \cdot y=\frac{x e^{(\alpha+\beta) x}}{(\alpha+\beta)}-\frac{e^{(\alpha+\beta) x}}{(\alpha+\beta)^{2}}+C$
$y=\frac{x e^{\beta x}}{(\alpha+\beta)}-\frac{e^{\beta x}}{(\alpha+\beta)^{2}}+C e^{-\alpha x}$
$\alpha=1, \beta=1 \Rightarrow y=\frac{x e^{x}}{2}-\frac{e^{x}}{4}+C e^{-x}$
as $y(1)=1 \Rightarrow C=e\left(1-\frac{e}{4}\right)$
$y(x)=\frac{x e^{x}}{2}-\frac{e^{x}}{4}+\left(e-\frac{e^{2}}{4}\right) e^{-x}$
Case-II : $\alpha+\beta=0$

$$
\begin{aligned}
\Rightarrow & \frac{d y}{d x}-\beta y=x e^{\beta x} \\
& d\left(e^{-\beta x} y\right)=x \\
& e^{-\beta x} \cdot y=\frac{x^{2}}{2}+C \\
& y=\frac{e^{\beta x} x^{2}}{2}+C e^{\beta x} \\
& y(1)=1 \\
\Rightarrow & C=\left(1-\frac{e}{2}\right) \frac{1}{e} \Rightarrow y=e^{\beta x} \cdot \frac{x^{2}}{2}+\left(1-\frac{e}{2}\right) \frac{1}{e} \cdot e^{\beta x}
\end{aligned}
$$

Take $\beta=-1 \Rightarrow y=\frac{x^{2}}{2} e^{-x}+\left(1-\frac{e}{2}\right) e^{-x}$
5. Let O be the origin and $\overrightarrow{\mathrm{OA}}=2 \hat{i}+2 \hat{j}+\hat{k}, \overrightarrow{\mathrm{OB}}=\hat{i}-2 \hat{j}+2 \hat{k}$ and $\overrightarrow{\mathrm{OC}}=\frac{1}{2}(\overrightarrow{\mathrm{OB}}-\lambda \overrightarrow{\mathrm{OA}})$ for some $\lambda>0$. If $|\overrightarrow{\mathrm{OB}} \times \overrightarrow{\mathrm{OC}}|=\frac{9}{2}$, then which of the following statements is(are) TRUE?
(A) Projection of $\overrightarrow{O C}$ on $\overrightarrow{O A}$ is $-\frac{3}{2}$
(B) Area of the triangle $O A B$ is $\frac{9}{2}$
(C) Area of the triangle ABC is $\frac{9}{2}$
(D) The acute angle between the diagonals of the parallelogram with adjacent sides $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OC}}$ is $\frac{\pi}{3}$

Sol. A, B, C
$\overrightarrow{O A} \cdot \overrightarrow{O B}=0 \Rightarrow \overrightarrow{O A} \perp \overrightarrow{O B}$
$\overrightarrow{O C}=\frac{1}{2}((1-2 \lambda) \hat{i}+(-2-2 \lambda) \hat{j}+(2-\lambda) \hat{k})$
$|\overrightarrow{\mathrm{OB}} \times \overrightarrow{\mathrm{OC}}|=\frac{9|\lambda|}{2}=\frac{9}{2}$
$\Rightarrow \lambda= \pm 1$, as $\lambda>0, \lambda=1$
$\overrightarrow{\mathrm{OC}}=\frac{\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}}{2}$
(A) Projection $\overrightarrow{O C}$ on $\overrightarrow{O A}$

$$
\overrightarrow{\mathrm{OC}} \cdot \widehat{\mathrm{OA}}=-\frac{3}{2}
$$

(B) Area of $\triangle \mathrm{OAB}=9 / 2$

(C) Area of $\triangle \mathrm{ABC}=9 / 2$
(D) $\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}}=\frac{3 \hat{i}+3 \hat{x}}{2}, \overrightarrow{O A}-\overrightarrow{O C}=\frac{5 \hat{i}+8 \hat{j}+\hat{k}}{2}$

$$
\begin{aligned}
& (\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}})(\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OC}})=|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}}||\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OC}}| \cos \theta \\
& \cos \theta=\frac{1}{\sqrt{5}}
\end{aligned}
$$

*6. Let E denote the parabola $\mathrm{y}^{2}=8 \mathrm{x}$. Let $\mathrm{P}=(-2,4)$ and let Q and Q^{\prime} be two distinct points on E such that the lines PQ and PQ^{\prime} are tangents to E . Let F be the focus of E . Then which of the following statements is(are) TRUE?
(A) The triangle PFQ is a right-angled triangle
(B) The triangle QPQ^{\prime} is a right-angle triangle
(C) The distance between P and F is $5 \sqrt{2}$
(D) F lies on the line joining Q and Q^{\prime}

Sol. A, B, D
$E=y^{2}-8 x=0$
$\mathrm{a}=2$
Let $Q\left(2 t_{1}^{2}, 4 t_{1}\right), Q^{\prime}\left(2 t_{2}^{2}, 4 t_{2}\right)$
$\mathrm{t}_{1} \mathrm{t}_{2}=-1, \mathrm{t}_{1}+\mathrm{t}_{2}=2$
$t_{1}=1+\sqrt{2}, t_{2}=1-\sqrt{2}$
(A) $($ slope of PF) $($ slope of FQ$)=-1$
$\Rightarrow \angle \mathrm{PFQ}=\frac{\pi}{2}$
(B) $\left(\right.$ slope of $\left.\mathrm{PQ}^{\prime}\right)($ slope of PQ$)=-1$
$\angle \mathrm{QPQ}^{\prime}=\frac{\pi}{2}$
(C) $\mathrm{PF}=4 \sqrt{2}$
(D) slope of $\mathrm{Q}^{\prime} \mathrm{F}=$ slope of FQ $\Rightarrow \mathrm{Q}, \mathrm{F}, \mathrm{Q}^{\prime}$ are collinear

SECTION 2

This section contains THREE (03) question stems.
There are TWO (02) questions corresponding to each question stem.
The answer to each question is a NUMERICAL VALUE.
For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
Answer to each question will be evaluated according to the following marking scheme:
Full Mark : +2 If ONLY the correct numerical value is entered at the designated place; Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

Consider the region $R=\left\{(x, y) \in R \times R: x \geq 0\right.$ and $\left.y^{2} \leq 4-x\right\}$. Let F be the family of all circles that are contained in R and have centers on the x -axis. Let C be the circle that has largest radius among the circles in F. Let (α, β) be a point where the circle C meets the curve $y^{2}=4-x$.
*7. The radius of the circle C is \qquad

Sol. 1.5
*8. The value of α is \qquad

Sol. 2
Solution (7 and 8)
Let the equation of circle $(x-r)^{2}+y^{2}=r^{2}$
Equation of parabola $y^{2}=4-x$
Solving them

$$
(x-r)^{2}+4-x=r^{2}
$$

$\Rightarrow \quad x^{2}-x(2 r+1)+4=0$
Since circle and parabola meet tangentially hence

$$
(2 r+1)^{2}-16=0
$$

$\Rightarrow \quad 2 \mathrm{r}+1=4$
$\Rightarrow \quad r=3 / 2$ and $x^{2}-4 x+4=0$
$(x-2)^{2}=0$
$\Rightarrow \quad \alpha=2, r=3 / 2=1.5$

Question Stem for Question Nos. 9 and 10

Question Stem

Let $f_{1}:(0, \infty) \rightarrow R$ and $f_{2}:(0, \infty) \rightarrow R$ be defined by $f_{1}(x)=\int_{0}^{x} \prod_{j=1}^{21}(t-j)^{j} d t, x>0$ and $f_{2}(x)=98(x-1)^{50}-600(x-1)^{49}+2450, x>0$, where, for any positive integer n and real numbers a_{1}, a_{2}, $\ldots \ldots, a_{n}, \prod_{i=1}^{n} a_{i}$ denotes the product of $a_{1}, a_{2}, \ldots \ldots, a_{n}$. Let m_{i} and n_{i}, respectively, denote the number of points of local minima and the number of points of local maxima of function $f_{i}, i=1,2$, in the interval $(0$, $\infty)$.
9. The value of $2 m_{1}+3 n_{1}+m_{1} n_{1}$ is \qquad

Sol. 57
$f_{1}(x)=\int_{0}^{x} \prod_{j=1}^{21}(t-j)^{j} d t$
$\Rightarrow \quad f_{1}^{\prime}(x)=\prod_{j=1}^{21}(x-j)^{j}$
Therefore $\mathrm{m}_{1}=6, \mathrm{n}_{1}=5$
$2 \mathrm{~m}_{1}+3 \mathrm{n}_{1}+\mathrm{m}_{1} \mathrm{n}_{1}$

$$
\begin{aligned}
& =2(6)+3(5)+30 \\
& =12+15+30=57
\end{aligned}
$$

10. The value of $6 m_{2}+4 n_{2}+8 m_{2} n_{2}$ is

Sol. 6

$$
\begin{aligned}
\mathrm{f}_{2}{ }^{\prime}(\mathrm{x}) & =(98)(50)(\mathrm{x}-1)^{49}-(600)(49)(\mathrm{x}-1)^{48} \\
& =(49)(100)(\mathrm{x}-1)^{48}(\mathrm{x}-1-6) \\
\mathrm{m}_{2}= & 1, \mathrm{n}_{2}=0 \\
6 \mathrm{~m}_{2} & +4 \mathrm{n}_{2}+8 \mathrm{~m}_{2} \mathrm{n}_{2}
\end{aligned}
$$

$$
6(1)+4(0)+8(0)=6
$$

Question Stem for Question Nos. 11 and 12

Question Stem

Let $g_{i}:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow R, i=1,2$ and $f:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow R$ be functions such that
$g_{1}(x)=1, g_{2}(x)=|4 x-\pi|$ and $f(x)=\sin ^{2} x$, for all $x \in\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right]$. Define $S_{i}=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} f(x) \cdot g_{i}(x) d x, i=1,2$
11. The value of $\frac{16 S_{1}}{\pi}$ is \qquad

Sol. 2

$$
\begin{aligned}
& g_{1}:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow R, i=1,2, f:\left[\frac{\pi}{r}, \frac{3 \pi}{r}\right] \rightarrow R \\
& g_{1}=1, g_{2}=|4 x-\pi|, f(x)=\sin ^{2} x \\
& S_{i}=\int_{\pi / 8}^{3 \pi / 8} f(x) \cdot g_{i}(x) d x \\
& S_{1}=\int_{\pi / 8}^{3 \pi / 8} \sin ^{2} x d x=\int_{\pi / 8}^{3 \pi / 8} \sin ^{2}\left(\frac{\pi}{2}-x\right) d x \Rightarrow 2 S_{1}=\int_{\pi / 8}^{3 \pi / 8} 1 d x \\
& \Rightarrow S_{1}=\frac{1}{2}\left(\frac{3 \pi}{8}-\frac{\pi}{8}\right)=\frac{\pi}{8} \Rightarrow \frac{16 S_{1}}{\pi}=2
\end{aligned}
$$

12. The value of $\frac{48 S_{2}}{\pi^{2}}$ is \qquad

Sol. 1.5

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{S}_{2}= \int_{\pi / 8}^{3 \pi / 8} \sin ^{2} x|4 \mathrm{x}-\pi| \mathrm{dx}=\int_{\pi / 8}^{3 \pi / 8} \sin ^{2}\left(\frac{\pi}{2}-\mathrm{x}\right)\left|4\left(\frac{\pi}{2}-\mathrm{x}\right)-\pi\right| \mathrm{dx} \\
&=\int_{\pi / 8}^{3 \pi / 8} \cos ^{2} x|4 \mathrm{x}-\pi| \mathrm{dx} \\
& \Rightarrow 2 \mathrm{~S}_{2}=\int_{\pi / 8}^{3 \pi / 8}|4 \mathrm{x}-\pi| \mathrm{dx}=2 \int_{\pi / 8}^{\pi / 4}(\pi-4 \mathrm{x}) \mathrm{dx} \\
& \mathrm{~S}_{2}=\left.\left(\pi \mathrm{x}-2 \mathrm{x}^{2}\right)\right|_{\pi / 8} ^{\pi / 4}=\pi\left(\frac{\pi}{4}-\frac{\pi}{8}\right)-2\left(\frac{\pi^{2}}{16}-\frac{\pi^{2}}{64}\right) \\
& \mathrm{S}_{2}=\frac{4 \pi^{2}}{8}-\frac{3 \pi^{2}}{32}=\frac{\pi^{2}}{32}=\frac{48 \mathrm{~S}_{2}}{\pi^{2}}=\frac{48}{\pi^{2}} \times \frac{\pi^{2}}{32}=\frac{3}{2} \\
& \frac{48 \mathrm{~S}_{2}}{\pi^{2}}=1.5
\end{aligned}
\end{aligned}
$$

SECTION 3

This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer
For each question, choose the option corresponding to the correct answer.
Answer to each question will be evaluated according to the following marking scheme:
Full Mark $\quad: \quad+3 \quad$ If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.

Paragraph

Let $M=\left\{(x, y) \in R \times R: x^{2}+y^{2} \leq r^{2}\right\}$, where $r>0$. Consider the geometric progression $a_{n}=\frac{1}{2^{n-1}}, n=1,2,3, \ldots$. Let $S_{0}=0$ and for $n \geq 1$, let S_{n} denote the sum of the first n terms of this progression. For $n \geq 1$, let C_{n} denote the circle with center $\left(S_{n-1}, 0\right)$ and radius a_{n}, and D_{n} denote the circle with center $\left(\mathrm{S}_{\mathrm{n}-1}, \mathrm{~S}_{\mathrm{n}-1}\right)$ and radius a_{n}.
*13. Consider M with $r=\frac{1025}{513}$. Let k be the number of all those circles C_{n} that are inside M. Let 1 be the maximum possible number of circles among these k circles such that no two circles intersect. Then
(A) $\mathrm{k}+2 \mathrm{l}=22$
(B) $2 \mathrm{k}+\mathrm{l}=26$
(C) $2 \mathrm{k}+3 \mathrm{l}=34$
(D) $3 \mathrm{k}+2 \mathrm{l}=40$

Sol. D
$\mathrm{C}_{1} \rightarrow(0,0), \mathrm{r}=1$
$\mathrm{C}_{2} \rightarrow(1,0), \mathrm{r}=1 / 2$
$\mathrm{C}_{3} \rightarrow(3 / 2,0), r=1 / 4$
\vdots
$C_{n}\left(2\left(1-\frac{1}{2^{n-1}}\right), 0\right), r=\frac{1}{2^{n-1}}$
$\Rightarrow \quad 2\left(1-\frac{1}{2^{n-1}}\right)+\frac{1}{2^{n-1}}<r$
$2-\frac{1}{2^{n-1}}<r$
$\Rightarrow \quad 2-\frac{1}{2^{n-1}}<\frac{1025}{513}$
$\Rightarrow \quad \frac{1}{2^{n-1}}>\frac{1}{513}$
$\Rightarrow \quad 2^{\mathrm{n}-1}<513 \Rightarrow \mathrm{n}-1 \leq 9$

$\Rightarrow \mathrm{n} \leq 10 \Rightarrow \mathrm{k}=10$
Also no two by $\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{9}$ intersect each other. And no two of $\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{10}$ intersect each other
For both, we get $1=5$
$\Rightarrow 3 \mathrm{k}+2 \mathrm{l}=40$
*14. Consider M with $r=\frac{\left(2^{199}-1\right) \sqrt{2}}{2^{198}}$. The number of all those circles D_{n} that are inside M is
(A) 198
(B) 199
(C) 200
(D) 201

Sol. B

$$
\begin{aligned}
& \sqrt{2} S_{n-1}+a_{n}<r \\
& \Rightarrow \sqrt{2}\left(2\left(1-\frac{1}{2^{n-1}}\right)\right)+\frac{1}{2^{n-1}}<\left(\frac{2^{199}-1}{2^{198}}\right) \sqrt{2} \\
& \Rightarrow \quad \sqrt{2}\left(1-\frac{1}{2^{n-1}}\right)+\frac{1}{2^{n}}<\left(1-\frac{1}{2^{199}}\right) \sqrt{2} \\
& \Rightarrow \quad \frac{1}{(\sqrt{2})^{2 n}}-\frac{1}{(\sqrt{2})^{2 n-3}}<\frac{-1}{(\sqrt{2})^{397}} \\
& \Rightarrow \quad \frac{2 \sqrt{2}-1}{(\sqrt{2})^{2 n}}>\frac{1}{(\sqrt{2})^{397}} \\
& \Rightarrow \quad(\sqrt{2})^{2 n-397}<2 \sqrt{2}-1 \\
& \Rightarrow \quad 2 \mathrm{n}-397 \leq 1 \Rightarrow \mathrm{n} \leq 199 .
\end{aligned}
$$

Paragraph

Let $\Psi_{1}:[0, \infty) \rightarrow R, \Psi_{2}:[0, \infty) \rightarrow R, f:[0, \infty) \rightarrow R$ and $g:[0, \infty) \rightarrow R$ be functions such that $\mathrm{f}(0)=\mathrm{g}(0)=0$,

$$
\begin{gathered}
\psi_{1}(x)=e^{-x}+x, x \geq 0 \\
\psi_{2}(x)=x^{2}-2 x-2 e^{-x}+2, x \geq 0 \\
f(x)=\int_{-x}^{x}\left(|t|-t^{2}\right) e^{-t^{2}} d t, x>0
\end{gathered}
$$

and $g(x)=\int_{0}^{x^{2}} \sqrt{t} e^{-t} d t, x>0$.
15. Which of the following statements is TRUE?
(A) $f(\sqrt{\ln 3})+g(\sqrt{\ln 3})=\frac{1}{3}$
(B) For every $\mathrm{x}>1$, there exists and $\alpha \in(1, \mathrm{x})$ such that $\psi_{1}(\mathrm{x})=1+\alpha \mathrm{x}$
(C) For every $\mathrm{x}>0$, there exists a $\beta \in(0, \mathrm{x})$ such that $\psi_{2}(\mathrm{x})=2 \mathrm{x}\left(\psi_{1}(\beta)-1\right)$
(D) f is an increasing function on the interval $\left[0, \frac{3}{2}\right]$

Sol. C
$\psi_{2}(x)=x^{2}-2 x-2 e^{-x}+2, x \geq 0$
$\psi_{2}^{\prime}(\mathrm{x})=2 \mathrm{x}-2+2 \mathrm{e}^{-\mathrm{x}}=2\left(\mathrm{x}+\mathrm{e}^{-\mathrm{x}}-1\right)$
$\psi_{2}^{\prime}(\beta)=2\left(\psi_{1}(\beta)-1\right)$
Since $\psi_{2}(\mathrm{x})$ is a continuous and differentiable function $\forall \mathrm{x} \in[0, \mathrm{x}]$ $\psi_{2}(0)=0, \psi_{2}(x)=x^{2}-2 x-2 e^{-x}+2$
Hence according to LMVT there exist atleast one $\beta \in(0, x)$ such that

$$
\left(\frac{\psi_{2}(x)-\psi_{2}(0)}{x}\right)=\psi_{2}^{\prime}(\beta)
$$

$$
\begin{aligned}
& =\frac{\psi_{2}(x)}{x}=2\left(\psi_{1}(\beta)-1\right) \\
& =\psi_{2}(x)=2 x\left(\psi_{1}(\beta)-1\right)
\end{aligned}
$$

16. Which of the following statements is TRUE?
(A) $\psi_{1}(x) \leq 1$, for all $x>0$
(B) $\psi_{2}(x) \leq 0$, for all $x>0$
(C) $f(x) \geq 1-e^{-x^{2}}-\frac{2}{3} x^{3}+\frac{2}{5} x^{5}$, for all $x \in\left(0, \frac{1}{2}\right)$
(D) $g(x) \leq \frac{2}{3} x^{3}-\frac{2}{5} x^{5}+\frac{1}{7} x^{7}$, for all $x \in\left(0, \frac{1}{2}\right)$

Sol. D
$\psi^{\prime}{ }_{1}(\mathrm{x})=1-\mathrm{e}^{-\mathrm{x}}>0$
$\psi_{2}(\mathrm{x})=(\mathrm{x}-1)^{2}+1-2 \mathrm{e}^{-\mathrm{x}}>0$ for $\mathrm{x}=1$
$\because \quad e^{-t}=1-t+\frac{t^{2}}{2}-\frac{t^{3}}{3}+\ldots$
$\sqrt{\mathrm{t}} \mathrm{e}^{-\mathrm{t}}=\sqrt{\mathrm{t}}-\mathrm{t}^{3 / 2}+\frac{1}{2} \mathrm{t}^{5 / 2} \cdots$
So, $\quad \sqrt{t} e^{-t}<\sqrt{t}-t^{3 / 2}+\frac{1}{2} t^{5 / 2}$ for $t \in(0,1)$

$$
\begin{aligned}
& \int_{0}^{x^{2}} \sqrt{t} e^{-t} d t<\int_{0}^{x^{2}}\left(\sqrt{t}-t^{3 / 2}+\frac{1}{2} t^{5 / 2}\right) d t \\
& =\frac{2}{3} x^{3}-\frac{2}{5} x^{5}+\frac{1}{7} x^{7}
\end{aligned}
$$

SECTION 4

This section contains THREE (03) questions.

- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designed to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Mark $\quad: \quad+4$ If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
17. A number is chosen at random from the set $\{1,2,3, \ldots ., 2000\}$. Let p be the probability that the chosen number is a multiple of 3 or a multiple of 7 . Then the value of 500 p is \qquad

Sol. 214
Let $\mathrm{A}=\{1,2,3, \ldots ., 2000\}$
Let $\mathrm{E}_{1}=3 \mathrm{~m}, 1 \leq \mathrm{m} \leq 666, \mathrm{~m} \in \mathrm{~N}$
$\mathrm{E}_{2}=7 \mathrm{k}, 1 \leq \mathrm{k} \leq 285, \mathrm{k} \in \mathrm{N}$
$=n\left(E_{1} \cup E_{2}\right)=666+285-95=856$
$=\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)=856 / 2000=500 \beta=856 / 4=214$
18. Let E be the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. For any three distinct points P, Q and Q^{\prime} on E, let $M(P, Q)$ be the midpoint of the line segment joining P and Q, and $M\left(P, Q^{\prime}\right)$ be the mid-point of the line segment joining P and Q^{\prime}. Then the maximum possible value of the distance between $\mathrm{M}(\mathrm{P}, \mathrm{Q})$ and $\mathrm{M}\left(\mathrm{P}, \mathrm{Q}^{\prime}\right)$, as P, Q and Q^{\prime} vary on E , is \qquad

Sol. 4
$\mathrm{M}(\mathrm{P}, \mathrm{Q})$ is mid-point of PQ
$\mathrm{M}\left(\mathrm{P}, \mathrm{Q}^{\prime}\right)$ is mid-point of PQ^{\prime}
In a $\triangle \mathrm{PQQ}^{\prime}$ since $\mathrm{M}(\mathrm{P}, \mathrm{Q}) \& \mathrm{M}\left(\mathrm{P}, \mathrm{Q}^{\prime}\right)$ are mid-point of $\mathrm{PQ} \& \mathrm{PQ}^{\prime}$ hence line joining $\mathrm{M}(\mathrm{P}, \mathrm{Q}), \mathrm{M}\left(\mathrm{P}, \mathrm{Q}^{\prime}\right)$ is parallel to QQ^{\prime} and half of it.
$\Rightarrow \max$ distance $=\frac{1}{2} Q Q^{\prime}=\frac{1}{2}(8)=4$
19. For any real number x, let $[x]$ denote the largest integer less than or equal to x. If

$$
I=\int_{0}^{10}\left[\sqrt{\frac{10 x}{x+1}}\right] d x
$$

then the value of 9I is \qquad
19. 182

$$
I=\int_{0}^{10}\left[\sqrt{\frac{10 x}{x+1}}\right] d x
$$

$\left[\sqrt{\frac{10 x}{x+1}}\right]=n \Rightarrow \frac{n^{2}}{10-n^{2}} \leq x<\frac{(n+1)^{2}}{10-(n+1)^{2}}$ where $n \in I$
For $\mathrm{n}=0,0 \leq \mathrm{x}<1 / 9$
$\mathrm{n}=1 ; 1 / 9 \leq \mathrm{x}<2 / 3$
$\mathrm{n}=2 ; 2 / 3 \leq \mathrm{x}<9, \mathrm{n}=3, \mathrm{x} \geq 9$
$\Rightarrow \quad I=\int_{0}^{1 / 9} 0 \cdot d x+\int_{1 / 9}^{2 / 3} 1 \cdot d x+\int_{2 / 3}^{9} 2 \cdot d x+\int_{9}^{10} 3 \cdot d x$
$=\left(\frac{2}{3}-\frac{1}{9}\right)+2\left(9-\frac{2}{3}\right)+3(10-9)=\frac{182}{9}=9 \mathrm{I}=182$

END OF THE QUESTION PAPER

