PHYSICS
 JEE-MAIN (February-Attempt) 25 February (Shift-1) Paper

Section - A

1. A 5V battery is connected across the points X and Y. Assume D_{1} and D_{2} to be normal silicon diodes. Find the current supplied by the battery if the + ve terminal of the battery is connected to point X.

(1) ~0.86 A
(2) ~0.5 A
(3) ~ 0.43 A
(4) ~ 1.5 A

Sol. 3
Since silicon diode is used so 0.7 Volt is drop across it, only D_{1} will conduct so current through cell $\mathrm{I}=\frac{5-0.7}{10}=0.43 \mathrm{~A}$
2. A solid sphere of radius R gravitationally attracts a particle placed at $3 R$ from its centre with a force F_{1}. Now a spherical cavity of radius $\left(\frac{R}{2}\right)$ is made in the sphere (as shown in figure) and the force becomes F_{2}. The value of $F_{1}: F_{2}$ is :

(1)41:50
(2) $36: 25$
(3) $50: 41$
(4) $25: 36$

Sol. 1
$\mathrm{g}_{1}=\frac{\mathrm{GM}}{(3 \mathrm{R})^{2}}=\frac{\mathrm{GM}}{9 \mathrm{R}^{2}}$
$g_{2}=\frac{G M}{9 R^{2}}-\frac{G\left(\frac{M}{8}\right)}{\left(3 R-\frac{R}{2}\right)^{2}}$
$=\frac{\mathrm{GM}}{9 \mathrm{R}^{2}}-\frac{\mathrm{GM}}{\mathrm{R}^{2} 50}=\frac{41}{9 \times 50} \frac{\mathrm{GM}}{\mathrm{R}^{2}}$
$\frac{g_{1}}{g_{2}}=\frac{41}{50}$
Force $\Rightarrow \frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\frac{\mathrm{mg}_{1}}{\mathrm{mg}_{2}}=\frac{41}{50}$
3. A student is performing the experiment of resonance column. The diameter of the column tube is 6 cm . The frequency of the tuning fork is 504 Hz . Speed of the sound at the given temperature is $336 \mathrm{~m} / \mathrm{s}$. The zero of the metre scale coincides with the top end of the resonance column tube. The reading of the water level in the column when the first resonance occurs is :
(1) 13 cm
(2) 14.8 cm
(3) 16.6 cm
(4) 18.4 cm

Sol. 2
$\lambda=\frac{v}{f}=\frac{336}{504}=66.66 \mathrm{~cm}$
$\frac{\lambda}{4}=I+e=1+0.3 d$
$=1+1.8$
$16.66=\mathrm{I}+1.8 \mathrm{~cm}$
$\mathrm{I}=14.86 \mathrm{~cm}$
4. A diatomic gas, having $C_{p}=\frac{7}{2} R$ and $C_{v}=\frac{5}{2} R$, is heated at constant pressure.

The ratio $\mathrm{dU}: \mathrm{dQ}: \mathrm{dW}$
(1) $3: 7: 2$
(2) $5: 7: 2$
(3) $5: 7: 3$
(4) $3: 5: 2$

Sol. 2
$C_{p}=\frac{7}{2} R$
$C_{v}=\frac{5}{2} R$
$\mathrm{dU}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$
$\mathrm{dQ}=\mathrm{nC}_{\mathrm{p}} \mathrm{d} T$
$\mathrm{dW}=\mathrm{nRdT}$
$d U$: dQ : dW
$C_{v}: C_{p}: R$
$\frac{5}{2} \mathrm{R}: \frac{7}{2} \mathrm{R}: \mathrm{R}$
5:7:2
5. Given below are two statements :

Statement I : A speech signal of 2 kHz is used to modulate a carrier signal of 1 MHz . The bandwidth requirement for the signal is 4 kHz .
Statement II : The side band frequencies are 1002 kHz and 998 kHz .
In the light of the above statements, choose the correct answer from the options given below :
(1) Both statement I and statement II are false
(2) Statement I is false but statement II is true
(3) Statement I is true but statement II is false
(4) Both statement I and statement II are true

Sol. 4

Side band $=\left(f_{c}-f_{m}\right)$ to $\left(f_{c}+f_{m}\right)$
$=(1000-2) \mathrm{KHz}$ to $(1000+2) \mathrm{KHz}$
$=998 \mathrm{KHz}$ to 1002 kHz
Band width $=2 f_{m}$
$=2 \times 2 \mathrm{KHz}$
$=4 \mathrm{KHz}$
Both statements are true
6. The current (i) at time $t=0$ and $t=\infty$ respectively for the given circuit is :

(1) $\frac{18 \mathrm{E}}{55}, \frac{5 \mathrm{E}}{18}$
(2) $\frac{5 \mathrm{E}}{18}, \frac{18 \mathrm{E}}{55}$
(3) $\frac{5 \mathrm{E}}{18}, \frac{10 \mathrm{E}}{33}$
(4) $\frac{10 E}{33}, \frac{5 E}{18}$

Sol. 3

at $t=0$, inductor is removed, so circuit will look like this
at $t=0$

$R_{e q}=\frac{6 \times 9}{6+9}=\frac{54}{15}$
$I(t=0)=\frac{E \times 15}{54}=\frac{5 E}{18}$
at $t=\infty$, inductor is replaced by plane wire, so circuit will look like this
at $t=\infty$

$I(t=\infty)=\frac{E}{\frac{5}{2}+\frac{4}{5}}=\frac{10 E}{33}$
Now,

$R_{\text {eq }}=\frac{1 \times 4}{1+4}+\frac{5 \times 5}{5+5}$
$=\frac{4}{5}+\frac{5}{2}=\frac{8+25}{10}=\frac{33}{10}$
$I=\frac{E}{R_{e q}}=\frac{10 E}{33}$
7. \quad Two satellites A and B of masses 200 kg and 400 kg are revolving round the earth at height of 600 km and 1600 km respectively.
If T_{A} and T_{B} are the time periods of A and B respectively then the value of $T_{B}-T_{A}$:

[Given : radius of earth $=6400 \mathrm{~km}$, mass of earth $=6 \times 10^{24} \mathrm{~kg}$]
(1) $4.24 \times 10^{2} \mathrm{~s}$
(2) $3.33 \times 10^{2} \mathrm{~s}$
(3) $1.33 \times 10^{3} \mathrm{~s}$
(4) $4.24 \times 10^{3} \mathrm{~s}$

Sol. 3

$V=\sqrt{\frac{G M_{e}}{r}}$
$T=\frac{2 \pi r}{\sqrt{\frac{\text { GM }_{e}}{r}}}=2 \pi r \sqrt{\frac{r}{G M_{e}}}$

$T=\sqrt{\frac{4 \pi^{2} r^{3}}{G M_{e}}}=\sqrt{\frac{4 \pi^{2} r^{3}}{G M_{e}}}$
$\mathrm{T}_{2}-\mathrm{T}_{1}=\sqrt{\frac{4 \pi^{2}\left(8000 \times 10^{3}\right)^{3}}{\mathrm{G} \times 6 \times 10^{24}}}-\sqrt{\frac{4 \pi^{2}\left(7000 \times 10^{3}\right)^{3}}{G \times 6 \times 10^{24}}}$
$\cong 1.33 \times 10^{3} \mathrm{~s}$
8. An engine of a train, moving with uniform acceleration, passes the signal post with velocity u and the last compartment with velocity v . The velocity with which middle point of the train passes the signal post is :
(1) $\sqrt{\frac{v^{2}-u^{2}}{2}}$
(2) $\frac{v-u}{2}$
(3) $\sqrt{\frac{v^{2}+u^{2}}{2}}$
(4) $\frac{u+v}{2}$

Sol. 3

$\mathrm{a}=$ uniform acceleration
$\mathrm{u}=$ velocity of first compartment
$v=$ velocity of last compartment
$\mathrm{I}=$ length of train
$v^{2}=u^{2}+2$ as (3 $3^{\text {rd }}$ equation of motion)
$v^{2}=u^{2}+2 a l$
$\mathrm{v}_{\text {middle }}^{2}=\mathrm{u}^{2}+2 \mathrm{a} \frac{\mathrm{l}}{2}$
$\therefore \mathrm{v}_{\text {middle }}=\mathrm{u}^{2}+\mathrm{al}$
from equation (1) and (2)
$v_{\text {middle }}^{2}=u^{2}+\left(\frac{v^{2}-u^{2}}{2}\right)$
$=\frac{\mathrm{v}^{2}+\mathrm{u}^{2}}{2}$
$\therefore \mathrm{v}_{\text {middle }}=\sqrt{\frac{\mathrm{v}^{2}+\mathrm{u}^{2}}{2}}$
9. A proton, a deuteron and an α particle are moving with same momentum in a uniform magnetic field. The ratio of magnetic forces action on them is \qquad and their speed is \qquad , in the ratio.
(1) $2: 1: 1$ and $4: 2: 1$
(2) $1: 2: 4$ and $2: 1: 1$
(3) $1: 2: 4$ and $1: 1: 2$
(4) $4: 2: 1$ and $2: 1: 1$

Sol. 1

As $v=\frac{p}{m} \& F=q v B$
$\therefore \mathrm{F}=\frac{\mathrm{qP}}{\mathrm{m}} \mathrm{B}$
$F_{1}=\frac{q p B}{m}, v_{1}=\frac{p}{m}$
$F_{2}=\frac{q p B}{2 m}, v_{2}=\frac{p}{2 m}$
$F_{3}=\frac{2 q p B}{4 m}, v_{3}=\frac{p}{4 m}$
$F_{1}: F_{2}: F_{3} \quad \& V_{1}: V_{2}: V_{3}$
$1: \frac{1}{2}: \frac{1}{2}$
\& $1: \frac{1}{2}: \frac{1}{4}$
2:1:1
\& $4: 2: 1$
10. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A: When a rod lying freely is heated, no thermal stress is developed in it.
Reason R : On heating, the length of the rod increases.
In the light of the above statements, choose the corect answer from the options given below :
(1) A is true but R is false
(2) Both A and R are true and R is the correct explanation of A
(3) Both A and R are true but R is NOT the correct explanation of A
(4) A is false but R is true

Sol. 3

When a rod is free and it is heated then there is no thermal stress produced in it. The rod will expand due to increase in temperature.
so both a \& R are true.
11. In an octagon $A B C D E F G H$ of equal side, what is the sum of

$$
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}+\overrightarrow{\mathrm{AG}}+\overrightarrow{\mathrm{AH}}
$$

If, $\overrightarrow{A O}=2 \hat{i}+3 \hat{j}-4 \hat{k}$

(1) $16 \hat{i}+24 \hat{j}-32 \hat{k}$
(2) $-16 \hat{i}-24 \hat{j}-32 \hat{k}$
(3) $-16 \hat{i}-24 \hat{j}+32 \hat{k}$
(4) $-16 \hat{i}+24 \hat{j}+32 \hat{k}$

Sol. 1

$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{AB}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{AC}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{AD}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{AE}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OF}}=\overrightarrow{\mathrm{AF}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OG}}=\overrightarrow{\mathrm{AG}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OH}}=\overrightarrow{\mathrm{AH}}$

$8 \overrightarrow{\mathrm{AO}}=(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}+\overrightarrow{\mathrm{AG}}+\overrightarrow{\mathrm{AH}})$
$=8(2 \hat{i}+3 \hat{j}-4 \hat{k})$.
$=16 \hat{i}+24 \hat{j}-32 \hat{k}$
12. Two radioactive substances X and Y originally have N_{1} and N_{2} nuclei respectively. Half life of X is half of the half life of Y. After there half lives of Y, number of nuclei of both are equal. The ratio $\frac{N_{1}}{N_{2}}$ will be equal to :
(1) $\frac{8}{1}$
(2) $\frac{1}{8}$
(3) $\frac{3}{1}$
(4) $\frac{1}{3}$

Sol. 1

After n half life no of nuclei undecayed $=\frac{N_{0}}{2^{n}}$
given $T_{\frac{1}{2} x}=\frac{T_{\frac{1}{2}} y}{2}$
So 3 half life of $y=6$ half life of x
Given, $N_{x}=N_{y}\left(\right.$ after $\left.3 T_{\frac{1}{2} y}\right)$
$\frac{N_{1}}{2^{6}}=\frac{N_{2}}{2^{3}}$
$\frac{N_{1}}{N_{2}}=\frac{2^{6}}{2^{3}}=2^{3}=\frac{8}{1}$
13. Match List -I with List- II :

List-I
(a)h (Planck's constant)
(b)E (kinetic energy)
(c)V (electric potential)
(d)P (linear momentum)

List-II

(i) $\left[\mathrm{M} \mathrm{T}^{-1}\right]$
(ii) $\left[M \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
(iii) $\left[M L^{2} \mathrm{~T}^{-2}\right]$
(iv) $\left[\mathrm{ML}^{2} \mathrm{I}^{-1} \mathrm{~T}^{-3}\right]$

Choose the correct answer from the options given below :
(1) (a) \rightarrow (ii), (b) \rightarrow (iii), (c) \rightarrow (iv), (d) \rightarrow (i)
(2) (a) \rightarrow (i), (b) \rightarrow (ii), (c) \rightarrow (iv), (d) \rightarrow (iii)
(3) (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (iv), (d) \rightarrow (i)
(4) (a) \rightarrow (iii), (b) \rightarrow (iv), (c) \rightarrow (ii), (d) \rightarrow (i)

Sol. 1

K.E. $=\left[M L^{2} T^{-2}\right]$
$\mathrm{P}($ linear momentum $)=\left[\mathrm{MLT}^{-1}\right]$
h (planck's constant) $=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
$v($ electric potential $)=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-1}\right]$
14. The pitch of the screw guage is 1 mm and there are 100 divisions on the circular scale. When nothing is put in between the jaws, the zero of the circular scale lines 8 divisions below the reference line. When a wire is placed between the jaws, the first linear scale division is clearly visible while $72^{\text {nd }}$ division on circular scale coincides with the reference line. The radius of the wire is :
(1) 1.64 mm
(2) 1.80 mm
(3) 0.82 mm
(4) 0.90 mm

Sol. 3

Least count. $=\frac{\text { pitch }}{\text { no. of div. }}=\frac{1 \mathrm{~mm}}{100}=0.01 \mathrm{~m}$

+ ve error $=8 \times$ L.C. $=+0.08 \mathrm{~mm}$
measured reading $=1 \mathrm{~mm}+72 \times$ L.C.
$=1 \mathrm{~mm}+0.72 \mathrm{~mm}$
$=1.72 \mathrm{~mm}$
True reading $=1.72-0.08$
$=1.64 \mathrm{~mm}$
Radius $=\frac{1.64}{2}=0.82 \mathrm{~mm}$

15. If the time period of a two meter long simple pendulum is 2 s , the acceleration due to gravity at the place where pendulum is executing S.H.M. is :
(1) $2 \pi^{2} \mathrm{~ms}^{-2}$
(2) $16 \mathrm{~m} / \mathrm{s}^{2}$
(3) $9.8 \mathrm{~ms}^{-2}$
(4) $\pi^{2} \mathrm{~ms}^{-2}$

Sol. 1

$T=2 \pi \sqrt{\frac{1}{g}}$
$T^{2}=\frac{4 \pi^{2} I}{g}$
$g=\frac{4 \pi^{2} \mid}{\mathrm{T}^{2}}$
$=\frac{4 \pi^{2} \times 2}{(2)^{2}}=2 \pi^{2} \mathrm{~ms}^{-2}$
16. An α particle and a proton are accelerated from rest by a potential difference of 200 V . After this, their de Broglie wavelengths are λ_{α} and λ_{p} respectively. The ratio $\frac{\lambda_{\mathrm{p}}}{\lambda_{\alpha}}$ is :
(1) 8
(2) 2.8
(3) 3.8
(4) 7.8

Sol. 2
$\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqv}}}$
$\frac{\lambda_{p}}{\lambda_{\alpha}}=\sqrt{\frac{m_{\alpha} q_{\alpha}}{m_{p} q_{p}}}=\sqrt{\frac{4 \times 2}{1 \times 1}}$
$=2 \sqrt{2}=2.8$
17. Given below are two statements : one is labelled as Assertion A and the other is labelled as reason R.
Assertion A : The escape velocities of planet A and B are same. But A and B are of unequal mass.
Reason R : The product of their mass and radius must be same. $M_{1} R_{1}=M_{2} R_{2}$
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both A and R are correct but R is NOT the correct explanation of A
(2) A is correct but R is not correct
(3) Both A and R are correct and R is the correct explanation of A
(4) A is not correct but R is correct

Sol. 2
$\mathrm{V}_{\mathrm{e}}=$ escape velocity
$\mathrm{v}_{\mathrm{e}}=\sqrt{\frac{2 G M}{R}}$
so for same $v_{e}, \frac{M_{1}}{R_{1}}=\frac{M_{2}}{R_{2}}$
A is true but R is false
18. The angular frequency of alterlating current in a L-C-R circuit is $100 \mathrm{rad} / \mathrm{s}$. The components connected are shown in the figure. Find the value of inductance of the coil and capacity of condenser.

(1) 0.8 H and $250 \mu \mathrm{~F}$
(2) 0.8 H and $150 \mu \mathrm{~F}$
(3) 1.33 H and $250 \mu \mathrm{~F}$
(4) 1.33 H and $150 \mu \mathrm{~F}$

Sol. 1

Since key is open, circuit is series
$15=\mathrm{i}_{\text {rms }}$ (60)
$\therefore \mathrm{i}_{\mathrm{rms}}=\frac{1}{4} \mathrm{~A}$
Now, $20=\frac{1}{4} X_{L}=\frac{1}{4}(\omega \mathrm{~L})$
$\therefore \mathrm{L}=\frac{4}{5}=0.8 \mathrm{H}$
$\& 10=\frac{1}{4} \frac{1}{(100 \mathrm{C})}$
$C=\frac{1}{4000} F=250 \mu \mathrm{~F}$
19. Two coherent light sources having intensity in the ratio $2 x$ produce an interference pattern. The ratio $\frac{\mathrm{I}_{\text {max }}-\mathrm{I}_{\text {min }}}{\mathrm{I}_{\text {max }}+\mathrm{I}_{\text {min }}}$ will be :
(1) $\frac{2 \sqrt{2 x}}{x+1}$
(2) $\frac{\sqrt{2 x}}{2 x+1}$
(3) $\frac{2 \sqrt{2 x}}{2 x+1}$
(4) $\frac{\sqrt{2 x}}{x+1}$

Sol. 3

Let $\mathrm{I}_{1}=2 \mathrm{x}$
$\mathrm{I}_{2}=1$
$I_{\text {max }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$
$I_{\text {min }}=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$
$\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=\frac{(\sqrt{2 x}+1)^{2}-(\sqrt{2 x}-1)^{2}}{(\sqrt{2 x}+1)^{2}+(\sqrt{2 x}-1)^{2}}$
$=\frac{4 \sqrt{2 x}}{2+4 x}=\frac{2 \sqrt{2 x}}{1+2 x}$
20. Magnetic fields at two points on the axis of a circular coil at a distance of 0.05 m and 02 m from the centre are in the rato $8: 1$. The radius of coil is \qquad -
(1) 0.15 m
(2) 0.2 m
(3) 0.1 m
(4) 1.0 m

Sol. 3

$B=\frac{\mu_{0} N i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$
at $x_{1}=0.05 m, B_{1}=\frac{\mu_{0} N i R^{2}}{2\left(R^{2}+(0.05)^{2}\right)^{3 / 2}}$
at $\mathrm{x}_{2}=0.2 \mathrm{~m}, \mathrm{~B}_{2}=\frac{\mu_{0} \mathrm{NiR}^{2}}{2\left(\mathrm{R}^{2}+(0.2)^{2}\right)^{3 / 2}}$
$\frac{\mathrm{B}_{1}}{\mathrm{~B}_{2}}=\frac{\left(\mathrm{R}^{2}+0.04\right)^{3 / 2}}{\left(\mathrm{R}^{2}+0.0025\right)^{3 / 2}}$
$\left(\frac{8}{1}\right)^{2 / 3}=\frac{\mathrm{R}^{2}+0.04}{\mathrm{R}^{2}+0.0025}$
$4\left(R^{2}+0.0025\right)=R^{2}+0.04$
$3 R^{2}=0.04-0.0100$
$R^{2}=\frac{0.03}{3}=0.01$
$R=\sqrt{0.01}=0.1 \mathrm{~m}$

Section - B

1. The same size images are formed by a convex lens when the object is placed at 20 cm or at 10 cm from the lens. The focal length of convex lens is \qquad cm.

Sol. 15
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\mathrm{m}=\frac{\mathrm{v}}{\mathrm{u}}$
from (1) and (2) we get
$m=\frac{f}{f+u}$
given conditions
$m_{1}=-m_{2}$
$\frac{f}{f-10}=\frac{-f}{f-20}$
$f-20=-f+10$
$2 f=30$
$\mathrm{f}=15 \mathrm{~cm}$
2. The electric field in a region is given by $\vec{E}=\left(\frac{3}{5} E_{0} \hat{i}+\frac{4}{5} E_{0} \hat{j}\right) \frac{N}{C}$. The ratio of flux of reported field through the rectangular surface of area $0.2 \mathrm{~m}^{2}$ (parallel to $y-z$ plane) to that of the surface of area $0.3 \mathrm{~m}^{2}$ (parallel to $x-z$ plane) is $a: b$, where $a=$
[Here \hat{i}, \hat{j} and \hat{k} are unit vectors along x, y and z-axes respectively]
Sol. 0.5
$\phi=\vec{E} \cdot \vec{A}$
$\vec{A}_{a}=0.2 \hat{i}$
$\vec{A}_{b}=0.3 \hat{j}$
$\phi_{a}=\left(\frac{3}{5} E_{0} \hat{i}+\frac{4}{5} E_{0} \hat{j}\right) \cdot 0 \cdot 2 \hat{i}$
$\phi_{\mathrm{a}}=\frac{3}{5} \mathrm{E}_{0} \times 0.2$
$\phi_{a}=\left(\frac{3}{5} E_{0} \hat{i}+\frac{4}{5} E_{0} \hat{j}\right) .0 .3 \hat{j}$
$\phi_{\mathrm{b}}=\frac{4}{5} \mathrm{E}_{0} \times 0.3$
$\frac{a}{b}=\frac{\phi_{a}}{\phi_{b}}=\frac{\frac{3}{5} E_{0} \times 0.2}{\frac{4}{5} E_{0} \times 0.3}=\frac{6}{12}=0.5$
3. 512 identical drops of mercury are charged to a potential of 2 V each. The drops are joined to form a single drop. The potential of this drop is \qquad V.

Sol. 128
Let charge on each drop $=q$
radius $=r$
$v=\frac{k q}{r}$
$2=\frac{\mathrm{kq}}{\mathrm{r}}$
radius of bigger
$\frac{4}{3} \pi R^{3}=512 \times \frac{4}{3} \pi r^{3}$
$R=8 r$
$v=\frac{k(512) q}{R}=\frac{512}{8} \frac{k q}{r}=\frac{512}{8} \times 2$
$=128 \mathrm{~V}$
4. The potential energy (U) of a diatomic molecule is a function dependent on r (interatomic distance) as $U=\frac{\alpha}{r^{10}}-\frac{\beta}{r^{5}}-3$ Where, a and b are positive constants. The equilibrium distance between two atoms will $\left(\frac{2 \alpha}{\beta}\right)^{\frac{a}{b}}$. Where $a=$ \qquad
Sol. 1
$F=-\frac{d U}{d r}$
$F=-\left[-\frac{10 \alpha}{r^{11}}+\frac{5 \beta}{r^{6}}\right]$
for equilibrium, $F=0$
$\frac{10 \alpha}{r^{11}}=\frac{5 \beta}{r^{6}}$
$\frac{2 \alpha}{\beta}=r^{5}$
$r=\left(\frac{2 \alpha}{\beta}\right)^{1 / 5}$
$a=1$
5. A small bob tied at one end of a thin string of length 1 m is describing a vertical circle so that the maximum and minimum tension in the string are in the rato $5: 1$. The velocity of the bob at the highest position is \qquad m / s. (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
Sol. 5

by conservation of energy,

$$
\begin{equation*}
\mathrm{v}_{\min }^{2}=\mathrm{V}^{2}-4 \mathrm{gl} \tag{1}
\end{equation*}
$$

$T_{\max }=m g+\frac{m v^{2}}{\mathrm{l}}$
$\mathrm{T}_{\text {min }}=\frac{\mathrm{mv} v_{\text {min }}^{2}}{\mathrm{l}}-\mathrm{mg}$
from equation (1) and (3)

$$
T_{\min }=\frac{m}{l}\left(v^{2}-4 g l\right)-m g
$$

$$
\frac{T_{\max }}{T_{\min }}=\frac{\frac{v^{2}}{l}+g}{\frac{v^{2}}{l}-5 g}
$$

$$
\frac{5}{1}=\frac{\frac{v^{2}}{1}+10}{\frac{v^{2}}{1}-50}
$$

$$
5 v^{2}-250=v^{2}+10
$$

$$
\begin{equation*}
v^{2}=65 \tag{4}
\end{equation*}
$$

from equation (4) and (1)
$v_{\text {min }}^{2}=65-40=25$
$v_{\text {min }}=5$
6. In a certain themodynamical process, the pressure ofa gas depends on its volume as kV^{3}. The work done when the temperature changes from $100^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ will be \qquad $n \mathrm{R}$, where n denotes number of moles of a gas.
Sol. 50
$\mathrm{P}=k v^{3}$
$p v^{-3}=k$
$x=-3$
$w=\frac{n R\left(T_{1}-T_{2}\right)}{x-1}$
$=\frac{n R(100-300)}{-3-1}$
$=\frac{\mathrm{nR}(-200)}{-4}$
$=50 \mathrm{nR}$
7. In the given circuit of potentiometer, the potentital difference E across $A B$ (10 m length) is larger than E_{1} and E_{2} as well. For key K_{1} (closed), the jockey is adjusted to touch the wire at point J_{1} so that there is no deflection in the galvanometer. Now the first battery $\left(\mathrm{E}_{1}\right)$ is replaced by second battery $\left(E_{2}\right)$ for working by making K_{1} open and E_{2} closed. The galvanometer gives then null deflection at J_{2}. The value of $\frac{E_{1}}{E_{2}}$ is $\frac{a}{b}$, where $a=$ \qquad -.

Sol. 1

$\frac{E_{1}}{E_{2}}=\frac{I_{1}}{I_{2}}$
$=\frac{3 \times 100 \mathrm{~cm}+(100-20) \mathrm{cm}}{7 \times 100 \mathrm{~cm}+60 \mathrm{~cm}}$
$=\frac{380}{760}=\frac{1}{2}=\frac{a}{b}$
$a=1$
8. A monoatomic gas of mass 4.0 u is kept in an insulated container. Container is moving with velocity $30 \mathrm{~m} / \mathrm{s}$. If container is suddenly stopped then change in temperature of the gas ($R=$ gas constant) is $\frac{x}{3 R}$. Value of x is \qquad .

Sol. 3600

$\Delta K_{E}=\Delta U$
$\Delta U={ }^{n} C_{v} \Delta T$
$\frac{1}{2} m v^{2}=\frac{3}{2} n R \Delta T$
$\frac{m v^{2}}{3 n R}=\Delta T$
$\frac{4 \times(30)^{2}}{3 \times 1 \times \mathrm{R}}=\Delta \mathrm{T}$
$\Delta T=\frac{1200}{R}$
$\frac{x}{3 R}=\frac{1200}{R}$
$x=3600$
9. A coil of inductance 2 H having negligible resistance is connected to a source of supply whose voltage is given by $V=3 t$ volt. (where t is in second). If the voltage is applied when $t=0$, then the energy stored in the coil after 4 s is \qquad J.

Sol. 144
$\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=\varepsilon$
$=3 \mathrm{t}$
$L \int d i=3 \int t d t$
$L i=\frac{3 t^{2}}{2}$
$\mathrm{i}=\frac{3 \mathrm{t}^{2}}{2 \mathrm{~L}}$
energy, $\mathrm{E}=\frac{1}{2} \mathrm{Li}^{2}$
$=\frac{1}{2} \mathrm{~L}\left(\frac{3 \mathrm{t}^{2}}{2 \mathrm{~L}}\right)^{2}$
$=\frac{1}{2} \times \frac{9 t^{4}}{4 \mathrm{~L}}$
$=\frac{9}{8} \times \frac{(4)^{4}}{4 \times 2}=144 \mathrm{~J}$
10. A transmitting station releases waves of wavelength 960 m . A capacitor of $256 \mu \mathrm{~F}$ is used in the resonant circuit. The self inductance of coil necessary for resonance is \qquad $\times 10^{-8} \mathrm{H}$.
Sol. 10
Since resonance
$\omega_{\mathrm{r}}=\frac{1}{\sqrt{\mathrm{LC}}}$
$\therefore 2 \pi f=\frac{1}{\sqrt{\text { LC }}}$
$\therefore 4 \pi^{2} \frac{\mathrm{C}^{2}}{\lambda^{2}}=\frac{1}{\mathrm{LC}}$
$\therefore \frac{4 \pi^{2} \times 9 \times 10^{8} \times 9 \times 10^{8}}{960 \times 960}=\frac{1}{\mathrm{~L} \times 2.56 \times 10^{-6}}$
$L=\frac{375 \times 960}{10^{-6} \times 4 \times \pi^{2} \times 9 \times 10^{16}}=\frac{10^{3}}{10^{10}}$
$=10^{-7} \mathrm{H}$
$=10 \times 10^{-8}$

