SECTION - A

1. At time $t=0$, a meterial is composed of two radioactive atoms A and B, where $N_{A}(0)=2 N_{B}(0)$. The decay constant of both kind of radioactive atoms is λ. However, A disintegrates to B and B disntegrates to C. Which of the following figures represetns the evolution of $N_{B}(t) / N_{B}(0)$ with respec to time t?
$\left[\begin{array}{l}N_{A}(0)=\text { No. of } A \text { atoms at } t=0 \\ N_{B}(0)=N O \text {. of } B \text { atoms at } t=0\end{array}\right]$
(1)

(2)

(3)

(4)

Sol. 2

$\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}$
$\frac{d N_{B}}{d t}=\lambda N_{A}-\lambda N_{B}, \frac{d N_{B}}{d t}=2 \lambda N_{B_{0}} e^{-\lambda t}-\lambda N_{B}$
$e^{-\lambda t}\left(\frac{d N_{B}}{d t}+\lambda N_{B}\right)=2 \lambda N_{B_{0}} e^{-\lambda t} \times e^{\lambda t}$
$\frac{d}{d t}\left(N_{B} e^{\lambda t}\right)=2 \lambda N_{B_{0}}$, on integrating
$N_{B} e^{\lambda t}=2 \lambda t N_{B_{0}}+N_{B_{0}}, \quad N_{B}=N_{B_{0}}[1+2 \lambda t] e^{-\lambda t}$
$\frac{d N_{B}}{d t}=0$ at $-\lambda[1+2 \lambda t] e^{-\lambda t}+2 \lambda e^{-\lambda t}=0$
$\mathrm{N}_{\mathrm{B}_{\text {max }}}$ at $\mathrm{t}=\frac{1}{2 \lambda}$
2. A bomb is dropped by a fighter plane flying horizontally. To an observer sitting in the plane, the trajectory of the bomb is a:
(1) Parabola in a direction opposite to the motion of plane
(2) Straight line vertically down the plane
(3) hyprebola
(4) parabola in the direction of motion of plane

Sol. 2

$v_{B}=u_{0} \hat{i}-g t \hat{j}$
$\vec{V}_{B / P}=\vec{V}_{B}-\vec{V}_{P}$
$\vec{V}_{B / P}=-8 t \hat{j}$
Straight line vertically down
3. The temperature of equal masses of three different liquids x, y and z are $10^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ respectively. The temperature of mixture when x is mixed with y is $16^{\circ} \mathrm{C}$ and that when y is mixed with z is $26^{\circ} \mathrm{C}$. The temperature of mixture when x and z are mixed will be:
(1) $28.32^{\circ} \mathrm{C}$
(2) $23.84^{\circ} \mathrm{C}$
(3) $20.28^{\circ} \mathrm{C}$
(4) $25.62^{\circ} \mathrm{C}$

Sol. 2

$\mathbf{X} \quad \mathbf{Y}$
$\mathrm{m}_{1}=\mathrm{m}$
$m_{2}=m$

Z

$\mathrm{T}_{1}=10^{\circ} \mathrm{C}$
$\mathrm{T}_{2}=20^{\circ} \mathrm{C}$
$\mathrm{m}_{3}=\mathrm{m}$
S_{1}
S_{2}
$\mathrm{T}_{3}=30^{\circ} \mathrm{C}$
When $x \& y$ are mixed, $T_{f_{1}}=16^{\circ} \mathrm{C}$
$m_{1} s_{1} T+m_{2} s_{2} T_{2}=\left(m_{1} s_{1}+m_{2} S_{2}\right) T f_{1}$
$s_{1} \times 10+s_{2} \times 20=\left(s_{1}+s_{2}\right) \times 16$
$\mathrm{s}_{1}=\frac{2}{3} \mathrm{~s}_{2}$
When y \& z are mixex, $T_{f_{2}}=26^{\circ} \mathrm{C}$
$m_{2} s_{2} T+m_{3} s_{3} T_{3}=\left(m_{3} s_{3}+m_{3} s_{3}\right) T f_{2}$
$\mathrm{s}_{2} \times 20+\mathrm{s}_{3} \times 30=\left(\mathrm{s}_{2}+\mathrm{s}_{3}\right) \times 26$
$\mathrm{s}_{3}=\frac{3}{2} \mathrm{~s}_{2}$
When $x \& z$ are mixex
$m_{1} s_{1} T_{1}+m_{3} s_{3} T_{3}=\left(m_{1} s_{1}+m_{3} s_{3}\right) T f$
$\frac{2}{3} \mathrm{~S}_{2} \times 10+\frac{2}{3} \mathrm{~S}_{2} \times 20=\left(\frac{2}{3} \mathrm{~S}_{2}+\frac{3}{2} \mathrm{~S}_{2}\right) \mathrm{T}_{\mathrm{f}}$
$\mathrm{T}_{\mathrm{f}}=23.84^{\circ} \mathrm{C}$
4. Match List-I with List-II

List-I

(a) Magnetic Induction
(b) Magnetic Flux
(c) Magnetic Permeability
(d) Manetization

List-II

(i) $M L^{2} T^{-2} A^{-1}$
(ii) $M^{0} L^{-1} A$]
(iii) $M T^{-2} A^{-1}$
(iv) $M L T^{-2} A^{-2}$

Choose the most appropriate answer from the options given below
(1) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(2) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
(3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(4) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)

Sol. 3
(a) Magnetic Induction $=M T^{-2} A^{-1}$
(b) Magnetic Flux $=M L^{2} T^{-2} A^{-1}$
(c) Magnetic Permeability $=M L T^{-2} A^{-2}$
(d) Magnetization $=M^{0} L^{-1} A$
5. The de-Broglie wavelength of a particle having kinetic energy E is λ. How much extra energy must be given to this particle so that the de-Broglie wavelength reduces to 75% of the initial value ?
(1) $\frac{1}{9} E$
(2) E
(3) $\frac{7}{9} E$
(4) $\frac{16}{9} E$

Sol. 3
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}, \mathrm{mv}=\sqrt{2 \mathrm{mE}}$
$\lambda \propto \frac{1}{\sqrt{E}}$
$\frac{\lambda_{2}}{\lambda_{1}}=\sqrt{\frac{E_{1}}{E_{2}}}=\frac{3}{4}, \lambda_{2}=0.75 \lambda_{1}$
$\frac{E_{1}}{E_{2}}=\left(\frac{3}{4}\right)^{2}$
$E_{2}=\frac{16}{9} E_{1}=\frac{16}{9} E$ $\left(E_{1}=E\right)$

Extra energy given $=\frac{16}{9} E-E=\frac{7}{9} E$
6. In the given cirucit the $A C$ source has $\omega=100 \mathrm{rads}^{-1}$. Considering the inductor and capacitor to be ideal, what will be the currect I flowing through the circuit?

(1) 5.9 A
(2) 0.94 A
(3) 4.24 A
(4) 6 A

Sol. NTA Ans. 4.24

Motion Ans. 3
$Z_{C}=\sqrt{\left(\frac{1}{\omega \mathrm{C}}\right)^{2}+\mathrm{R}^{2}}$
$=\sqrt{\left(\frac{1}{100 \times 100 \times 10^{-6}}\right)^{2}+100^{2}}$
$Z_{C}=\sqrt{(100)^{2}+(100)^{2}}$
$=100 \sqrt{2}$
$Z_{L}=\sqrt{(\omega L)^{2}+R^{2}}$
$\sqrt{(100 \times 0.5)^{2}+50^{2}}$
$=50 \sqrt{2}$
$\mathrm{i}_{\mathrm{c}}=\frac{200}{\mathrm{z}_{\mathrm{c}}}=\frac{200}{100 \sqrt{2}}=\sqrt{2}$
$\mathrm{i}_{\mathrm{L}}=\frac{200}{\mathrm{z}_{\mathrm{L}}}=\frac{200}{50 \sqrt{2}}=2 \sqrt{2}$
$\cos \phi_{1}=\frac{100}{10 \sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow \phi_{1}=45^{\circ}$
$\cos \phi_{2}=\frac{50}{50 \sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow \phi_{2}=45^{\circ}$

$\mathrm{I}=\sqrt{\mathrm{I}_{\mathrm{C}}^{2}+\mathrm{I}_{\mathrm{L}}^{2}}=\sqrt{2+8}=\sqrt{10}$
$\mathrm{I}=3.16 \mathrm{~A}$
7. If the length of the prnedulum in pendulum clock increases by 0.1%, then the error in time per day is;
(1) 8.64 s
(2) 86.4 s
(3) 4.32 s
(4) 43.2 s

Sol. 4
$T=2 \pi \sqrt{\frac{\ell}{g}}$
$\frac{\Delta T}{T}=\frac{1}{2} \frac{\Delta \ell}{\ell}$
$\Delta T=\frac{1}{2} \times \frac{0.1}{100} \times 24 \times 3600$
$\Delta T=43.2$
8. The two thin coaxial rings, each of radius ' a ' and having charges $+Q$ and $-Q$ respectively are separated by a distance of 's'. The potential difference between the centre of the two rings is:
(1) $\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{1}{\mathrm{a}}+\frac{1}{\sqrt{\mathrm{~s}^{2}+\mathrm{a}^{2}}}\right]$
(2) $\frac{Q}{2 \pi \varepsilon_{0}}\left[\frac{1}{a}-\frac{1}{\sqrt{s^{2}+a^{2}}}\right]$
(3) $\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{1}{a}-\frac{1}{\sqrt{s^{2}+a^{2}}}\right]$
(4) $\frac{Q}{2 \pi \varepsilon_{0}}\left[\frac{1}{a}+\frac{1}{\sqrt{s^{2}+a^{2}}}\right]$

Sol. 2
$V_{A}=\frac{K Q}{a}-\frac{K Q}{\sqrt{a^{2}+s^{2}}}$
$V_{B}=\frac{-K Q}{a}+\frac{K Q}{\sqrt{a^{2}+s^{2}}}$
$V_{A}-V_{B}=\frac{2 K Q}{a}-\frac{2 K Q}{\sqrt{a^{2}+s^{2}}}$
$=\frac{\mathrm{Q}}{2 \pi \varepsilon_{0}}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~s}^{2}+\mathrm{a}^{2}}\right)$
9. Four NOR gates are connected as shown in figure. The truth table for the given figure is:

Sol. 4

$y=\overline{(\overline{A+\overline{A+B}})+(\overline{B+\overline{A+B}})}$
$y=(A+\overline{A+B}) \cdot(B+\overline{A+B})$

\mathbf{A}	\mathbf{B}	\mathbf{Y}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

10. A cylindrical container of volume $4.0 \times 10^{-3} \mathrm{~m}^{3}$ contains one mole of hydrogen and two moles of carbon dioxide. Assume the temperature of the mixture is 400 K . The pressure of the mixture of gases is : [Take gas constant as $8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$]
(1) $24.9 \times 10^{3} \mathrm{~Pa}$
(2) 24.9 Pa
(3) $249 \times 10^{1} \mathrm{~Pa}$
(4) $24.9 \times 10^{5} \mathrm{~Pa}$

Sol. 4

$\mathrm{V}=4 \times 10^{-3} \mathrm{~m}^{3}, \mathrm{n}=3$ moles, $\mathrm{T}=400 \mathrm{~K}$
$P V=n R T \Rightarrow P=\frac{n R T}{V}$
$P=\frac{3 \times 8.3 \times 400}{4 \times 10^{-3}}=24.9 \times 10^{5} \mathrm{~Pa}$
11. A transmitting antenna at top of a tower has height of 50 m and the height of receiving antenna is 80 m . What is the rnage of communication for line of Sight (LoS) mode? [use radius of earth $=6400 \mathrm{~km}$]
(1) 45.5 km
(2) 57.28 km
(3) 80.2 km
(4) 144.1 km

Sol. 2

$\mathrm{d}_{\mathrm{t}}=\sqrt{2 \mathrm{Rh}_{1}}+\sqrt{2 \mathrm{Rh}_{2}}=\sqrt{2 \mathrm{R}}\left(\sqrt{\mathrm{h}_{1}}+\sqrt{\mathrm{h}_{2}}\right)$
$=\left(2 \times 6400 \times 10^{3}\right)^{1 / 2}(\sqrt{50}+\sqrt{80})=3578(7.07+8.94)=57.28 \mathrm{Km}$
12. An electric bulb of 500 watt at 100 volt is used in a circuit having a 200 v supply. Calculate the resistance R to be connected in series with the bulb so that the power delivered by the bulb is 500 W.
(1) 20Ω
(2) 5Ω
(3) 30Ω
(4) 10Ω

Sol. 1

500 watt at 100 v

$\mathrm{P}=\mathrm{Vi}$
$500=\mathrm{Vi}$
$\mathrm{I}=5 \mathrm{Amp}$
$\mathrm{V}=\mathrm{i} \times \mathrm{R}$
$R=20$
13. If you are provided a set of resistances $2 \Omega, 4 \Omega, 6 \Omega$ and 8Ω. Connect these resistances so as to obtain an equivalent resistance of $\frac{46}{3} \Omega$.
(1) 2Ω and 4Ω are in parallel with 6Ω and 8Ω in series
(2) 6Ω and 8Ω are in parallel with 2Ω and 4Ω in series
(3) 4Ω and 6Ω are in prallel with 2Ω and 8Ω in series
(4) 2Ω and 6Ω are in parallel with 4Ω and 8Ω in series

Sol. 1

14. The solid cylinder of length 80 cm and mass M has a radius of 20 cm . Calculate the density of the material used if the moment of inertia of the cylinder about an axis $C D$ parallel to $A B$ as shown in figure is $2.7 \mathrm{~kg} \mathrm{~m}^{2}$.

(1) $7.5 \times 10^{1} \mathrm{~kg} / \mathrm{m}^{3}$
(2) $7.5 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}$
(3) $14.9 \mathrm{~kg} / \mathrm{m}^{3}$
(4) $1.49 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}$

Sol. 4
Parallel axis theorem
$I=I_{C M}+M d^{2}$
$I=\frac{M r^{2}}{2}+M\left(\frac{L}{2}\right)^{2}$
$2.7=M \frac{(0.2)^{2}}{2}+M\left(\frac{0.8}{2}\right)^{2}$
$2.7=M\left[\frac{2}{100}+\frac{16}{100}\right]$
$M=15 \mathrm{~kg}$
$\Rightarrow \rho=\frac{M}{\pi r^{2} L}=\frac{15}{\pi(0.2)^{2} \times 0.8}$
$=0.1492 \times 10^{3}$
15. A light beam is described by $E=800 \sin \omega\left(t-\frac{x}{C}\right)$. An electron is allowed to move normal to the propagation of light bean with a speed of $3 \times 10^{7} \mathrm{~ms}^{-1}$. What is the maximum magnetic force exerted on the electron?
(1) $1.28 \times 10^{-18} \mathrm{~N}$
(2) $12.8 \times 10^{-17} \mathrm{~N}$
(3) $12.8 \times 10^{-18} \mathrm{~N}$
(4) $1.28 \times 10^{-21} \mathrm{~N}$

Sol. 3

$\frac{\mathrm{E}_{0}}{\mathrm{C}}=\mathrm{B}_{0}$
$F_{\text {max }}=\mathrm{eB}_{0} \mathrm{~V}=1.6 \times 10^{-19} \times \frac{800}{3 \times 10^{8}} \times 3 \times 10^{7}$
$=12.8 \times 10^{-18} \mathrm{~N}$
16. The angle between vector (\vec{A}) and $(\vec{A}-\vec{B})$ is:

(1) $\tan ^{-1}\left(\frac{\sqrt{3} B}{2 A-B}\right)$
(2) $\tan ^{-1}\left(\frac{-\frac{B}{2}}{A-B \frac{\sqrt{3}}{2}}\right)$
(3) $\tan ^{-1}\left(\frac{A}{0.7 B}\right)$
(4) $\tan ^{-1}\left(\frac{B \cos \theta}{A-B \sin \theta}\right)$

Sol. 1

Angle between \vec{A} and $\vec{B}, \theta=60^{\circ}$
Angle between \vec{A} and $\vec{A}-\vec{B}$
$\tan \alpha=\frac{B \sin \theta}{A-B \cos \theta}$
$=\frac{B \sqrt{\frac{3}{2}}}{A-B \times \frac{1}{2} 2}$
$\tan \alpha=\frac{\sqrt{3} B}{2 A-B}$
17. Two blocks of masses 3 kg and 5 kg are connected by a metal wire going over a smoth pulley. The breaking stress of the metal is $\frac{24}{\pi} \times 10^{2} \mathrm{Nm}^{-2}$. What is the minimum radius of the wire? (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

(1) 125 cm
(2) 150 cm
(3) 1.25 cm
(4) 12.5 cm

Sol. 4

$\frac{24}{\pi} \times 10^{2}=\frac{75}{2 \times \pi R^{2}}$
$R^{2}=\frac{75}{2 \times 24 \times 100}=\frac{3}{8 \times 24}$
$\Rightarrow R=0.125$,
$R=12.5 \mathrm{~cm}$
18. A refrigerator consumes an average 35 W power to operate between temperature $-10^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. If there is no loss of energy then how much average heat per second does it transfer?
(1) $263 \mathrm{~J} / \mathrm{s}$
(2) $298 \mathrm{~J} / \mathrm{s}$
(4) $35 \mathrm{~J} / \mathrm{s}$
(4) $350 \mathrm{~J} / \mathrm{s}$

Sol. 1

$\frac{T_{L}}{T_{H}-T_{L}}=$ C.O.P. $=\frac{\frac{d H}{d t}}{\frac{d W}{d t}}$
$\frac{263}{35} \times 35=\frac{\mathrm{dH}}{\mathrm{dt}}$
$\frac{\mathrm{dH}}{\mathrm{dt}}=263 \mathrm{watts}$
19. A parallel-plate capacitor with plate area A has separation d between the plates. Two dielectric slabs of dielectric constant K_{1} and K_{2} of same area $A / 2$ and thickness $d / 2$ are inserted in the space between the plates. The capacitance of the capacitor will be given by :
(1) $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}\left(\frac{1}{2}+\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}\right)$
(2) $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}\left(\frac{1}{2}+\frac{2\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)}{\mathrm{K}_{1} \mathrm{~K}_{2}}\right)$
(3) $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}\left(\frac{1}{2}+\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}\right)$
(4) $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}\left(\frac{1}{2}+\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{2\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)}\right)$

Sol. 1

$\mathrm{C}_{\text {eq }}=\frac{\frac{\mathrm{A}}{2} \varepsilon_{0}}{\mathrm{~d}}+\frac{\mathrm{A} \varepsilon_{0}}{\mathrm{~d}} \frac{\mathrm{~K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
$=\frac{\mathrm{A} \varepsilon_{0}}{\mathrm{~d}}\left(\frac{1}{2}+\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}\right)$

20. A particle of mass m is suspended from a ceiling through a string of length L. The particle moves in a horizontal circle of radius r such that $r=\frac{L}{\sqrt{2}}$. The speed of particle will be;
(1) $2 \sqrt{\mathrm{rg}}$
(2) $\sqrt{2 \mathrm{rg}}$
(3) $\sqrt{\mathrm{rg}}$
(4) $\sqrt{\frac{\mathrm{rg}}{2}}$

Sol. 3
Conical pendulum

$r=\frac{\ell}{\sqrt{2}}$
$\sin \theta=\frac{r}{2}=\frac{1}{\sqrt{2}}$
$\theta=45^{\circ}$
$T \sin \theta=\frac{m v^{2}}{r}$
$\mathrm{T} \cos \theta=\mathrm{mg}$
$\tan \theta-\frac{\mathrm{v}^{2}}{\mathrm{rg}} \Rightarrow \mathrm{v}=\sqrt{\mathrm{rg}}$

Section B

1. The coefficient of static friction between two blocks is 0.5 and the table is smooth. The maximum horizontal force that can be applied to move the blocks together is \qquad N. (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

Sol. 15

$\mathrm{F}=3 \mathrm{a}$ (for system)(i)
$\underset{\mathrm{fs}_{\max }=1 \mathrm{a} \text { (for } 1 \mathrm{~kg} \text { block) }}{\mathrm{fs}_{\text {max }}}$
$\mu \times 1 \times g=a$
$\Rightarrow 5=\mathrm{a}$
$\mathrm{F}=15 \mathrm{~N}$
2. The acceleration due to gravity is found upto an accuracy of 4% on a planet. The enrgy supplied to a simple pendulum of known mass ' m ' to undertake oscillations of time period T is being estimated. If time period is measured to an accuray of 3%, the accuracy to which E is known as \qquad \%.
Sol. 14
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \Rightarrow \ell=\frac{\mathrm{T}^{2} \mathrm{~g}}{4 \pi^{2}}$
$E=m g \ell \frac{\theta^{2}}{2}=m g^{2} \frac{T^{2} \theta^{2}}{8 \pi^{2}}$
$\frac{d E}{E}=2\left(\frac{d g}{g}+\frac{d T}{T}\right)$
$=(4+3)=14 \%$
3. An object is plaed at a distance of 12 cm from a convex lens. A convex mirror of focal length 15 cm is palced on other side of lens at 8 cm as shown in the figure. Image of object coincides with the object.

When the convex mirror is removed, a real and inverted image is formed at a positon. tHE distance of the image from the object will be \qquad (cm).

Sol. 50

For the object to coincide with image, the light must fall perpendicualrly to mirror. Which means that the light will have to convarge at C of mirror. Without the mirror also, the light would covergae at C .

So, the distance is : $12+8+30=50 \mathrm{~cm}$
4. A source of light is placed in front of a screen. Intensity of light on the screen is I.Two Polaroids P_{1} and P_{2} are so placed in between the source of light and screen that the intensity of light on screen is $I / 2 . P_{2}$ should be rotated by an angle of \qquad (degrees) so that the intensity of light on the screen becomes $\frac{3 \mathrm{I}}{8}$.
Sol. 30

$$
\mathrm{I}=\frac{\mathrm{I}_{0}}{2} \cos ^{2} \phi
$$

$\frac{I}{2} \cos ^{2} \phi=\frac{3 I}{8}$
$\cos ^{2} \phi=\frac{3}{4}$
$\cos ^{2} \phi=\frac{\sqrt{3}}{2}$
$\Rightarrow \phi=30$
5. A coil in the shape of an equilateral triange of side 10 cm lies in a vertical plane between the pole pieces of permanent magnet producing a horizontal magentic field 20 mT . The torque acting on the coil when a current of 0.2 A is passed throgh it and its plane becomes parallel to the magetnic field will be $\sqrt{x} \times 10^{-5} \mathrm{Nm}$. The value of x is \qquad .

Sol. 3

$\vec{\tau}=\vec{M} \times \vec{B}=M B \sin 90^{\circ}$
$=M B=\frac{i \sqrt{3} \ell^{2}}{4} B$
$=\sqrt{3} \times 10^{-5} \mathrm{~N}-\mathrm{m}$
6. If the maximum value of accelerating potential provided by a radio frequency oscillator is 12 kV . The number of revolution made by a proton in a cyclotron to achieve one sixth of the speed of light is \qquad .
$\left[\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right.$, Speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$]

Sol. 543

$\mathrm{V}=12 \mathrm{kV}$
Number of revolution $=\mathrm{n}$
$n\left[2 \times q_{p} \times v\right]=\frac{1}{2} m_{p} \times v_{p}^{2}$
$\mathrm{n}\left[2 \times 1.6 \times 10^{-19} \times 12 \times 10^{3}\right]$
$=\frac{1}{2} \times 1.67 \times 10^{-27} \times\left[\frac{3 \times 10^{8}}{6}\right]^{2}$
$\mathrm{n}\left(38.4 \times 10^{-16}\right)=0.2087 \times 10^{11}$
$\mathrm{n}=543.4$
7. A circular coil of raidus 8.0 cm and 20 turns is rotated about its vertical diameter with an angular speed of $50 \mathrm{rad} \mathrm{s}^{-1}$ in a uniform horizontal magnetic field of $3.0 \times 10^{-2} \mathrm{~T}$. The maximum emf induced the coil will be \qquad $\times 10^{-2}$ volt (rounded off to the nearest integer).

Sol. 60

Maximum emf $\varepsilon=\mathrm{N} \omega \mathrm{AB}$
$N=20, \omega=50, B=3 \times 10^{-2} \mathrm{~T}$
$\varepsilon=20 \times 50 \times \pi \times(0.08)^{2} \times 3 \times 10^{-2}=60.28 \times 10^{-2}$
Rounded off to nearest integer $=60$
8. Two waves are simultaneously passing throgh a string and their equations are: $y_{1}=A_{1} \sin k(x-v t), y_{2}=A_{2} \sin k\left(x-v t+x_{0}\right)$. Given amplitudes $A_{1}=12 \mathrm{~mm}$ and $A_{2}=5 \mathrm{~mm}, x_{0}$ $=3.5 \mathrm{~cm}$ and wave number $\mathrm{k}=6.28 \mathrm{~cm}^{-1}$. The amplitude of resulting wave will be \qquad mm .

Sol. 7

$y_{1}=A_{1} \sin k(x-v t)$
${ }^{\prime} y_{2}=12 \sin 6.28(x-v t)$
$y_{2}=5 \sin 6.28(x-v t+3.5)$
$\Delta \phi=\frac{2 \pi}{\lambda}(\Delta x)$
$=K(\Delta x)$
$=6.28 \times 3.5=\frac{7}{2} \times 2 \pi=7 \pi$
$A_{\text {net }}=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi}$
$A_{\text {net }}=\sqrt{(12)^{2}+(5)^{2}+2(12)(5) \cos (7 \pi)}$
$=\sqrt{144+25-120}=7$
9. For the given circuit, the power across zener diode is \qquad mW .

Sol. 120

$\mathrm{i}=\frac{10 \mathrm{~V}}{5 \mathrm{k} \Omega}=2 \mathrm{~mA}$
$I=\frac{14 \mathrm{~V}}{1 \mathrm{k} \Omega}=14 \mathrm{~mA}$
$\therefore \mathrm{I}_{\mathrm{z}}=12 \mathrm{~mA}$
$\therefore P=I_{z} V_{z}=120 \mathrm{~mW}$
10. Two simple harmonic motions are represented by the equations $x_{1}=5 \sin \left(2 \pi t+\frac{\pi}{4}\right)$ and $x_{2}=5 \sqrt{2}(\sin 2 \pi t+\cos 2 \pi t)$. The amplitude of second motion is \qquad times the amplitude in first motion.
Sol. 2
$x_{2}=5 \sqrt{2}\left(\frac{1}{\sqrt{2}} \sin 2 \pi t+\frac{1}{\sqrt{2}} \cos 2 \pi t\right) \sqrt{2}$
$=10 \sin \left(2 \pi t+\frac{\pi}{4}\right)$
$\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}=\frac{10}{5}=2$

