# PHYSICS <br> JEE-MAIN (July-Attempt) 25 July (Shift-2) Paper 

## SECTION - A

1. Two vectors $\vec{X}$ and $\vec{Y}$ have equal magnitude. The magnitude of $(\vec{X}-\vec{Y})$ is $n$ times the magnitude of $(\vec{X}+\vec{Y})$. The angle between $\vec{X}$ and $\vec{Y}$ is -
(1) $\cos ^{-1}\left(\frac{n^{2}+1}{n^{2}-1}\right)$
(2) $\cos ^{-1}\left(\frac{n^{2}-1}{-n^{2}-1}\right)$
(3) $\cos ^{-1}\left(\frac{-n^{2}-1}{n^{2}-1}\right)$
(4) $\cos ^{-1}\left(\frac{n^{2}+1}{n^{2}-1}\right)$

## Sol. 2

2. A heat engine has an efficiency of $\frac{1}{6}$. When the temeprature of sink is reduced by $62^{\circ} \mathrm{C}$, its efficiency get doubled. The temeprature of the source is -
(1) $37^{\circ} \mathrm{C}$
(2) $99^{\circ} \mathrm{C}$
(3) $62^{\circ} \mathrm{C}$
(4) $124^{\circ} \mathrm{C}$

## Sol. 2

3. Two spherical soap bubbles of radii $r_{1}$ and $r_{2}$ in vacuum combine under isothermal conditions. The resulting bubble has a radius equal to -
(1) $\frac{r_{1} r_{2}}{r_{1}+r_{2}}$
(2) $\sqrt{r_{1}^{2}+r_{2}^{2}}$
(3) $\sqrt{r_{1} r_{2}}$
(4) $\frac{r_{1}+r_{2}}{2}$

## Sol. 2

4. A balloon was moving upwards with a uniform velocity of $10 \mathrm{~m} / \mathrm{s}$. An object of finite mass is dropped from the balloon when it was at a height of 75 m from the ground level. The height of the balloon from the ground when object strikes the ground was around. (Takes the value of gas $10 \mathrm{~m} / \mathrm{s}^{2}$ )
(1) 125 m
(2) 250 m
(3) 300 m
(4) 200 m

## Sol. 1

5. When radiation of wavelength $\lambda$ is incident on a metallic surface, the stopping potential of ejected photoelectrons is 4.8 V . If the same surface is illuminated by radiation of double the previous wavelength, then the stopping potential becomes 1.6 V . The threshold wavelength of the metal is -
(1) $4 \lambda$
(2) $2 \lambda$
(3) $8 \lambda$
(4) $6 \lambda$

Sol. 1
6. A force $\vec{F}=(40 \hat{i}+10 \hat{j}) \mathrm{N}$ acts on a body of mass 5 kg . If the body starts from rest, its position vector $\vec{r}$ at time $t=10 \mathrm{~s}$, will be -
(1) $(100 \hat{i}+400 \hat{j}) \mathrm{m}$
(2) $(400 \hat{i}+100 \hat{j}) \mathrm{m}$
(3) $(100 \hat{i}+100 \hat{j}) \mathrm{m}$
(4) $(400 \hat{i}+400 \hat{j}) \mathrm{m}$

Sol. 2
7. A prism of refractive index $\mu$ and angle of prism A is placed in the postion of minimum angle of deviation. If minimum angle of deviation is also $A$, then in terms of refractive index value of $A$ is
(1) $\sin ^{-1}\left(\frac{\mu}{2}\right)$
(2) $2 \cos ^{-1}\left(\frac{\mu}{2}\right)$
(3) $\sin ^{-1}\left(\sqrt{\frac{\mu-1}{2}}\right)$
(4) $\cos ^{-1}\left(\frac{\mu}{2}\right)$

Sol. 2
8. A $10 \Omega$ resistance is connected across $220 \mathrm{~V}-50 \mathrm{~Hz}$ AC supply. The time taken by the current to change from its maximum value to the rms value is -
(1) 2.5 ms
(2) 1.5 ms
(3) 4.5 ms
(4) 3.0 ms

## Sol. 1

9. The relation between time $t$ and distance $x$ for a moving body is given as $t=m x^{2}+n x$, where m and n are constants. The retardation of the motion is -
(Where $v$ stands for velocity)
(1) $2 n^{2} v^{3}$
(2) $2 m v^{3}$
(3) $2 n v^{3}$
(4) $2 \mathrm{mnv}^{3}$

Sol. 2
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
10. The instantenous velocity of a particle moving in a straight line is given as $v=\alpha t+\beta t^{2}$, where $\alpha$ and $\beta$ are constants. The distance travelled by the particle between 1 s and 2 s is -
(1) $\frac{\alpha}{2}+\frac{\beta}{3}$
(2) $\frac{3}{2} \alpha+\frac{7}{3} \beta$
(3) $3 \alpha+7 \beta$
(4) $\frac{3}{2} \alpha+\frac{7}{2} \beta$

## Sol. 2

11. The force is given in terms of time $t$ and displacement $x$ by the equation $F=A \cos B x+C \sin D t$
The dimensional formula of $\frac{A D}{B}$ is -
(1) $\left[M^{2} L^{2} T^{-3}\right]$
(2) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$
(3) $\left[M^{1} L^{1} T^{-2}\right]$
(4) $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$

## Sol. 1

12. An electron moving with speed $v$ and a photon moving with speed $c$, have same D-Broglie wavelength. The ratio of kinetic energy of electron to that of photon is -
(1) $\frac{3 c}{v}$
(2) $\frac{2 c}{v}$
(3) $\frac{v}{2 c}$
(4) $\frac{v}{3 c}$

## Sol. 3

13. Two ions having same mass have charges in the ratio $1: 2$. They are projected normally in a uniform magnetic field with their speeds in the ratio $2: 3$. The ratio of the radii of their circular trajectories is -
(1) $4: 3$
(2) $3: 1$
(3) $2: 3$
(4) $1: 4$

## Sol. 1

14. the given potentiometer has its wire of resistance $10 \Omega$. When the sliding contact is in the middle of the potentiometre wire, the potential drop across $2 \Omega$ resistor is -

(1) $\frac{40}{11} \mathrm{~V}$
(2) 10 V
(3) $\frac{40}{9} \mathrm{~V}$
(4) 5 V

Sol. 3
15. A ray of light entering from air into a denser medium of refractive index $\frac{4}{3}$, as shown in figure. The light ray suffers total internal reflection at the adjacent surface as shown. The maximum, value of angle $\theta$ should be equal to -

(1) $\sin ^{-1} \frac{\sqrt{5}}{3}$
(2) $\sin ^{-1} \frac{\sqrt{7}}{3}$
(3) $\sin ^{-1} \frac{\sqrt{7}}{4}$
(4) $\sin ^{-1} \frac{\sqrt{5}}{4}$

## Sol. 2

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
16. In the given potentiometer circuit arrangement, the balancing length $A C$ is measured to be 250 cm . When the galvanometer connection is shifted from point (1) to point (2) in the given diagram, the balancing length becomes 400 cm . The ratio of the emf of two cells, $\frac{\varepsilon_{1}}{\varepsilon_{2}}$ is -

(1) $\frac{4}{3}$
(2) $\frac{3}{2}$
(3) $\frac{5}{3}$
(4) $\frac{8}{5}$

## Sol. 3

17. Two ideal electric dipoles $A$ and $B$ having their dipole moment $p_{1}$ and $p_{2}$ respectively are placed on a plane with their centres at $O$ as shown in the figure. At point $C$ on the axis of dipole $A$, the resultant electric field is making an angle of $37^{\circ}$ with the axis. The ratio of the dipole moment of $A$ and $B, \frac{P_{1}}{P_{2}}$ is (take $\sin 37^{\circ}=\frac{3}{5}$ )

(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{3}{8}$
(4) $\frac{4}{3}$

## Sol. 2

18. In a simple harmonic oscillation, what fraction of total mechanical energy is in the form of kinetic energy, when the particle is midway between mean and extreme position.
(1) $\frac{1}{4}$
(2) $\frac{1}{3}$
(3) $\frac{3}{4}$
(4) $\frac{1}{2}$

## Sol. 3

19. If $q_{f}$ is the free charge on the capacitor plates and $q_{b}$ is the bound charge on the dielectric slab of dielectric constant $k$ placed between the capacitor plates, then bound charge $q_{b}$ can be expressed as -
(1) $q_{b}=q_{f}\left(1-\frac{1}{k}\right)$
(2) $q_{b}=q_{f}\left(1-\frac{1}{\sqrt{k}}\right)$
(3) $q_{b}=q_{f}\left(1+\frac{1}{\sqrt{k}}\right)$
(4) $q_{b}=q_{f}\left(1+\frac{1}{k}\right)$

## Sol. 1

20. Consider a planet in some solar system which has a mass double the mass of earth and density equal to the average density of earth. If the weight of an object on earth is W , then weight of the same object on that planet will be -
(1) $\sqrt{2} \mathrm{~W}$
(2) 2 W
(3) W
(4) $2^{\frac{1}{3}} \mathrm{~W}$

## Sol. 4

## Section - B

1. A message signal of frequency 20 kHz and peak voltage of 20 volt is used to modulate a carrier wave of frequency 1 MHz and peak voltage of 20 volt. The modulation index will be $\qquad$ _.
Sol. 1
2. The nuclear activity of a radioactive element becomes $\left(\frac{1}{8}\right)^{\text {th }}$ of its initial value in 30 years. The half-life of radioactive element is $\qquad$ years.
Sol. 10
3. From the given data, the amount of energy required to break the nucleus of aluminium ${ }_{13}^{27} \mathrm{Al}$ is
$\qquad$
Mass of neutron $=1.00866 \mathrm{u}$
Mass of proton $=1.00726 \mathrm{u}$
Mass of aluminium nucleus $=27.18846 \mathrm{u}$
(Assume 1u corresponds to x J of energy)
(Round off to the nearest integer)

## Sol. 27

4. A solid disc of radius 20 cm and mass 10 kg is rotating with an angular velocity of 600 rpm , about an axis normal to its circular plane and passing through its centre of mass. The retarding torque required to bring the disc at rest in 10 s $\qquad$ $\pi \times 10^{-1} \mathrm{Nm}$.

## Sol. 4

5. A $16 \Omega$ wire is bend to form a square loop. A 9 V supply having internal resistance of $1 \Omega$ is connected across one of its sides. The potential drop across the diagonals of the square loop is $\ldots 10^{-1} \mathrm{~V}$.
Sol. 45
6. A system consists of two types of gas molecules $A$ and $B$ having same number density $2 \times$ $10^{25} / \mathrm{m}^{3}$. The diameter of $A$ and $B$ are $10 \AA$ and $5 \AA$ respectively. They suffer collision at room temperature. The ratio of average distance covererd by the molecule $A$ to that of $B$ between two successive collision is $\qquad$ $\times 10^{-2}$.

## Sol. 25

7. Two circuit are shown in the figure (a) and (b). At a frequency of $\qquad$ $\mathrm{rad} / \mathrm{s}$ the average power dissipated in one cycle will be same in both the circuits.


## Sol. 500

8. A force of $\mathrm{F}=(5 \mathrm{y}+20) \mathrm{j} \mathrm{N}$ acts on a particle. The work done by this force when the particle is moved from $\mathrm{y}=0 \mathrm{~m}$ to $\mathrm{y}=10 \mathrm{~m}$ is $\qquad$ J.

## Sol. 450

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
9. In a semiconductor, the number density of intrinsic charge carriers at $27^{\circ} \mathrm{C}$ is $1.5 \times 10^{16} / \mathrm{m}^{3}$. If the semiconductor is doped with impurity atom, the hole density increase to $4.5 \times 10^{22} / \mathrm{m}^{3}$. The electron density in the doped semiconductor is $\qquad$ $\times 10^{9} / \mathrm{m}^{3}$

## Sol. 5

10. A light beam of wavelength 500 nm is incident on a metal having work function of 1.25 eV , placed in a magnetic field of intensity $B$. The electrons emitted perpendicular to the magnetic field $B$, with maximum kinetic energy are bent into circular arc of radius 30 cm . The value of $B$ is $\qquad$ $\times 10^{-7} \mathrm{~T}$.
Given hc $=20 \times 10^{-26} \mathrm{~J}-\mathrm{m}$, mass of electron $=9 \times 10^{-31} \mathrm{~kg}$
Sol. 125
