PHYSICS
 JEE-MAIN (July-Attempt) 20 July
 (Shift-1) Paper

SECTION - A

1. The radiation corresponding to $3 \rightarrow 2$ transition of a hydrogen atom falls on a gold surface to generate photoelectrons. These electrons are passed through a magnetic field of $5 \times 10^{-4} \mathrm{~T}$. Assume that the radius of the largest circular path followed by these electrons is 7 mm , the work function of the metal is:
(Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$)
(1) 0.82 eV
(2) 0.16 eV
(3) 1.88 eV
(4) 1.36 eV

Sol. 1

$$
\begin{aligned}
& 1.51 \longrightarrow \mathrm{~N}=3 \\
& 3.4 \longrightarrow \mathrm{~N}=2 \\
& 13.6 \longrightarrow 2 \Rightarrow 1.89 \mathrm{eV} \\
& 3 \rightarrow 2 \\
& 5 \times 10^{-4} \mathrm{~T} \\
& \mathrm{r}=\frac{\mathrm{mv}}{\mathrm{qB}} \Rightarrow \mathrm{mv}=\mathrm{qrB} \\
& \Rightarrow \mathrm{E}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}=\frac{(\mathrm{qRB})^{2}}{2 \mathrm{~m}} \\
& =\frac{\left(1.6 \times 10^{-19} \times 7 \times 10^{-3} \times 5 \times 10^{-4}\right)^{2}}{2 \times 9.1 \times 10^{-31} \mathrm{Joule}} \\
& =\frac{3136 \times 10^{-52}}{18.2 \times 10^{-31} \times 1.6 \times 10^{-19}} \mathrm{eV} \\
& =1.077 \mathrm{eV}
\end{aligned}
$$

We know work function $=$ energy incident $-(K E)_{\text {electron }}$
$\Phi=1.89-1.077=0.813 \mathrm{eV}$
2. If \vec{A} and \vec{B} are two vectors satisfying the relation $\vec{A} \cdot \vec{B}=[\vec{A} \times \vec{B}]$. Then the value of $[\vec{A}-\vec{B}]$. will be :
(1) $\sqrt{A^{2}+B^{2}-\sqrt{2} A B}$
(2) $\sqrt{A^{2}+B^{2}}$
(3) $\sqrt{A^{2}+B^{2}+\sqrt{2} A B}$
(4) $\sqrt{A^{2}+B^{2}+\sqrt{2} A B}$

Sol. 1

$$
\begin{aligned}
& \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}=|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}| \\
& \mathrm{AB} \cos \theta=\mathrm{AB} \sin \theta \Rightarrow \theta=45^{\circ} \\
& |\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \cos 45^{\circ}} \\
& =\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}-\sqrt{2} \mathrm{AB}}
\end{aligned}
$$

3. The value of current in the 6Ω resistance is:

(1) 4 A
(2) 6 A
(3) 8 A
(4) 10 A

Sol. 4

Applying KCL at point P,
$\frac{V-0}{6}+\frac{V-90}{5}+\frac{V-140}{20}=0$
$\Rightarrow 10 \mathrm{~V}+12 \mathrm{~V}-1080+3 \mathrm{~V}-420=0$
$\Rightarrow \mathrm{V}=60$
\therefore Current in $6 \Omega=\frac{\mathrm{V}-0}{6}=10 \mathrm{~A}$
4. A deuteron and an alpha particle having equal kinetic energy enter perpendicular into a magnetic field. Let r_{d} and r_{α} be their respective radii of circular path. The value of $\frac{r_{d}}{r_{\alpha}}$ is equal to
(1) $\sqrt{2}$
(2) 1
(3) 2
(4) $\frac{1}{\sqrt{2}}$

Sol. 1

$r=\frac{\mathrm{mv}}{\mathrm{qB}}=\frac{\sqrt{2 \mathrm{mk}}}{\mathrm{qB}}$
$\frac{\mathrm{r}_{\mathrm{d}}}{\mathrm{r}_{\alpha}}=\sqrt{\frac{\mathrm{m}_{\mathrm{d}}}{\mathrm{m}_{\alpha}}} \frac{\mathrm{q}_{\alpha}}{\mathrm{q}_{\delta}}=\sqrt{\frac{2}{4}}\left(\frac{2}{1}\right)=\sqrt{2}$
5. A radioactive material decays by simultaneous emissions of two particles with half lives of 1400 years and 700 years respectively. What will be the time after which one third of the material remains ? (Take $\ln 3=1.1$)
(1) 1110 years
(2) 340 years
(3) 740 years
(4) 700 years

Sol. 3

Given $\lambda_{1}=\frac{\ell \mathrm{n} 2}{700} /$ year, $\lambda_{2}=\frac{\ell \mathrm{n} 2}{1400} /$ year
$\therefore \lambda_{\text {net }}=\lambda_{1}+\lambda_{2}=\ell \mathrm{n} 2\left[\frac{1}{700}+\frac{1}{1400}\right]=\frac{3 \ell \mathrm{n} 2}{1400} /$ year
Now, Let initial no. of radioactive nuclei be No
$\therefore \frac{\mathrm{N}_{0}}{3}=\mathrm{N}_{0} \mathrm{e}^{-\lambda_{\text {net }}}$
$\Rightarrow \ell \mathrm{n} \frac{1}{3}=-\lambda_{\text {net }} \mathrm{t}$
$\Rightarrow 1.1 \frac{3 \times 0.693}{1400} \mathrm{t} \Rightarrow \mathrm{t} \approx 740$ year
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
6. A person whose mass is 100 kg travels from Earth to Mars in a spaceship. Neglect all other objects in sky and take acceleration due to gravity on the surface of the Earth and Mars as 10 $\mathrm{m} / \mathrm{s}^{2}$ and $4 \mathrm{~m} / \mathrm{s}^{2}$ respectively. Identify from the below figures, the curve that fits best for the weight of the passenger as a function of time.

(1) (b)
(2) (a)
(3) (c)
(4) (d)

Sol. 3
At neutral point $\mathrm{g}=0$
7. The amount of heat needed to raise the temperature of 4 moles of a rigid diatomic gas from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ when no work is done is \qquad . (R is the universal gas constant)
(1) 750 R
(2) 175 R
(3) 500 R
(4) 250 R

Sol. 3

$$
\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}
$$

Here $\Delta \mathrm{W}=0$
$\Delta \mathrm{Q}=\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$
$\Delta \mathrm{Q}=4 \times \frac{5 \mathrm{R}}{2}(50)=500 \mathrm{R}$
8. The value of tension in a long thin metal wire has been changed from T_{1} to T_{2}. The lengths of the metal wire at two different values of tension T_{1} and T_{2} are I_{1} and I_{2} respectively. The actual length of the metal wire is :
(1) $\frac{T_{1} l_{2}-T_{2} l_{1}}{T_{1}-T_{2}}$
(2) $\sqrt{T_{1} T_{2} \mathrm{l}_{1} \mathrm{l}_{2}}$
(3) $\frac{I_{1}+I_{2}}{2}$
(4) $\frac{T_{1} I_{1}-T_{2} I_{2}}{T_{1}-T_{2}}$

Sol. 1

$$
\begin{align*}
& \mathrm{Y}=\frac{\mathrm{FL}}{\mathrm{~A} \Delta \mathrm{~L}} \Rightarrow \mathrm{~F}=\left(\frac{\mathrm{AY}}{\mathrm{~L}}\right) \Delta \mathrm{L} \\
& \therefore \mathrm{~F}=\mathrm{kx} \\
& \mathrm{~T}_{1}=\mathrm{k}\left(\ell_{1}-\ell_{0}\right) \tag{i}\\
& \mathrm{T}_{2}=\mathrm{k}\left(\ell_{2}-\ell_{0}\right) \tag{ii}\\
& \frac{\mathrm{eq}(\mathrm{i})}{\mathrm{eq}(\mathrm{ii})}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\ell_{1}-\ell_{0}}{\ell_{2}-\ell_{0}} \\
& \mathrm{~T}_{2} \ell_{1}-\mathrm{T}_{2} \ell_{0}=\mathrm{T}_{1} \ell_{2}-\mathrm{T}_{1} \ell_{0} \\
& \left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \ell_{0}=\mathrm{T}_{1} \ell_{2}-\mathrm{T}_{2} \ell_{0} \\
& \ell_{0}=\left(\frac{\mathrm{T}_{1} \ell_{2}-\mathrm{T}_{2} \ell_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}\right)
\end{align*}
$$

9. A butterfly is flying with a velocity $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$ in North-East direction. Wind is slowly blowing at 1 m / s from North to South. The resultant displacement of the butterfly in 3 seconds is :
(1) 15 m
(2) $12 \sqrt{2} \mathrm{~m}$
(3) 3 m
(4) 20 m

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

Sol. 1

10. A certain charge Q is divided into two parts q and $(Q-q)$. How should the charges Q and q be divided so that q and $(\mathrm{Q}-\mathrm{q})$ placed at a certain distance apart experience maximum electrostatic repulsion?
(1) $Q=\frac{q}{2}$
(2) $Q=3 q$
(3) $Q=2 q$
(4) $Q=4 q$

Sol. 3

$F=\frac{k Q(Q-q)}{\pi^{2}}$
$\frac{d F}{d q}=0$ When force is maximum
$\frac{d F}{d q}=\frac{k}{L^{2}}[Q-2 q]=0$
$\Rightarrow Q-2 q=0 \Rightarrow Q=2 q$
11. The entropy of any system is given by

$$
S=\alpha^{2} \beta \ln \left[\frac{\mu k R}{J \beta^{2}}+3\right]
$$

Where α and β are the constants. μ, J, K and R are no. of moles, mechanical equivalent of heat,
Boltzmann constant and gas constant repectively. [Take $S=\frac{\mathrm{dQ}_{2}}{\mathrm{~T}}$]
Choose the incorrect option from the following :
(1) S, β, k and μR have the same dimensions.
(2) α and J have the same dimensions.
(3) S and α have different dimensions.
(4) α and k have the same dimensions.

Sol. 4

$S=\alpha^{2} \beta \ell \mathrm{n}\left(\frac{\mu K R}{j \beta^{2}}+3\right)$
$S=\frac{Q}{T}=$ Joule $/ k$
$\mathrm{PV}=\mathrm{nRT} \quad\left[\frac{\mu K R}{J \beta^{2}}\right]=1$
$R=\frac{\text { Joule }}{K}$
$\Rightarrow \beta=\left(\frac{\text { Joule }}{K}\right)$
$\Rightarrow \alpha=$ dimensionless
12. The arm $P Q$ of a rectangular conductor is moving from $x=0$ to $x=2 b$ outwards and then inwards from $x=2 b$ to $x=0$ as shown in the figure. A uniform magnetic field perpendicular to the plane is acting from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{b}$. Identify the graph showing the variation of different quantities with distance.

(1) A-Flux, B-EMF, C-Power dissipated
(2) A-Power dissipated, B-Flux, C-EMF
(3) A-Flux, B-Power, dissipated, C-EMF
(4) A-EMF, B-Power dissipeated, C-Flux

Sol. 1

As rod moves in field area increases upto $\mathrm{x}=\mathrm{b}$ then field is absent and again flux is generated on return journey from $\mathrm{x}=\mathrm{b}$ to $\mathrm{x}=0$. Thus plot A for flux.
$\Rightarrow e=-\frac{d \phi}{d t} \Rightarrow$ curve B for emf
\Rightarrow Power dissipated $=\mathrm{vi} \Rightarrow$ curve C for power dissipated
13. A steel block of 10 kg rests on a horizontal floor as shown. When three iron cylinders are placed on it as shown, the block and cylinders go down with an acceleration $0.2 \mathrm{~m} / \mathrm{s}^{2}$. The normal reaction R^{\prime} by the floor if mass of the iron cylinders are equal and of 20 kg each, is \qquad N . [Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\mu_{\mathrm{s}}=0.2$]

(1) 714
(2) 716
(3) 684
(4) 686

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

Sol. 4

Writing force equation in vertical direction
$\mathrm{Mg}-\mathrm{N}=\mathrm{Ma}$
$\Rightarrow 70 \mathrm{~g}-\mathrm{N}=70 \times 0.2$
$\Rightarrow \mathrm{N}=70[\mathrm{~g}-0.2]=70 \times 9.8$
$\therefore \mathrm{N}=686$ Newton
Note : Since there is no compressive normal from the sides, hence friction will not act.
14. For the circuit shown below, calculate the value of I_{z} :

(1) 0.15 A
(2) 0.05 A
(3) 0.1 A
(4) 25 mA

Sol. 4

$I=\frac{50}{1000}=50 \mathrm{~mA}$
$R=1000 \Omega$

$I=\frac{50}{2000}=25 \mathrm{~mA}$
$\mathrm{I}_{z}=\mathrm{I}_{1000}-\mathrm{I}_{2000}$
$=50-25=25 \mathrm{~mA}$
15. A nucleus of masss M emits r-ray photon of frequency ' v '. The loss of internal energy by the nucleus is :
(1) 0
(2) $h v\left[1+\frac{h v}{2 \mathrm{Mc}^{2}}\right]$
(3) hv
(4) $h v\left[1-\frac{h v}{2 \mathrm{Mc}^{2}}\right]$

Sol. 2
Energy of $\gamma \operatorname{ray}\left[E_{\gamma}\right]=h \nu$
Momentum of γ ray $\left[P_{\gamma}\right]=\frac{h}{\gamma}=\frac{h \nu}{C}$
Total momentum is conserved
$\vec{P}_{\gamma}+\vec{P}_{N u}=0$
Where $\vec{P}_{N u}=$ Momentum of decayed nuclei
$\Rightarrow P_{\gamma}=P_{N u} \Rightarrow \frac{h v}{C}=P_{N u}$
\Rightarrow K.E of nuclei
$=\frac{1}{2} M v^{2}=\frac{\left(P_{N u}\right)^{2}}{2 M}=\frac{1}{2 M}\left[\frac{h v}{C}\right]^{22}$
Loss in internal energy $=E_{\gamma}+K \cdot E_{N u}$
$=h v+\frac{1}{2 M}\left[\frac{h v}{C}\right]^{2}=h v\left[1+\frac{h v}{2 M C^{2}}\right]$
16. Region I and II are separated by a spherical surface of radius 25 cm . An object is kept in region I at a distance of 40 cm from the surface. The distance of the image from the surface is :

(1) 55.44 cm
(2) 9.52 cm
(3) 37.58 cm
(4) 18.23 cm

Sol. 3

$\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$
$\frac{1.4}{v}-\frac{1.25}{-40}=\frac{1.4-1.25}{-25}$
$\frac{1.4}{v}=-\frac{0.15}{25}-\frac{1.25}{40}$
$v=-37.58 \mathrm{~cm}$
17. AC voltage $\mathrm{V}(\mathrm{t})=20$ sin$\omega \mathrm{t}$ of frequency 50 Hz is applied to a parallel plate capacitor. The separation between the plates is 2 mm and the area is $1 \mathrm{~m}^{2}$. The amplitude of the oscillating displacement current for the applied AC voltage is \qquad .
[Take $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$]
(1) $21.14 \mu \mathrm{~A}$
(2) $83.37 \mu \mathrm{~A}$
(3) $55.58 \mu \mathrm{~A}$
(4) $27.79 \mu \mathrm{~A}$

Sol. 4

From the given information,
$\mathrm{C}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\mathrm{k} \frac{\epsilon_{0} \times 1}{2 \times 10^{-3}} \mathrm{~F}$
$\therefore X_{c}=\frac{1}{\omega C}=\frac{2 \times 10^{-3}}{2 \times 50 \pi \epsilon_{0}}=\frac{2 \times 10^{-3}}{25 \times 4 \pi \epsilon_{0}} \Omega$
$\therefore \mathrm{X}_{\mathrm{C}}=\frac{2 \times 10^{-3}}{25} \times 9 \times 10^{9}=\frac{18}{25} \times 10^{6} \Omega$
$\therefore \mathrm{i}_{0}=\frac{\mathrm{V}_{0}}{\mathrm{X}_{\mathrm{c}}}=\frac{20 \times 25}{18} \times 10^{-6} \mathrm{~A}=27.47 \mu \mathrm{~A}$.
The value of amplitude of displacement current will be same as value of amplitude of conventional current.
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
18. The normal reaction ' N ' for a vehicle of 800 kg mass, negotiating a turn on a 30° banked road at maximum possible speed without skidding is \qquad $\times 10^{3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$.
[Given $\cos 30^{\circ}=0.87, \mu_{\mathrm{s}}=0.2$]
(1) 12.4
(2) 7.2
(3) 6.96
(4) 10.2

Sol. 4

At $\mathrm{V}_{\text {max }} \mathrm{f}$ will be limiting in nature.
\therefore Balancing force in vertical direction,
$N \cos 30^{\circ}-\mathrm{mg}-\mu \mathrm{N} \cos 60^{\circ}=0$
$\Rightarrow N\left[\cos 30^{\circ}-\mu \cos 60^{\circ}\right]=\mathrm{mg}$
$\therefore \mathrm{N}=\frac{800 \times 10}{(0.87-0.1)} \approx 10.2 \times 10^{3} \mathrm{kgm} / \mathrm{s}^{2}$
19. A current of 5 A is passing through a non-linear magnesium wire of cross-section $0.04 \mathrm{~m}^{2}$. At every point the direction of current density is at an angle of 60° with the unit vector of area of cross-section. The magnitude of electric field at every point of the conductor is :
(1) $11 \times 10^{-3} \mathrm{~V} / \mathrm{m}$
(2) $11 \times 10^{-5} \mathrm{~V} / \mathrm{m}$
(3) $11 \times 10^{-7} \mathrm{~V} / \mathrm{m}$
(4) $11 \times 10^{-2} \mathrm{~V} / \mathrm{m}$

Sol. 2

$$
\begin{aligned}
& I=\vec{J} \cdot \vec{A}=J A \cos (\theta) \\
& 5=J\left(\frac{4}{100}\right) \times \cos (60) \\
& J=5 \times 50=250 \mathrm{~A} / \mathrm{m}^{2} \\
& \text { Now, } \overrightarrow{\mathrm{E}}=\rho . \mathrm{J} \\
& =44 \times 10^{-8} \times 250=11 \times 10^{-5} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

20. Consider a mixture of gas molecule of types A, B and C having masses $m_{A}<m_{B}<m_{C}$ ratio of their root mean square speeds at normal temperature and pressure is :
(1) $v_{A}=v_{B} \neq v_{C}$
(2) $\frac{1}{v_{A}}>\frac{1}{v_{B}}>\frac{1}{v_{C}}$
(3) $v_{A}=v_{B}=v_{C}=0$
(4) $\frac{1}{v_{A}}<\frac{1}{v_{B}}<\frac{1}{v_{C}}$

Sol. 4

$$
\begin{aligned}
& \quad V_{R M S}=\sqrt{\frac{3 R T}{M}} \\
& m_{A}<m_{B}<m_{c} \\
& \Rightarrow V_{A}>V_{B}>V_{C} \\
& \Rightarrow \frac{1}{V_{A}}<\frac{1}{V_{B}}<\frac{1}{V_{C}}
\end{aligned}
$$

Section B

1. A body having specific charge $8 \mu \mathrm{C} / \mathrm{g}$ is resting on a frictionless plane at a distance 10 cm from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of $100 \mathrm{~V} / \mathrm{m}$ is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be \qquad s.

Sol. 1

$\mathrm{F}=\mathrm{ma}$
$q E=m a$
$a=\frac{q E}{m}$
Now $d=\frac{1}{2} a^{2}$
$\mathrm{t}=\sqrt{\frac{2 \mathrm{~d}}{\mathrm{a}}}$
$\mathrm{t}=\sqrt{\frac{2 \mathrm{~d}}{\left(\frac{\mathrm{qE}}{\mathrm{m}}\right)}}$
$t=\sqrt{\frac{2 \times 0.1}{\left(\frac{8 \times 10^{-6}}{\mathrm{~m} 10^{-3}}\right) \times 100}}=\frac{1}{2}$
2. In a spring gun having spring constant $100 \mathrm{~N} / \mathrm{m}$ a small ball ' B ' of mass 100 g is put in its barrel (as shown in figure) by compressing the spring through 0.05 m . There should be a box placed at a distance 'd' on the ground so that the ball falls in it. If the ball leaves the gun horizontally at a height of 2 m above the ground. The value of d is \qquad m. ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$).

Sol. 1

$\frac{1}{2} k x^{2}=\frac{1}{2} m v^{2}$
$k x^{2}=m v^{2}$
$v=x \sqrt{\frac{k}{m}}=0.05 \sqrt{\frac{100}{1}}=0.05 \times 10 \sqrt{10}$
$v=0.5 \sqrt{10}$
From $\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}$
$\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}=\sqrt{\frac{2 \times 2}{10}}=\frac{2}{\sqrt{10}}$
$\therefore \mathrm{d}=\mathrm{vt}=0.5 \sqrt{10} \times \frac{2}{\sqrt{10}}=1 \mathrm{~m}$
3. A rod of mass M and length L is lying on a horizontal frictionless surface. A particle of mass 'm' travelling along the surface hits at one end of the rod with velocity 'u' in a direction perpendicular to the rod. The collision is completely elastic. After collision, particle comes to rest. The ratio of masses $\left(\frac{m}{M}\right)$ is $\frac{1}{x}$. The value of ' x ' will be \qquad -.
Sol. 4

Just before collision

Just after collision
From momentum conservation, $\mathrm{P}_{\mathrm{i}}{ }^{0}=\mathrm{p}_{\mathrm{F}}$
$\mathrm{mu}=\mathrm{Mv}$
From angular momentum conservation about O ,

[^0]mu. $\frac{L}{2}=\frac{M L^{2}}{12} \omega$
$\Rightarrow \omega=\frac{6 \mathrm{mu}}{\mathrm{ML}}$
From $\mathrm{e}=\frac{\text { R.V.S }}{\text { R.V.A }}$
$1=\frac{V+\frac{\omega L}{2}}{u}$
$v+\frac{\omega L}{2}=u$
$v+\frac{3 m u}{M}=u$
$\frac{m u}{M}+\frac{3 m u}{M}=u$
$\frac{4 m u}{M}=u$
$\frac{\mathrm{m}}{\mathrm{M}}=\frac{1}{4}$
$X=4$
4. An object viewed from a near point distance of 25 cm , using a microscopic lens with magnification '6', gives an unresolved image. A resolved image is observed at infinite distance with a total magnification double the earlier using an eyepiece along with the given lens and a tube of length 0.6 m , if the focal length of the eyepiece is euqal to \qquad cm.

Sol. 25

For simple microscope,
$m=1+\frac{D}{f_{0}}$
$6=1+\frac{D}{f_{0}}$
$5=\frac{25}{f_{0}}$
$\mathrm{f}_{0}=5 \mathrm{~cm}$
For compound microscope,
$\mathrm{m}=\frac{\mathrm{l} . \mathrm{D}}{\mathrm{f}_{0} \cdot \mathrm{f}_{\mathrm{e}}}$
$12=\frac{60 \times 25}{5 . f_{e}}$
5. In an LCR series circuit, an inductor 30 mH and a resistor 1Ω are connected to an AC source of angular frequency 300 rad/s. The value of capacitance for which, the current leads the voltage by 45° is $\frac{1}{x} \times 10^{-3} \mathrm{~F}$. Then the value of x is \qquad -
Sol. 3
$\tan \phi=\frac{\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}$
$\tan 45=\frac{\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}$
$X_{C}-X_{L}=R$
$\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}=\mathrm{R}$
$\frac{1}{\omega \mathrm{C}}-300 \times 0.03=1$
$\frac{1}{\omega \mathrm{C}}=10$
$C=\frac{1}{10 \omega}=\frac{1}{10 \times 300}$
$C=\frac{1}{3} \times 10^{-3}$
X = 3
6. The frequency of a car horn encountered a change from 400 Hz to 500 Hz , when the car approaches a vertical wall. If the speed of sound is $330 \mathrm{~m} / \mathrm{s}$. Then the speed of car is \qquad km / h.
Sol. 132

Wall as an observer
Frequency received by wall
$\mathrm{f}_{1}=\mathrm{f}_{0}\left(\frac{\mathrm{C}}{\mathrm{C}-\mathrm{V}}\right)$
Again wall as a source
Frequency received by observer on car
$\mathrm{f}_{2}=\mathrm{f}_{1}\left(\frac{\mathrm{C}+\mathrm{V}}{\mathrm{C}}\right)$
$500=400\left(\frac{C+V}{C-V}\right)$
$\frac{5}{4}=\frac{C+V}{C-V}$
$\mathrm{C}=9 \mathrm{~V}$
$\mathrm{V}=\frac{\mathrm{C}}{9}=\frac{330}{9} \mathrm{~m} / \mathrm{s}$
$\mathrm{V}=\frac{330}{9} \times \frac{18}{5}=132 \mathrm{~km} / \mathrm{hr}$
7. A carrier wave $V_{c}(t)=160 \sin \left(2 \pi \times 10^{6} t\right)$ volts is made to vary between $V_{\text {max }}=200 \mathrm{~V}$ and $\mathrm{V}_{\text {min }}=$ 120 V by a message signal $\mathrm{V}_{\mathrm{m}}(\mathrm{t})=\mathrm{A}_{\mathrm{m}} \sin \left(2 \pi \times 10^{3} \mathrm{t}\right)$ volts. The peak voltage A_{m} of the modulating signal is \qquad .
Sol. 40
$A_{\text {max }}=A_{m}+A_{c}$
$\Rightarrow \mathrm{V}_{\text {max }}=\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{C}}$
$200=V_{\mathrm{m}}+160$
$\mathrm{V}_{\mathrm{m}}=40$
\therefore Peak voltage $\mathrm{A}_{\mathrm{m}}=40$
Ans. 40
8. A circular disc reaches from top to bottom of an inclined plane of length 'L'. When it slips down the plane, it takes time ' t_{1} '. when it rolls down the plane, it takes time t_{2}. The value of $\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}$ is $\sqrt{\frac{3}{x}}$. The value of x will be \qquad .
Sol. 2

If disk slips on inclined plane, then it's aceleration
$a_{1}=g \sin \theta$
$\mathrm{L}=\frac{1}{2} \mathrm{a}_{1} \mathrm{t}_{1}{ }^{2}$
$\Rightarrow \mathrm{t}_{1}=\sqrt{\frac{2 \mathrm{~L}}{\mathrm{a}_{1}}}$
If disk rols on inclined plane, its acceleration,
$a_{2}=\frac{g \sin \theta}{1+\frac{\mathrm{I}}{\mathrm{mR}^{2}}}$
$a_{2}=\frac{g \sin \theta}{1+\frac{m R^{2}}{2 \mathrm{mR}^{2}}}$
$\mathrm{a}_{2}=\frac{2}{3} g \sin \theta$
Now $L=\frac{1}{2} a_{2} \cdot \mathrm{t}_{2}^{2}$
$\Rightarrow \mathrm{t}_{2}=\sqrt{\frac{2 \mathrm{~L}}{\mathrm{a}_{2}}}$
Now $\frac{t_{2}}{t_{1}}=\sqrt{\frac{a_{1}}{a_{2}}}=\sqrt{\frac{3}{2}}$
$\Rightarrow x=2$
9. The amplitude of wave disturbance propagating in the positive x-direction is given by $y=\frac{1}{(1+x)^{2}}$ at time $t=0$ and $y=\frac{1}{1+(x-2)^{2}}$ at $t=1 s$, where x and y are in metres. The shape of wave does not change during the propagation. The velocity of the wave will be \qquad m / s.
Sol. 2
At $\mathrm{t}=0, \mathrm{Y}=\frac{1}{1+\mathrm{x}^{2}}$
At time $\mathrm{t}=\mathrm{t}, \mathrm{y}=\frac{1}{1+(\mathrm{x}-\mathrm{vt})^{2}}$
At $\mathrm{t}=1, \mathrm{y}=\frac{1}{1+(\mathrm{x}-\mathrm{v})^{2}}$
At $\mathrm{t}=1, \mathrm{y}=\frac{1}{1+(\mathrm{x}-2)^{2}}$
comparing (i) \& (ii)
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

10 In the reported figure, heat energy absorbed by a system in going through a cyclic process is \qquad π J.

Sol. 100

For complete cyclic process
$\Delta \mathrm{U}=0$
\therefore from $\Delta Q=\Delta U+W$
$=0+W$
$\Delta \mathrm{Q}=\mathrm{W}$
= Area
$=\pi r_{1} \cdot r_{2}$
$=\pi \times\left(10 \times 10^{3}\right)\left(10 \times 10^{-3}\right)$
$\Delta \mathrm{Q}=100 \pi$
\therefore Ans. $=100$

[^0]: Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

