## MATHEMATICS JEE-MAIN (August-Attempt) 27 August (Shift-2) Paper

#### **SECTION - A**

- **1.** Let A(a,0), B(b,2b+1) and C(0, b),  $b \neq 0$ ,  $|b| \neq 1$  be points such that the area of triangle ABC is 1sq. unit, then the sum of all possible values of a is:
  - (1)  $\frac{-2b^2}{b+1}$
  - (2)  $\frac{2b^2}{b+1}$
  - (3)  $\frac{-2b}{b+1}$
  - (4)  $\frac{2b}{b+1}$
- Ans. (3)
- Sol.  $\begin{vmatrix} \frac{1}{2} \begin{vmatrix} a & 0 & 1 \\ b & 2b+1 & 1 \\ 0 & b & 1 \end{vmatrix} = 1$   $\Rightarrow \begin{vmatrix} a & 0 & 1 \\ b & 2b+1 & 1 \\ 0 & b & 1 \end{vmatrix} = \pm 2$   $\Rightarrow a(2b+1-b)-0+1(b^2-0)=\pm 2$  $\Rightarrow a = \frac{\pm 2-b^2}{b+1}$

 $\therefore a = \frac{2 - b^2}{b + 1} \text{ and } a = \frac{-2 - b^2}{b + 1}$ 

sum of possible values of 'a' is

$$=\frac{-2b^2}{a+1}$$

**2.** If 
$$0 < x < 1$$
 and  $y = \frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \dots$ , then the value of  $e^{1+y}$  at  $x = \frac{1}{2}$  is:

(1)  $\frac{1}{2}e^{2}$ (2) 2e (3) 2e<sup>2</sup>

(4) 
$$\frac{1}{2}\sqrt{e}$$

Sol. 
$$y = \left(1 - \frac{1}{2}\right)x^2 + \left(1 - \frac{1}{3}\right)x^3 + \dots$$
  
 $= \left(x^2 + x^3 + x^4 + \dots\right) - \left(\frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots\right)$   
 $= \frac{x^2}{1 - x} + x - \left(x + \frac{x^2}{2} + \frac{x^3}{3} + \dots\right)$   
 $= \frac{x}{1 - x} + \ell n(1 - x)$   
 $x = \frac{1}{2} \Rightarrow y = 1 - \ell n 2$   
 $e^{1 + y} = e^{1 + 1 - \ell n 2}$ 

$$=e^{2-\ell n^2}=\frac{e^2}{2}$$

**3.** The equation of the plane passing through the line of intersection of the planes  $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and  $\vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$  and parallel to the *x*-axis is :

**(ers** 

- (1)  $\vec{r}.(\hat{i}+3\hat{k})+6=0$
- (2) r.(j-3k)-6=0
- (3) r.(î-3k)+6=0
- (4)  $\vec{r}.(\hat{j}-3\hat{k})+6=0$

#### Ans. (4)

Equation of planes are

$$\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) - 1 = 0 \Rightarrow x + y + z - 1 = 0$$
  
and 
$$\vec{r} \times (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0 \Rightarrow 2x + 3y - z + 4 = 0$$

equation of planes through line of intersection of these plane is :-

$$(x+y+z-1) + \lambda(2x+3y-z+4) = 0$$
$$\Rightarrow (1+2\lambda)x + (1+3\lambda)y + (1-\lambda)z - 1 + 4\lambda = 0$$

But this plane is parallel to x-axis whose direction are (1,0,0)

$$\therefore (1+2\lambda)1 + (1+3\lambda)0 + (1-\lambda)0 = 0$$

$$\lambda = -\frac{1}{2}$$

:. Required plane is

$$0x + \left(1 - \frac{3}{2}\right)y + \left(1 + \frac{1}{2}\right)z - 1 + 4\left(\frac{-1}{2}\right) = 0$$
$$\Rightarrow \frac{-y}{2} + \frac{3}{2}z - 3 = 0$$
$$\Rightarrow y - 3z + 6 = 0$$
$$\Rightarrow \vec{r} \cdot (\hat{j} - 3\hat{k}) + 6 = 0$$

- **4.** Each of the persons A and B independently tosses three fair coins. The probability that both of them get the same number of heads is:
  - (1)  $\frac{5}{8}$

(2) 
$$\frac{5}{16}$$

- (3)  $\frac{1}{8}$
- (4) 1
- Ans. (2)
- Sol. C-I '0' Head

TTT 
$$\left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^3 = \frac{1}{64}$$
  
C-II '1' Head

# HTT $\left(\frac{3}{8}\right)\left(\frac{3}{8}\right) = \frac{9}{64}$ C-III '2' Heads H H T $\left(\frac{3}{8}\right)\left(\frac{3}{8}\right) = \frac{9}{64}$

C–IV `3' Heads

$$H H H \left(\frac{1}{8}\right)\left(\frac{1}{8}\right) = \frac{1}{64}$$

Total probability =  $\frac{5}{16}$ 

- **5.** Let  $[\lambda]$  be the greatest integer less than or equal to  $\lambda$ . The set of all value of  $\lambda$  for which the system of linear equations x + y + z = 4, 3x+2y+5z = 3,  $9x+4y+(28+[\lambda])z = [\lambda]$  has a solution is:
  - (1) (-∞, -9) [-8, ∞)
  - (2) (-∞, -9) (-9, ∞)
  - (3) [-9,-8]
  - (4) R

- **Sol.**  $D = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 2 & 5 \\ 9 & 4 & 28 + [\lambda] \end{vmatrix} = -24 [\lambda] + 15 = -[\lambda] 9$ 
  - If  $\lceil \lambda \rceil + 9 \neq 0$  then unique solution

if 
$$\lfloor \lambda \rfloor + 9 = 0$$
 then  $D_1 = D_2 = D_3 = 0$ 

so infinite solutions

Hence  $\lambda$  can be any real number.

- **6.** A box open from top is made from a rectangular sheet of dimension  $a \times b$  by cutting squares each of side x from each of the four corners fand folding up the flaps. If the volume of the box is maximum, then x is equal to :
  - (1)  $\frac{a+b-\sqrt{a^2+b^2-ab}}{6}$ (2)  $\frac{a+b+\sqrt{a^2+b^2-ab}}{6}$ (3)  $\frac{a+b-\sqrt{a^2+b^2-ab}}{12}$ (4)  $\frac{a+b-\sqrt{a^2+b^2+ab}}{6}$

And. (4)

х х x х b-2x a -2x х х х х  $V = \ell$  . b. h = (a-2x) (b-2x) x  $\Rightarrow$  V(x)=(2x-a)(2x-b)x  $\Rightarrow$  V(x)=4x<sup>3</sup>-2(a+b)x<sup>2</sup>+abx  $\Rightarrow \frac{d}{dx}V(x)=12x^2-4(a+b)x+ab$  $\frac{d}{dx}(V(x)){=}0 \Rightarrow 12x^2{-}4(a{+}b)x{+}ab{=}0{<^{\!\!\!\!\alpha}_\beta}$  $\Rightarrow x = \frac{4(a+b)\pm\sqrt{16(a+b)^2-48ab}}{2(12)}$ ker S  $=\frac{(a+b)\pm\sqrt{a^2+b^2-ab}}{6}$ Let  $x = \alpha = \frac{(a+b) + \sqrt{a^2 + b^2 - ab}}{6}$  $\beta = \frac{(a+b) - \sqrt{a^2 + b^2 - ab}}{6}$ Now,  $12(x-\alpha)(x-\beta) = 0$ β ά ↓ minima Maxima  $\therefore \mathbf{X} = \beta$  $=\frac{a+b-\sqrt{a^2+b^2-ab}}{b}$ 

Sol.

7. Let  $A = \begin{pmatrix} [x+1] & [x+2] & [x+3] \\ [x] & [x+3] & [x+3] \\ [x] & [x+2] & [x+4] \end{pmatrix}$ , where [t] denotes the greatest integer less than or equal to t. If

ankers

det(A) = 192, then the set of value of x is the interval:

- (1) [62,63)
- (2) [60,61)
- (3) [68,69)
- (4) [65,66)

#### Ans. (1)

Sol.  $\begin{bmatrix} x+1 & [x+2] & [x+3] \\ [x] & [x+3] & [x+3] \\ [x] & [x+2] & [x+4] \end{bmatrix} = 192$ 

$$\mathsf{R}_1 \rightarrow \mathsf{R}_1 - \mathsf{R}_3 \& \mathsf{R}_2 \rightarrow \mathsf{R}_2 - \mathsf{R}_3$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ [x] & [x] + 2 & [x] + 4 \end{bmatrix} = 192$$
$$2[x] + 6 + [x] = 192 \Rightarrow [x] =$$

- 8. If  $\lim_{x\to\infty} (\sqrt{x^2-x+1}-ax) = b$ , then the ordered pair (a, b) is :
  - $(1) \left(1, \frac{1}{2}\right)$  $(2) \left(-1, \frac{1}{2}\right)$  $(3) \left(-1, -\frac{1}{2}\right)$  $(4) \left(1, -\frac{1}{2}\right)$

#### Ans. (4)

Sol. 
$$\lim_{x \to \infty} (\sqrt{x^2 - x + 1}) - ax = b \quad (\infty - \infty) \text{ form}$$
  

$$\Rightarrow a > 0$$
  
Now, 
$$\lim_{x \to \infty} \frac{(x^2 - x + 1 - a^2 x^2)}{\sqrt{x^2 - x + 1} + ax} = b$$
  

$$\Rightarrow \lim_{x \to \infty} \frac{(1 - a^2) x^2 - x + 1}{\sqrt{\sqrt{x^2 - x + 1} + ax}} = b$$
  

$$\Rightarrow \lim_{x \to \infty} \frac{(1 - a^2) x^2 - x + 1}{x (\sqrt{1 - \frac{1}{x} + \frac{1}{x^2} + a})} = b$$
  

$$\Rightarrow 1 - a^2 = 0 \Rightarrow a = 1$$
  
Now, 
$$\lim_{x \to \infty} \frac{-x + 1}{x (\sqrt{1 - \frac{1}{x} + \frac{1}{x^2} + a})} = b$$
  

$$\Rightarrow \frac{-1}{1 + a} = b \Rightarrow b = -\frac{1}{2}$$
  
(a, b) =  $(1x - \frac{1}{2})$ 

**9.** The value of the integral  $\int_{0}^{1} \frac{\sqrt{x} dx}{(1+x)(1+3x)(3+x)}$  is:

 $(1) \frac{\pi}{8} \left( 1 - \frac{\sqrt{3}}{2} \right)$   $(2) \frac{\pi}{4} \left( 1 - \frac{\sqrt{3}}{6} \right)$   $(3) \frac{\pi}{4} \left( 1 - \frac{\sqrt{3}}{2} \right)$   $(4) \frac{\pi}{8} \left( 1 - \frac{\sqrt{3}}{6} \right)$ 

Ans. (1)

Sol. 
$$I = \int_{0}^{1} \frac{\sqrt{x}}{(1+x)(1+3x)(3+x)} dx$$
  
Let  $x = t^{2} \Rightarrow dx = 2t$ . dt  

$$I = \int_{0}^{1} \frac{t(2t)}{(t^{2}+1)(1+3t^{2})(3+t^{2})} dt$$
  

$$I = \int_{0}^{1} \frac{(3t^{2}+1)-(t^{2}+1)}{(3t^{2}+1)(t^{2}+1)(3+t^{2})} dt$$
  

$$I = \int_{0}^{1} \frac{dt}{(t^{2}+1)(3+t^{2})} - \int_{0}^{1} \frac{dt}{(1+3t^{2})(3+t^{2})}$$
  

$$= \frac{1}{2} \int_{0}^{1} \frac{dt}{1+t^{2}} - \frac{1}{2} \int_{0}^{1} \frac{dt}{t^{2}+3} + \frac{1}{8} \int_{0}^{1} \frac{dt}{t^{2}+3} - \frac{3}{8} \int_{0}^{1} \frac{dt}{(1+3t^{2})}$$
  

$$= \frac{1}{2} \int_{0}^{1} \frac{dt}{t^{2}+1} - \frac{3}{8} \int_{0}^{1} \frac{dt}{t^{2}+3} - \frac{3}{8} \int_{0}^{1} \frac{dt}{1+3t^{2}}$$
  

$$= \frac{1}{2} (tan^{-1}(t))_{0}^{1} - \frac{3}{8\sqrt{3}} (tan^{-1} (\frac{t}{\sqrt{3}}))_{0}^{1} - \frac{3}{8\sqrt{3}} (tan^{-1}(\sqrt{3}t))_{0}^{1}$$
  

$$= \frac{1}{2} (\frac{\pi}{4}) - \frac{\sqrt{3}}{8} (\frac{\pi}{6}) - \frac{\sqrt{3}}{8} (\frac{\pi}{3})$$
  

$$= \frac{\pi}{8} - \frac{\sqrt{3}}{16} \pi$$

**10.** If 
$$y(x) = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right), x \in \left(\frac{\pi}{2}, \pi\right)$$
, then  $\frac{dy}{dx}$  at  $x = \frac{5\pi}{6}$  is:  
(1) 0  
(2) -1  
(3)  $\frac{1}{2}$   
(4)  $-\frac{1}{2}$ 

Sol. 
$$y(x) = \cot^{-1} \left[ \frac{\cos \frac{x}{2} + \sin \frac{x}{2} + \sin \frac{x}{2} - \cos \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2} - \sin \frac{x}{2} + \cos \frac{x}{2}} \right]$$
  
 $y(x) = \cot^{-1} \left( \tan \frac{x}{2} \right) = \frac{\pi}{2} - \frac{x}{2}$   
 $y'(x) = \frac{-1}{2}$ 

**11.** Two poles, AB of length a metres and CD of length a + b ( $b \neq a$ )metres are erected at the same horizontal level with bases at B and D. If BD = X and  $tan|\underline{ACB} = \frac{1}{2}$ , then:

$$(1) x2 + 2(a + 2b)x + a(a + b) = 0$$

- (2)  $x^2 2ax + b(a + b) = 0$
- $(3) x^2 + 2(a + 2b)x b(a + b) = 0$
- (4)  $x^2 2ax + a(a + b) = 0$
- Ans. (2)

Sol.



**12.** If the solution curve of the differential equation  $(2x - 10y^3)dy + ydx = 0$ , passes through the points (0,1) and  $(2,\beta)$ , then  $\beta$  is a root of the equation :

ankers

(1)  $2y^5 - 2y - 1 = 0$ (2)  $y^5 - y^2 - 1 = 0$ (3)  $y^5 - 2y - 2 = 0$ (4)  $2y^5 - y^2 - 2 = 0$ 

#### Ans. (2)

**Sol.**  $(2x-10y^3)dy+ydx=0$ 

$$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dy}} + \left(\frac{2}{\mathrm{y}}\right) \mathrm{x} = 10\mathrm{y}^2$$

I.F. = 
$$e^{\int \frac{2}{y} dy} = e^{2\ln(y)} = y^2$$

Solution of D.E. is

 $\therefore \mathbf{x} \cdot \mathbf{y} = \int (10y^2) y^2 \cdot dy$ 

$$xy^2 = \frac{10y^5}{5} + C \Longrightarrow xy^2 = 2y^5 + C$$

It passes through  $\left(0,1\right)\rightarrow0=2+C\Rightarrow C=-2$ 

 $\therefore$  Curve is  $xy^2 = 2y^5 - 2$ 

Now, it passes through  $(2,\beta)$ 

$$2\beta^2 = 2\beta^5 - 2 \Rightarrow \beta^5 - \beta^2 - 1 = 0$$

 $\therefore \beta$  is root of an equation  $y^5 - y^2 - 1 = 0$ 

**13.** Let  $\mathbb{Z}$  be the set of all integers,

$$A = \left\{ (x,y) \in \mathbb{Z} \times \mathbb{Z} : (x-2)^2 + y^2 \le 4 \right\}$$
$$B = \left\{ (x,y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \le 4 \right\} \text{ and }$$

$$C = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : (x-2)^2 + (y-2)^2 \le 4\}$$

If the total number of relation from A  $\, \cap$  B to A  $\, \cap$  c is  $2^p$  , then the value of p is :

- (1) 16
- (2) 25
- (3) 49
- (4) 9





Sol.

 $\left(x-2\right)^2+y^2\leq 4$ 

$$x^2 + y^2 \leq 4$$

No. of points common in  $C_1 \& C_2$  is 5. (0, 0), (1, 0), (2, 0), (1, 1), (1, -1) Similarly in  $C_2 \& C_3$  is 5. No. of relations =  $2^{5\times 5} = 2^{25}$ .

- **14.** The area of the region bounded by the parabola  $(y-2)^2 = (x-1)$ , the tangent to it at the point whose ordinate is 3 and the x-axis is :
  - (1) 6
  - (2) 4
  - (3) 10
  - (4) 9
- Ans. (4)

Sol.



 $y=3 \Longrightarrow x=2$ 

Point is (2,3)

Diff. w.r.t x

2(y-2)y'=1

$$\Rightarrow y' = \frac{1}{2(y-2)}$$
$$\Rightarrow y'_{(2,3)} = \frac{1}{2}$$
$$y-3 = 1$$

$$\Rightarrow \frac{y-3}{x-2} = \frac{1}{2} \Rightarrow x-2y+4 = 0$$

Area = 
$$\int_{0}^{3} ((y-2)^{2}+1-(2y-4)) dy$$
  
= 9 sq. units

- **15.** Let M and m respectively be the maximum and minimum values of the function  $f(x) = \tan^{-1}(\sin x + \cos x)$  in  $\left[0, \frac{\pi}{2}\right]$  Then the value of  $\tan(M-m)$  is equal to :
  - (1)  $3-2\sqrt{2}$
  - (2)  $3+2\sqrt{2}$
  - (3)  $2-\sqrt{3}$
  - (4)  $2 + \sqrt{3}$
- Ans. (1)

Sol.

Let  $g(x) = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$   $g(x) \in [1, \sqrt{2}] \text{ for } x \in [0, \pi/2]$   $f(x) = \tan^{-1}(\sin x + \cos x) \in \left[\frac{\pi}{4}, \tan^{-1}\sqrt{2}\right]$  $\tan\left(\tan^{-1}\sqrt{2} - \frac{\pi}{4}\right) = \frac{\sqrt{2} - 1}{1 + \sqrt{2}} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1} = 3 - 2\sqrt{2}$  **16.** A differential equation representing the family of parabolas with axis parallel to y-axis and whose length of latus rectum is the distance of the point (2,-3) from the line 3x+4y = 5 is given by :

nkers

(1) 
$$10 \frac{d^2 y}{dx^2} = 11$$
  
(2)  $11 \frac{d^2 y}{dx^2} = 10$   
(3)  $10 \frac{d^2 x}{dy^2} = 11$   
(4)  $11 \frac{d^2 x}{dy^2} = 10$ 

**Sol.**  $\alpha \cdot R = \frac{|3(2) + 4(-3) - 5}{5}$ 

$$\left(x-h\right)^2 = \frac{11}{5} \left(y-k\right)$$

Differentiate w.r.t 'x' :-

11

5

$$2\left(x-h\right)=\frac{11}{5}\frac{dy}{dx}$$

Again differentiate

$$2 = \frac{11}{5} \frac{d^2y}{dx^2}$$
$$\frac{11d^2y}{dx^2} = 10$$

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

**17.** The Boolean expression  $(p \land q) \Rightarrow ((r \land q) \land p)$  is equivalent to :

- (1)  $(p \land r) \Rightarrow (p \land q)$
- (2)  $(q \land r) \Rightarrow (p \land q)$
- (3)  $(p \land q) \Rightarrow (r \land q)$
- (4)  $(p \land q) \Rightarrow (r \lor q)$ (1)
- Ans. Sol.



$$\sim$$
 (p  $\land$  q)  $\lor$  ((r  $\land$  p)  $\land$  (p  $\land$  q)

 $\Rightarrow [\sim (p \land q) \lor (p \land q)] \land (\sim (p \land q) \lor (r \land p))$ 

$$\Rightarrow t \land \left[ \sim (p \land q) \lor (r \land p) \right]$$

$$\Rightarrow \sim (p \land q) \lor (r \land p)$$

$$\Rightarrow$$
 (p  $\land$  q)  $\Rightarrow$  (r  $\land$  p)

- **18.** The set of all value of  $k \ge -1$ , for which the equation  $(3x^2+4x+3)^2-(k+1)(3x^2+4x+3)(3x^2+4x+2)+k(3x^2+4x+2)^2 = 0$  has real roots, is:
  - $(1) \left[ -\frac{1}{2}, 1 \right]$  (2) [2, 3)  $(3) \left( 1, \frac{5}{2} \right]$

$$(4)\left(\frac{1}{2},\frac{3}{2}\right]-\{1\}$$

#### Ans. (3)

Sol.  $(3x^{2} + 4x + 3)^{2} - (k + 1)(3x^{2} + 4x + 3)(3x^{2} + 4x + 2)$  $+ k (3x^2 + 4x + 2)^2 = 0$ Let  $3x^2 + 4x + 3 = a$ and  $3x^2 + 4x + 2 = b \Rightarrow b = a - 1$ Given equation becomes  $\Rightarrow$  a<sup>2</sup> - (k +1) ab + k b<sup>2</sup> = 0  $\Rightarrow$  a (a - kb) - b (a - kb) = 0 ers  $\Rightarrow$  (a - kb) (a - b) = 0  $\Rightarrow$  a = kb or a = b (reject) ∵ a = kb  $\Rightarrow 3x^2 + 4x + 3 = k (3x^2 + 4x + 2)$  $\Rightarrow$  3 ( k -1) x<sup>2</sup> + 4 ( k -1) x + (2k - 3) = 0 for real roots  $D \geq 0$  $\Rightarrow$  16 ( k -1)<sup>2</sup> - 4 (3(k-1)) (2k - 3)  $\geq$  0  $\Rightarrow$  4 (k -1) {4 (k -1) - 3 (2k - 3)}  $\geq$  0  $\Rightarrow$  4 (k -1) {-2k + 5}  $\ge$  0  $\Rightarrow$  -4 (k -1) {2k - 5}  $\ge 0$  $\Rightarrow$  (k - 1) (2k - 5)  $\leq$  0  $\therefore k \in \left[1, \frac{5}{2}\right]$ ∵ k ≠ 1  $\therefore \mathbf{k} \in \left(1, \frac{5}{2}\right)$ 

- **19.** The angle between the straight lines, whose direction cosines are given by the equation  $2\ell + 2m-n = 0$  and  $mn+n\ell + \ell m = 0$ , is :
  - (1)  $\frac{\pi}{3}$
  - (2)  $\pi \cos^{-1}\left(\frac{4}{9}\right)$ (3)  $\cos^{-1}\left(\frac{8}{9}\right)$
  - (4)  $\frac{\pi}{2}$

### Ans. (4)

**Sol.** n=2(ℓ+m)

 $\ell m + n(\ell + m) = 0$   $\ell m + 2(\ell + m)^{2} = 0$   $2\ell^{2} + 2m^{2} + 5m\ell = 0$   $2(\frac{\ell}{m})^{2} + 2 + 5(\frac{\ell}{m}) = 0$   $2t^{2} + 5t + 2 = 0$  (t + 2)(2t + 1) = 0  $\Rightarrow t = -2; -\frac{1}{2}$   $(i) \frac{\ell}{m} = -2$  (-2m, m, -2m) (-2, 1, -2)  $(ii) \frac{\ell}{m} = -\frac{1}{2}$ 

$$n = -2\ell$$

$$(\ell, -2\ell, -2\ell)$$

$$(1, -2, -2)$$

$$\cos \theta = \frac{-2 - 2 + 4}{\sqrt{9}\sqrt{9}} = 0 \implies \theta = \frac{\pi}{2}$$

**20.** If two tangents drawn from a point P to the parabola  $y^2 = 16(x-3)$  are at right angles, then the locus of point P is :

Section B

**(ers** 

- (1) x + 3 = 0
- (2) x + 2 = 0
- (3) x + 4 = 0
- (4) x + 1 = 0
- Ans. (4)
- **Sol.** Locus is directrix of parabola  $x 3 + 4 = 0 \Rightarrow x + 1 = 0$ .
- **1.** The probability distribution of random variable X is given by :

| Х    | 1 | 2  | 3  | 4  | 5 |
|------|---|----|----|----|---|
| P(X) | К | 2K | 2K | ЗK | К |

Let p = P(1 < x < 4 | x < 3). If  $5P = \lambda K$ , then  $\lambda$  is equal to\_\_\_\_\_

- Ans. (30)
- $\textbf{Sol.} \qquad \sum P\left(X\right) = 1 \Longrightarrow k + 2k + 2k + 3k + k = 1$ 
  - $\Rightarrow k = \frac{1}{9}$

Now, 
$$p = P\left(\frac{kX < 4}{X < 3}\right) = \frac{P\left(X = 2\right)}{P\left(X < 3\right)} = \frac{\frac{2k}{9k}}{\frac{k}{9k} + \frac{2k}{9k}} = \frac{2}{3}$$
  

$$\Rightarrow p = \frac{2}{3}$$
Now,  $5p = \lambda k$   

$$\Rightarrow (5)\left(\frac{2}{3}\right) = \lambda (1 / 9)$$

$$\Rightarrow \lambda = 30$$

2. An online exam is attempted by 50 candidates out of which 20 are boys. The average marks obtained by boys is 12 with a variance 2. The variance of marks obtained by 30 girls is also 2. The average marks of all 50 candidates is 15. If  $\mu$  is the average marks of girls and  $\sigma^2$  is the variance of marks of 50 candidates, then  $\mu + \sigma^2$  is equal to\_\_\_\_\_.

Ker

**Sol.** 
$$\sigma_h^2 = 2$$
 (variance of boys)  $n_1 = no.$  of boys

$$\overline{x}_{b} = 12$$
  $n_{2} = no. of girls$ 

$$\sigma_a^2 = 2$$

$$\bar{x}_{g} = \frac{50 \times 15 - 12 \times \sigma_{b}}{30} = \frac{750 - 12 \times 20}{30} = 17 = \mu$$

Variance of combined series

$$\sigma^{2} = \frac{n_{1}\sigma_{b}^{2} + n_{2}\sigma_{g}^{2}}{n_{1} + n_{2}} + \frac{n_{1} \cdot n_{2}}{(n_{1} + n_{2})^{2}} (\bar{x}_{b} - \bar{x}_{g})^{2}$$

$$\sigma^{2} = \frac{20 \times 2 + 30 \times 2}{20 + 30} + \frac{20 \times 30}{(20 + 30)^{2}} (12 - 17)^{2}$$

$$\sigma^2 = 8$$

$$\Rightarrow \mu + \sigma^2 = 17 + 8 = 25$$

**3.** Let  $S = \{1, 2, 3, 4, 5, 6, 9\}$ . Then the number of elements in the set  $T = \{A \subseteq S : A \neq \phi \text{ and the sum of all the elements of A is not a multiple of 3} is_____.$ 

#### Ans. (80)

 $3n \text{ type} \rightarrow 3, 6, 9 = P$ Sol. 3n - 1 type  $\rightarrow 2, 5 = Q$ 3n-2 type  $\rightarrow 1,4 = R$ number of subset of S containing one element which are not divisible by  $3 = {}^{2}C_{1} + {}^{2}C_{1} = 4$ number of subset of S containing two numbers whose sum is not divisible by 3  $= {}^{3}C_{1} \times {}^{2}C_{1} + {}^{3}C_{1} \times {}^{2}C_{1} + {}^{2}C_{2} + {}^{2}C_{2} = 14$ number of subsets containing 3 elements whose sum is not divisible by 3  $= {}^{3}C_{2} \times {}^{4}C_{1} + \left( {}^{2}C_{2} \times {}^{2}C_{1} \right) \times 2 + {}^{3}C_{1} \left( {}^{2}C_{2} + {}^{2}C_{2} \right) = 22$ number of subsets containing 4 elements whose sum is not divisible by 3  $=^{3} C_{3} \times^{4} C_{1} + ^{3} C_{2} (^{2}C_{2} + ^{2}C_{2}) + (^{3}C_{1}^{2}C_{1} \times ^{2}C_{2}) \times 2$ = 4 + 6 + 12 = 22.number of subsets of S containing 5 elements **(ers** whose sum is not divisible by 3.  ${}^{3}C_{3}({}^{2}C_{2} + {}^{2}C_{2}) + ({}^{3}C_{2} \times {}^{2}C_{1} \times {}^{2}C_{2}) \times 2$ = 2 + 12 = 14number of subsets of S containing 6 elements whose sum is not divisible by 3 = 4 $\Rightarrow$  Total subsets of Set A whose sum of digits is

- not divisible by 3 = 4 + 14 + 22 + 22 + 14 + 4 = 80.
- **4.** Let  $A(\sec \theta, 2\tan \theta)$  and  $B(\sec \phi, 2\tan \phi)$ , where  $\theta + \phi = \pi/2$ , be two points on the hyperbola  $2x^2 y^2 = 2$ . If  $(\alpha, \beta)$  is the point of the intersection of the normals to the hyperbola at A and B, then  $(2\beta)^2$  is equal to\_\_\_\_\_.

#### Ans. (36)

**Sol.** Since, point  $A(\sec\theta, 2\tan\theta)$ 

lies on the hyperbola

$$2x^2 - y^2 = 2$$

Therefore,  $2\sec^2 \theta - 4\tan^2 \theta = 2$   $\Rightarrow 2 + 2\tan^2 \theta - 4\tan^2 \theta = 2$   $\Rightarrow \tan \theta = 0 \Rightarrow \theta = 0$ Similarly, for point B, we will get  $\phi = 0$ . but according to question  $\theta + \phi = \frac{\pi}{2}$ which is not possible.

Hence it must be a 'BONUS'

**5.** Let S be the sum of all solutions (in radians) of the equation  $\sin^4 \theta + \cos^4 \theta - \sin \theta \cos \theta = 0$  in  $[0, 4\pi]$ . The  $\frac{8S}{\pi}$  is equal to\_\_\_\_\_.

nkers

Ans. (56)

Sol. Given equation

 $\sin^4\theta + \cos^4\theta - \sin\theta\cos\theta = 0$ 

$$\Rightarrow 1 - \sin^2 \theta \cos^2 \theta - \sin \theta \cos \theta = 0$$

 $\Rightarrow 2 - (\sin 2\theta)^2 - \sin 2\theta = 0$ 

 $\Rightarrow$  (sin 2 $\theta$ )<sup>2</sup> + (sin 2 $\theta$ ) - 2 = 0

- $\Rightarrow$ (sin2 $\theta$ +2)(sin2 $\theta$ -1)=0
- $\Rightarrow \sin 2\theta = 1 \text{ or } \frac{\sin 2\theta = -2}{(\text{ not possible })}$

$$\Rightarrow 2\theta = \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \frac{13\pi}{2}$$

$$\Rightarrow \theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}$$

$$\Rightarrow S = \frac{\pi}{4} + \frac{5\pi}{4} + \frac{9\pi}{4} + \frac{13\pi}{4} = 7\pi$$
$$\Rightarrow \frac{8S}{\pi} = \frac{8 \times 7\pi}{\pi} = 56.00$$

**6.** Let S be the mirror image of the point Q(1, 3, 4) with respect to the plane 2x-y+z+3 = 0 and let R(3,5,  $\gamma$ ) be a point of this plane. Then the square of the length of the line segment SR is





F lies in the plane

$$\Rightarrow$$
 2(2 $\lambda$ +1)-(- $\lambda$ +3)+( $\lambda$ +4)+3=0

- $\Rightarrow 4\lambda + 2 + \lambda 3 + \lambda + 7 = 0$
- $\Rightarrow 6\lambda{+}6{=}0 \Rightarrow \lambda{=}{-}1$
- $\Rightarrow$  F(-1,4,3)

Since, F is mid-point of QS. Therefore, co-ordinated of S are (-3,5,2).

So, SR= $\sqrt{36+0+36}=\sqrt{72}$ 

 $SR^2 = 72$ 

7. Let  $z_1$  and  $z_2$  be two complex numbers such that arg  $(z_1-z_2)=\frac{\pi}{4}$  and  $z_1, z_2$  satisfy the equation |z-3| = Re(z). Then the imaginary part of  $z_1+z_2$  is equal to\_\_\_\_\_.

Ans. (6)



$$\Rightarrow y^{2}=6x-9$$

$$\Rightarrow y^{2} = 6\left(x - \frac{3}{2}\right)$$

$$\Rightarrow z_{1} \text{ and } z_{2} \text{ lie on the parabola mentioned in eq. (1)}$$
arg  $(z_{1}-z_{2}) = \frac{\pi}{4}$ 

$$\Rightarrow \text{ Slope of PQ = 1}$$
Let  $P\left(\frac{3}{2} + \frac{3}{2}t_{1}^{2}, 3t_{1}\right) \text{ and } Q\left(\frac{3}{2} + \frac{3}{2}t_{2}^{2}, 3t_{2}\right)$ 
Slope of  $PQ = \frac{3(t_{2} - t_{1})}{\frac{3}{2}(t_{2}^{2} - t_{1}^{2})} = 1$ 

$$\Rightarrow \frac{2}{t_{1}+t_{2}} = 1$$

$$\Rightarrow t_{2}+t_{1}=2$$
Im  $(z_{1}+z_{2})=3t_{1}+3t_{2}=3(t_{1}+t_{2})=3(2)=6$ 

8. Two circles each of radius 5 units touch each other at the point (1,2). If the equation of their common tangent is 4x + 3y = 10, and  $C_1(\alpha, \beta)$  and  $C_2(\gamma, \delta), C_1 \neq C_2$  are their centres, then  $|(\alpha + \beta)(\gamma + \delta)|$  is equal to. \_\_\_\_\_.

#### Ans. (40)

**Sol.** Slope of line joining centres of circles  $=\frac{4}{3}$  = tan $\theta$ 



$$\Rightarrow$$
 cos $\theta = \frac{3}{5}$ , sin $\theta = \frac{4}{5}$ 

Now using parametric form

 $\frac{x-1}{\cos\theta} = \frac{y-2}{\sin\theta} = \pm 5$   $\bigoplus(x,y) = (1+5\cos\theta, 2+5\sin\theta)$   $(\alpha,\beta) = (4,6)$   $\bigoplus(x,y) = (\gamma,\delta) = (1-5\cos\theta, 2-5\sin\theta)$  $(\gamma,\delta) = (-2,-2)$ 

 $\Rightarrow |(a+\beta)(\gamma+\delta)| = |10x(-4)| = 40$ 

- 9. If  $\int \frac{2e^x + 3e^{-x}}{4e^x + 7e^{-x}} dx = \frac{1}{14} (ux + v \log_e (4e^x + 7e^{-x})) + C$ , where C is a constant of integration, then u + v is equal to\_\_\_\_\_\_.
- Ans. (7)

**Sol.** 
$$\int \frac{2e^x}{4e^x + 7e^{-x}} dx + 3 \int \frac{e^{-x}}{4e^x + 7e^{-x}} dx$$

$$=\int \frac{2e^{2x}}{4e^{2x}+7}dx + 3\int \frac{e^{-2x}}{4+7e^{-2x}}dx$$

Let  $4e^{2x} + 7 = T$ | Let  $4 + 7e^{-2x} = t$   $8e^{2x}dx = dT$   $-14e^{-2x}dx = dt$   $2e^{2x}dx = \frac{dT}{4}$   $e^{-2x}dx = -\frac{dt}{14}$   $\int \frac{dT}{4T} - \frac{3}{14} \int \frac{dt}{t}$   $= \frac{1}{4}\log(4e^{2x} + 7) - \frac{3}{14}\log(4 + 7e^{-2x}) + C$   $= \frac{1}{14} \left[ \frac{1}{2} \log(4e^{x} + 7e^{-x}) + \frac{13}{2}x \right] + C$   $u = \frac{13}{2}, v = \frac{1}{2} \Rightarrow u + v = 7$   $u = \frac{13}{2}; v = \frac{1}{2}$  $\Rightarrow u + v = 7$ 

- **10.**  $3 \times 7^{22} + 2 \times 10^{22}$  -44 when divided by 18 leaves the remainder\_\_\_\_
- Ans. (15)

**Sol.** 
$$3(1+6)^{22} + 2 \cdot (1+9)^{22} - 44 = (3+2-44) = 18.$$
 I

- = -39 + 18.I
- =(54-39)+18(I-3)
- = 15 + 18I
- $\Rightarrow$  Remainder = 15.