MATHEMATICS
 JEE-MAIN (August-Attempt)
 27 August (Shift-2) Paper

SECTION - A

1. Let $A(a, 0), B(b, 2 b+1)$ and $C(0, b), b \neq 0,|b| \neq 1$ be points such that the area of triangle $A B C$ is 1sq. unit, then the sum of all possible values of a is:
(1) $\frac{-2 b^{2}}{b+1}$
(2) $\frac{2 b^{2}}{b+1}$
(3) $\frac{-2 b}{b+1}$
(4) $\frac{2 b}{b+1}$

Ans. (3)
Sol. $\left.\left|\frac{1}{2}\right| \begin{array}{ccc}a & 0 & 1 \\ b & 2 b+1 & 1 \\ 0 & b & 1\end{array} \right\rvert\,=1$
$\Rightarrow\left|\begin{array}{ccc}a & 0 & 1 \\ b & 2 b+1 & 1 \\ 0 & b & 1\end{array}\right|= \pm 2$
$\Rightarrow a(2 b+1-b)-0+1\left(b^{2}-0\right)= \pm 2$
$\Rightarrow \mathrm{a}=\frac{ \pm 2-\mathrm{b}^{2}}{\mathrm{~b}+1}$
$\therefore \mathrm{a}=\frac{2-\mathrm{b}^{2}}{\mathrm{~b}+1}$ and $\mathrm{a}=\frac{-2-\mathrm{b}^{2}}{\mathrm{~b}+1}$
sum of possible values of ' a ' is
$=\frac{-2 b^{2}}{a+1}$
2. If $0<x<1$ and $y=\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{3}{4} x^{4}+\ldots$. , then the value of e^{1+y} at $x=\frac{1}{2}$ is:
(1) $\frac{1}{2} \mathrm{e}^{2}$
(2) 2 e
(3) $2 e^{2}$
(4) $\frac{1}{2} \sqrt{\mathrm{e}}$

Ans. (1)
Sol. $y=\left(1-\frac{1}{2}\right) x^{2}+\left(1-\frac{1}{3}\right) x^{3}+\ldots$.

$$
\begin{aligned}
& =\left(x^{2}+x^{3}+x^{4}+\ldots . .\right)-\left(\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots\right) \\
& =\frac{x^{2}}{1-x}+x-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots\right) \\
& =\frac{x}{1-x}+\ln (1-x) \\
& x=\frac{1}{2} \Rightarrow y=1-\ell n 2 \\
& e^{1+y}=e^{1+1-\ln 2} \\
& =e^{2-\ell n 2}=\frac{e^{2}}{2}
\end{aligned}
$$

3. The equation of the plane passing through the line of intersection of the planes $\vec{r}(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} .(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to the x-axis is :
(1) $\vec{r} \cdot(\hat{i}+3 \hat{k})+6=0$
(2) $\vec{r} \cdot(\hat{j}-3 \hat{k})-6=0$
(3) $\vec{r} \cdot(\hat{i}-3 \hat{k})+6=0$
(4) $\vec{r} \cdot(\hat{j}-3 \hat{k})+6=0$

Ans. (4)
Equation of planes are
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1=0 \Rightarrow x+y+z-1=0$
and $\overrightarrow{\mathrm{r}} \times(2 \hat{i}+3 \hat{j}-\hat{k})+4=0 \Rightarrow 2 x+3 y-z+4=0$
equation of planes through line of intersection of these plane is :-
$(x+y+z-1)+\lambda(2 x+3 y-z+4)=0$
$\Rightarrow(1+2 \lambda) x+(1+3 \lambda) y+(1-\lambda) z-1+4 \lambda=0$
But this plane is parallel to x-axis whose direction are $(1,0,0)$
$\therefore(1+2 \lambda) 1+(1+3 \lambda) 0+(1-\lambda) 0=0$
$\lambda=-\frac{1}{2}$
\therefore Required plane is
$0 x+\left(1-\frac{3}{2}\right) y+\left(1+\frac{1}{2}\right) z-1+4\left(\frac{-1}{2}\right)=0$
$\Rightarrow \frac{-y}{2}+\frac{3}{2} z-3=0$
$\Rightarrow y-3 z+6=0$
$\Rightarrow \vec{r} \cdot(\hat{\mathrm{j}}-3 \hat{\mathrm{k}})+6=0$
4. Each of the persons A and B independently tosses three fair coins. The probability that both of them get the same number of heads is:
(1) $\frac{5}{8}$
(2) $\frac{5}{16}$
(3) $\frac{1}{8}$
(4) 1

Ans. (2)
Sol. C-I 'O' Head
TTT $\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{3}=\frac{1}{64}$
C-II '1' Head
HTT $\left(\frac{3}{8}\right)\left(\frac{3}{8}\right)=\frac{9}{64}$
C-III '2' Heads
$\mathrm{HHT}\left(\frac{3}{8}\right)\left(\frac{3}{8}\right)=\frac{9}{64}$

C-IV '3' Heads
$\operatorname{HHH}\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)=\frac{1}{64}$

Total probability $=\frac{5}{16}$
5. Let [λ] be the greatest integer less than or equal to λ. The set of all value of λ for which the system of linear equations $x+y+z=4,3 x+2 y+5 z=3,9 x+4 y+(28+[\lambda]) z=[\lambda]$ has a solution is:
(1) $(-\infty,-9) \cup[-8, \infty)$
(2) $(-\infty,-9) \cup(-9, \infty)$
$(3)[-9,-8]$
(4) R

Ans. (1)
Sol. $\quad D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 3 & 2 & 5 \\ 9 & 4 & 28+[\lambda]\end{array}\right|=-24-[\lambda]+15=-[\lambda]-9$
If $[\lambda]+9 \neq 0$ then unique solution
if $[\lambda]+9=0$ then $D_{1}=D_{2}=D_{3}=0$
so infinite solutions
Hence λ can be any real number.
6. A box open from top is made from a rectangular sheet of dimension $a \times b$ by cutting squares each of side x from each of the four corners fand folding up the flaps. If the volume of the box is maximum, then x is equal to :
(1) $\frac{a+b-\sqrt{a^{2}+b^{2}-a b}}{6}$
(2) $\frac{a+b+\sqrt{a^{2}+b^{2}-a b}}{6}$
(3) $\frac{a+b-\sqrt{a^{2}+b^{2}-a b}}{12}$
(4) $\frac{a+b-\sqrt{a^{2}+b^{2}+a b}}{6}$

And. (4)

Sol.

$\mathrm{V}=\ell . \mathrm{b} . \mathrm{h}=(\mathrm{a}-2 \mathrm{x})(\mathrm{b}-2 \mathrm{x}) \mathrm{x}$
$\Rightarrow V(x)=(2 x-a)(2 x-b) x$
$\Rightarrow V(x)=4 x^{3}-2(a+b) x^{2}+a b x$
$\Rightarrow \frac{d}{d x} V(x)=12 x^{2}-4(a+b) x+a b$
$\frac{d}{d x}(V(x))=0 \Rightarrow 12 x^{2}-4(a+b) x+a b=0<_{\beta}^{\alpha}$
$\Rightarrow x=\frac{4(a+b) \pm \sqrt{16(a+b)^{2}-48 a b}}{2(12)}$
$=\frac{(a+b) \pm \sqrt{a^{2}+b^{2}-a b}}{6}$
Let $x=\alpha=\frac{(a+b)+\sqrt{a^{2}+b^{2}-a b}}{6}$
$\beta=\frac{(a+b)-\sqrt{a^{2}+b^{2}-a b}}{6}$
Now, $12(x-\alpha)(x-\beta)=0$

$\therefore x=\beta$
$=\frac{a+b-\sqrt{a^{2}+b^{2}-a b}}{b}$
7. Let $A=\left(\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right)$, where [t] denotes the greatest integer less than or equal to t. If $\operatorname{det}(A)=192$, then the set of value of x is the interval:
(1) $[62,63)$
(2) $[60,61)$
(3) $[68,69)$
(4) $[65,66)$

Ans. (1)
Sol. $\left|\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right|=192$
$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3} \& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$
$\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ {[x]} & {[x]+2} & {[x]+4}\end{array}\right]=192$
$2[x]+6+[x]=192 \Rightarrow[x]=62$
8. If $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x+1}-a x\right)=b$, then the ordered pair (a, b) is :
(1) $\left(1, \frac{1}{2}\right)$
(2) $\left(-1, \frac{1}{2}\right)$
(3) $\left(-1,-\frac{1}{2}\right)$
(4) $\left(1,-\frac{1}{2}\right)$

Ans. (4)

Sol. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x+1}\right)-a x=b \quad(\infty-\infty)$ form
$\Rightarrow \mathrm{a}>0$

Now, $\lim _{x \rightarrow \infty} \frac{\left(x^{2}-x+1-a^{2} x^{2}\right)}{\sqrt{x^{2}-x+1}+a x}=b$
$\Rightarrow \lim _{x \rightarrow \infty} \frac{\left(1-a^{2}\right) x^{2}-x+1}{\sqrt{x^{2}-x+1}+a x}=b$
$\Rightarrow \lim _{x \rightarrow \infty} \frac{\left(1-a^{2}\right) x^{2}-x+1}{x\left(\sqrt{1-\frac{1}{x}+\frac{1}{x^{2}}}+a\right)}=b$
$\Rightarrow 1-\mathrm{a}^{2}=0 \Rightarrow \mathrm{a}=1$
Now, $\lim _{x \rightarrow \infty} \frac{-x+1}{x\left(\sqrt{1-\frac{1}{x}+\frac{1}{x^{2}}}+a\right)}=b$
$\Rightarrow \frac{-1}{1+\mathrm{a}}=\mathrm{b} \Rightarrow \mathrm{b}=-\frac{1}{2}$
$(a, b)=\left(1,-\frac{1}{2}\right)$
9. The value of the integral $\int_{0}^{1} \frac{\sqrt{x} d x}{(1+x)(1+3 x)(3+x)}$ is:
(1) $\frac{\pi}{8}\left(1-\frac{\sqrt{3}}{2}\right)$
(2) $\frac{\pi}{4}\left(1-\frac{\sqrt{3}}{6}\right)$
(3) $\frac{\pi}{4}\left(1-\frac{\sqrt{3}}{2}\right)$
(4) $\frac{\pi}{8}\left(1-\frac{\sqrt{3}}{6}\right)$

Ans. (1)
Sol. $I=\int_{0}^{1} \frac{\sqrt{x}}{(1+x)(1+3 x)(3+x)} d x$
Let $\mathrm{x}=\mathrm{t}^{2} \Rightarrow \mathrm{dx}=2 \mathrm{t}$. dt

$$
\begin{aligned}
I & =\int_{0}^{1} \frac{t(2 t)}{\left(t^{2}+1\right)\left(1+3 t^{2}\right)\left(3+t^{2}\right)} d t \\
I & =\int_{0}^{1} \frac{\left(3 t^{2}+1\right)-\left(t^{2}+1\right)}{\left(3 t^{2}+1\right)\left(t^{2}+1\right)\left(3+t^{2}\right)} d t \\
I & =\int_{0}^{1} \frac{d t}{\left(t^{2}+1\right)\left(3+t^{2}\right)}-\int_{0}^{1} \frac{d t}{\left(1+3 t^{2}\right)\left(3+t^{2}\right)} \\
& =\frac{1}{2} \int_{0}^{1} \frac{d t}{1+t^{2}}-\frac{1}{2} \int_{0}^{1} \frac{d t}{t^{2}+3}+\frac{1}{8} \int_{0}^{1} \frac{d t}{t^{2}+3}-\frac{3}{8} \int_{0}^{1} \frac{d t}{\left(1+3 t^{2}\right)} \\
& =\frac{1}{2} \int_{0}^{1} \frac{d t}{t^{2}+1}-\frac{3}{8} \int_{0}^{1} \frac{d t}{t^{2}+3}-\frac{3}{8} \int_{0}^{1} \frac{d t}{1+3 t^{2}} \\
& =\frac{1}{2}\left(\tan ^{-1}(t)\right)_{0}^{1}-\frac{3}{8 \sqrt{3}}\left(\tan ^{-1}\left(\frac{t}{\sqrt{3}}\right)\right)_{0}^{1}-\frac{3}{8 \sqrt{3}}\left(\tan ^{-1}(\sqrt{3} t)\right)_{0}^{1} \\
& =\frac{1}{2}\left(\frac{\pi}{4}\right)-\frac{\sqrt{3}}{8}\left(\frac{\pi}{6}\right)-\frac{\sqrt{3}}{8}\left(\frac{\pi}{3}\right) \\
& =\frac{\pi}{8}-\frac{\sqrt{3}}{16} \pi \\
& =\frac{\pi}{8}\left(1-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

10. If $y(x)=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right), x \in\left(\frac{\pi}{2}, \pi\right)$, then $\frac{d y}{d x}$ at $x=\frac{5 \pi}{6}$ is:
(1) 0
(2) -1
(3) $\frac{1}{2}$
(4) $-\frac{1}{2}$

Ans. (4)
Sol. $y(x)=\cot ^{-1}\left[\frac{\cos \frac{x}{2}+\sin \frac{x}{2}+\sin \frac{x}{2}-\cos \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}-\sin \frac{x}{2}+\cos \frac{x}{2}}\right]$
$y(x)=\cot ^{-1}\left(\tan \frac{x}{2}\right)=\frac{\pi}{2}-\frac{x}{2}$
$y^{\prime}(x)=\frac{-1}{2}$
11. Two poles, $A B$ of length a metres and $C D$ of length $a+b(b \neq a)$ metres are erected at the same horizontal level with bases at B and D. If $B D=X$ and $\tan A C B=\frac{1}{2}$, then:
(1) $x^{2}+2(a+2 b) x+a(a+b)=0$
(2) $x^{2}-2 a x+b(a+b)=0$
(3) $x^{2}+2(a+2 b) x-b(a+b)=0$
(4) $x^{2}-2 a x+a(a+b)=0$

Ans. (2)

Sol.

$\Rightarrow \frac{1}{2}+\frac{x}{a+b}$
$\Rightarrow \frac{\frac{1}{2}+\frac{x}{a+b}}{1-\frac{1}{2} \times \frac{x}{a+b}}=\frac{x}{b}$
$\Rightarrow x^{2}-2 a x+a b+b^{2}=0$
12. If the solution curve of the differential equation $\left(2 x-10 y^{3}\right) d y+y d x=0$, passes through the points $(0,1)$ and $(2, \beta)$, then β is a root of the equation :
(1) $2 y^{5}-2 y-1=0$
(2) $y^{5}-y^{2}-1=0$
(3) $y^{5}-2 y-2=0$
(4) $2 y^{5}-y^{2}-2=0$

Ans. (2)
Sol. $\quad\left(2 x-10 y^{3}\right) d y+y d x=0$
$\Rightarrow \frac{d x}{d y}+\left(\frac{2}{y}\right) x=10 y^{2}$
I.F. $=e^{\int \frac{2}{y} d y}=e^{2 \ln (y)}=y^{2}$

Solution of D.E. is
$\therefore x \cdot y=\int\left(10 y^{2}\right) y^{2} \cdot d y$
$x y^{2}=\frac{10 y^{5}}{5}+C \Rightarrow x y^{2}=2 y^{5}+C$
It passes through $(0,1) \rightarrow 0=2+C \Rightarrow C=-2$
\therefore Curve is $x y^{2}=2 y^{5}-2$
Now, it passes through $(2, \beta)$
$2 \beta^{2}=2 \beta^{5}-2 \Rightarrow \beta^{5}-\beta^{2}-1=0$
$\therefore \beta$ is root of an equation $y^{5}-\mathrm{y}^{2}-1=0$
13. Let \mathbb{Z} be the set of all integers,
$A=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}:(x-2)^{2}+y^{2} \leq 4\right\}$
$B=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x^{2}+y^{2} \leq 4\right\}$ and
$C=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}:(x-2)^{2}+(y-2)^{2} \leq 4\right\}$
If the total number of relation from $A \cap B$ to $A \cap c$ is 2^{p}, then the value of p is :
(1) 16
(2) 25
(3) 49
(4) 9

Ans. (2)

Sol.

$$
(x-2)^{2}+y^{2} \leq 4
$$

$x^{2}+y^{2} \leq 4$

No. of points common in $\mathrm{C}_{1} \& \mathrm{C}_{2}$ is 5 .
$(0,0),(1,0),(2,0),(1,1),(1,-1)$
Similarly in $\mathrm{C}_{2} \& \mathrm{C}_{3}$ is 5 .
No. of relations $=2^{5 \times 5}=2^{25}$.
14. The area of the region bounded by the parabola $(y-2)^{2}=(x-1)$, the tangent to it at the point whose ordinate is 3 and the x-axis is :
(1) 6
(2) 4
(3) 10
(4) 9

Ans. (4)

Sol.

$y=3 \Rightarrow x=2$
Point is $(2,3)$
Diff. w.r.t x
$2(y-2) y^{\prime}=1$
$\Rightarrow y^{\prime}=\frac{1}{2(y-2)}$
$\Rightarrow y_{(2,3)}^{\prime}=\frac{1}{2}$
$\Rightarrow \frac{y-3}{x-2}=\frac{1}{2} \Rightarrow x-2 y+4=0$

Area $=\int_{0}^{3}\left((y-2)^{2}+1-(2 y-4)\right) d y$
$=9$ sq. units
15. Let M and m respectively be the maximum and minimum values of the function $f(x)=\tan ^{-1}(\sin x$ $+\cos x)$ in $\left[0, \frac{\pi}{2}\right]$ Then the value of $\tan (M-m)$ is equal to :
(1) $3-2 \sqrt{2}$
(2) $3+2 \sqrt{2}$
(3) $2-\sqrt{3}$
(4) $2+\sqrt{3}$

Ans. (1)

Sol.

Let $g(x)=\sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)$
$g(x) \in[1, \sqrt{2}]$ for $x \in[0, \pi / 2]$
$f(x)=\tan ^{-1}(\sin x+\cos x) \in\left[\frac{\pi}{4}, \tan ^{-1} \sqrt{2}\right]$
$\tan \left(\tan ^{-1} \sqrt{2}-\frac{\pi}{4}\right)=\frac{\sqrt{2}-1}{1+\sqrt{2}} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}=3-2 \sqrt{2}$
16. A differential equation representing the family of parabolas with axis parallel to y-axis and whose length of latus rectum is the distance of the point $(2,-3)$ from the line $3 x+4 y=5$ is given by :
(1) $10 \frac{d^{2} y}{d x^{2}}=11$
(2) $11 \frac{\mathrm{~d}^{2} y}{\mathrm{dx}^{2}}=10$
(3) $10 \frac{\mathrm{~d}^{2} x}{d y^{2}}=11$
(4) $11 \frac{d^{2} x}{d y^{2}}=10$

Ans. (2)
Sol. $\quad \alpha \cdot R=\frac{|3(2)+4(-3)-5|}{5}=\frac{11}{5}$
$(x-h)^{2}=\frac{11}{5}(y-k)$
Differentiate w.r.t 'x' :-
$2(x-h)=\frac{11}{5} \frac{d y}{d x}$
Again differentiate

$$
2=\frac{11}{5} \frac{d^{2} y}{d x^{2}}
$$

$\frac{11 d^{2} y}{d x^{2}}=10$
17. The Boolean expression $(p \wedge q) \Rightarrow((r \wedge q) \wedge p)$ is equivalent to :
(1) $(p \wedge r) \Rightarrow(p \wedge q)$
(2) $(q \wedge r) \Rightarrow(p \wedge q)$
(3) $(p \wedge q) \Rightarrow(r \wedge q)$
(4) $(p \wedge q) \Rightarrow(r \vee q)$

Ans. (1)

Sol.

$$
\begin{aligned}
& (p \wedge q) \Rightarrow((r \wedge q) \wedge p) \\
& \sim(p \wedge q) \vee((r \wedge q) \wedge p) \\
& \sim(p \wedge q) \vee((r \wedge p) \wedge(p \wedge q) \\
& \Rightarrow[\sim(p \wedge q) \vee(p \wedge q)] \wedge(\sim(p \wedge q) \vee(r \wedge p)) \\
& \Rightarrow t \wedge[\sim(p \wedge q) \vee(r \wedge p)] \\
& \Rightarrow \sim(p \wedge q) \vee(r \wedge p) \\
& \Rightarrow(p \wedge q) \Rightarrow(r \wedge p)
\end{aligned}
$$

18. The set of all value of $k>-1$, for which the equation $\left(3 x^{2}+4 x+3\right)^{2}-(k+1)\left(3 x^{2}+4 x+3\right)$ $\left(3 x^{2}+4 x+2\right)+k\left(3 x^{2}+4 x+2\right)^{2}=0$ has real roots, is:
(1) $\left[-\frac{1}{2}, 1\right)$
(2) $[2,3)$
(3) $\left(1, \frac{5}{2}\right]$
(4) $\left(\frac{1}{2}, \frac{3}{2}\right]-\{1\}$

Ans. (3)

Sol. $\quad\left(3 x^{2}+4 x+3\right)^{2}-(k+1)\left(3 x^{2}+4 x+3\right)\left(3 x^{2}+4 x+2\right)$
$+k\left(3 x^{2}+4 x+2\right)^{2}=0$
Let $3 x^{2}+4 x+3=a$
and $3 x^{2}+4 x+2=b \Rightarrow b=a-1$
Given equation becomes
$\Rightarrow a^{2}-(k+1) a b+k b^{2}=0$
$\Rightarrow a(a-k b)-b(a-k b)=0$
$\Rightarrow(a-k b)(a-b)=0 \Rightarrow a=k b$ or $a=b$ (reject)
$\because a=k b$
$\Rightarrow 3 x^{2}+4 x+3=k\left(3 x^{2}+4 x+2\right)$
$\Rightarrow 3(k-1) x^{2}+4(k-1) x+(2 k-3)=0$
for real roots
$D \geq 0$
$\Rightarrow 16(\mathrm{k}-1)^{2}-4(3(\mathrm{k}-1))(2 \mathrm{k}-3) \geq 0$
$\Rightarrow 4(\mathrm{k}-1)\{4(\mathrm{k}-1)-3(2 \mathrm{k}-3)\} \geq 0$
$\Rightarrow 4(\mathrm{k}-1)\{-2 \mathrm{k}+5\} \geq 0$
$\Rightarrow-4(\mathrm{k}-1)\{2 \mathrm{k}-5\} \geq 0$
$\Rightarrow(\mathrm{k}-1)(2 \mathrm{k}-5) \leq 0$
$\therefore k \in\left[1, \frac{5}{2}\right]$
$\because k \neq 1$
$\therefore \mathrm{k} \in\left(1, \frac{5}{2}\right]$
19. The angle between the straight lines, whose direction cosines are given by the equation 2ℓ $+2 \mathrm{~m}-\mathrm{n}=0$ and $\mathrm{mn}+\mathrm{n} \ell+\ell \mathrm{m}=0$, is:
(1) $\frac{\pi}{3}$
(2) $\pi-\cos ^{-1}\left(\frac{4}{9}\right)$
(3) $\cos ^{-1}\left(\frac{8}{9}\right)$
(4) $\frac{\pi}{2}$

Ans. (4)
Sol. $n=2(\ell+m)$
$\ell \mathrm{m}+\mathrm{n}(\ell+\mathrm{m})=0$
$\ell m+2(\ell+m)^{2}=0$
$2 \ell^{2}+2 \mathrm{~m}^{2}+5 \mathrm{~m} \ell=0$
$2\left(\frac{\ell}{m}\right)^{2}+2+5\left(\frac{\ell}{m}\right)=0$
$2 \mathrm{t}^{2}+5 \mathrm{t}+2=0$
$(t+2)(2 t+1)=0$
$\Rightarrow t=-2 ;-\frac{1}{2}$
(i) $\frac{\ell}{\mathrm{m}}=-2$
$\frac{n}{m}=-2$
$(-2 m, m,-2 m)$
$(-2,1,-2)$
(ii) $\frac{\ell}{\mathrm{m}}=-\frac{1}{2}$
$\mathrm{n}=-2 \ell$
$(\ell,-2 \ell,-2 \ell)$
$(1,-2,-2)$
$\cos \theta=\frac{-2-2+4}{\sqrt{9} \sqrt{9}}=0 \Rightarrow \theta=\frac{\pi}{2}$
20. If two tangents drawn from a point P to the parabola $y^{2}=16(x-3)$ are at right angles, then the locus of point P is :
(1) $x+3=0$
(2) $x+2=0$
(3) $x+4=0$
$(4) x+1=0$
Ans. (4)
Sol. Locus is directrix of parabola $x-3+4=0 \Rightarrow x+1=0$.

Section B

1. The probability distribution of random variable X is given by :

X	1	2	3	4	5
$P(X)$	K	$2 K$	$2 K$	$3 K$	K

Let $p=P(1<x<4 \mid x<3)$. If $5 P=\lambda K$, then λ is equal to \qquad .

Ans. (30)
Sol. $\quad \sum P(X)=1 \Rightarrow k+2 k+2 k+3 k+k=1$

$$
\Rightarrow \mathrm{k}=\frac{1}{9}
$$

Now, $\mathrm{p}=\mathrm{P}\left(\frac{\mathrm{kX}<4}{\mathrm{X}<3}\right)=\frac{\mathrm{P}(\mathrm{X}=2)}{\mathrm{P}(\mathrm{X}<3)}=\frac{\frac{2 \mathrm{k}}{9 \mathrm{k}}}{\frac{\mathrm{k}}{9 \mathrm{k}}+\frac{2 \mathrm{k}}{9 \mathrm{k}}}=\frac{2}{3}$
$\Rightarrow \mathrm{p}=\frac{2}{3}$
Now, $5 p=\lambda k$
$\Rightarrow(5)\left(\frac{2}{3}\right)=\lambda(1 / 9)$
$\Rightarrow \lambda=30$
2. An online exam is attempted by 50 candidates out of which 20 are boys. The average marks obtained by boys is 12 with a variance 2 . The variance of marks obtained by 30 girls is also 2 . The average marks of all 50 candidates is 15 . If μ is the average marks of girls and σ^{2} is the variance of marks of 50 candidates, then $\mu+\sigma^{2}$ is equal to \qquad —.

Ans. (25)
Sol. $\quad \sigma_{b}^{2}=2$ (variance of boys) $n_{1}=$ no. of boys

$$
\overline{\mathrm{x}}_{\mathrm{b}}=12 \quad \mathrm{n}_{2}=\text { no. of girls }
$$

$\sigma_{g}^{2}=2$
$\bar{x}_{g}=\frac{50 \times 15-12 \times \sigma_{b}}{30}=\frac{750-12 \times 20}{30}=17=\mu$

Variance of combined series
$\sigma^{2}=\frac{n_{1} \sigma_{b}^{2}+n_{2} \sigma_{g}^{2}}{n_{1}+n_{2}}+\frac{n_{1} \cdot n_{2}}{\left(n_{1}+n_{2}\right)^{2}}\left(\bar{x}_{b}-\bar{x}_{g}\right)^{2}$
$\sigma^{2}=\frac{20 \times 2+30 \times 2}{20+30}+\frac{20 \times 30}{(20+30)^{2}}(12-17)^{2}$
$\sigma^{2}=8$
$\Rightarrow \mu+\sigma^{2}=17+8=25$
3. Let $S=\{1,2,3,4,5,6,9\}$.Then the number of elements in the set $T=\{A \subseteq S: A \neq \phi$ and the sum of all the elements of A is not a multiple of 3$\}$ is \qquad —.

Ans. (80)
Sol. $3 n$ type $\rightarrow 3,6,9=P$
$3 n-1$ type $\rightarrow 2,5=$ Q
$3 n-2$ type $\rightarrow 1,4=R$
number of subset of S containing one element
which are not divisible by $3={ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{1}=4$
number of subset of S containing two numbers
whose sum is not divisible by 3
$={ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{2}+{ }^{2} \mathrm{C}_{2}=14$
number of subsets containing 3 elements whose sum is not divisible by 3
$={ }^{3} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1}+\left({ }^{2} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1}\right) \times 2+{ }^{3} \mathrm{C}_{1}\left({ }^{2} \mathrm{C}_{2}+{ }^{2} \mathrm{C}_{2}\right)=22$
number of subsets containing 4 elements whose sum is not divisible by 3
$={ }^{3} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{2}\left({ }^{2} \mathrm{C}_{2}+{ }^{2} \mathrm{C}_{2}\right)+\left({ }^{3} \mathrm{C}_{1}{ }^{2} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{2}\right) \times 2$
$=4+6+12=22$.
number of subsets of S containing 5 elements whose sum is not divisible by 3 .

$$
{ }^{3} \mathrm{C}_{3}\left({ }^{2} \mathrm{C}_{2}+{ }^{2} \mathrm{C}_{2}\right)+\left({ }^{3} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{2}\right) \times 2
$$

$=2+12=14$
number of subsets of S containing 6 elements whose sum is not divisible by $3=4$
\Rightarrow Total subsets of Set A whose sum of digits is not divisible by $3=4+14+22+22+14+4=80$.
4. Let $\mathrm{A}(\sec \theta, 2 \tan \theta)$ and $\mathrm{B}(\sec \phi, 2 \tan \phi)$, where $\theta+\phi=\pi / 2$, be two points on the hyperbola $2 \mathrm{x}^{2}$ $-y^{2}=2$. If (α, β) is the point of the intersection of the normals to the hyperbola at A and B, then $(2 \beta)^{2}$ is equal to \qquad .

Ans. (36)
Sol. Since, point $A(\sec \theta, 2 \tan \theta)$
lies on the hyperbola
$2 x^{2}-y^{2}=2$

Therefore, $2 \sec ^{2} \theta-4 \tan ^{2} \theta=2$
$\Rightarrow 2+2 \tan ^{2} \theta-4 \tan ^{2} \theta=2$
$\Rightarrow \tan \theta=0 \Rightarrow \theta=0$
Similarly, for point B, we will get $\phi=0$.
but according to question $\theta+\phi=\frac{\pi}{2}$
which is not possible.
Hence it must be a 'BONUS'
5. Let S be the sum of all solutions (in radians) of the equation $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ in $[0,4 \pi]$. The $\frac{8 \mathrm{~S}}{\pi}$ is equal to \qquad .

Ans. (56)
Sol. Given equation
$\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$
$\Rightarrow 1-\sin ^{2} \theta \cos ^{2} \theta-\sin \theta \cos \theta=0$
$\Rightarrow 2-(\sin 2 \theta)^{2}-\sin 2 \theta=0$
$\Rightarrow(\sin 2 \theta)^{2}+(\sin 2 \theta)-2=0$
$\Rightarrow(\sin 2 \theta+2)(\sin 2 \theta-1)=0$
$\Rightarrow \sin 2 \theta=1$ or $\frac{\sin 2 \theta=-2}{(\text { not possible })}$
$\Rightarrow 2 \theta=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \frac{13 \pi}{2}$
$\Rightarrow \theta=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \frac{13 \pi}{4}$
$\Rightarrow S=\frac{\pi}{4}+\frac{5 \pi}{4}+\frac{9 \pi}{4}+\frac{13 \pi}{4}=7 \pi$
$\Rightarrow \frac{8 \mathrm{~S}}{\pi}=\frac{8 \times 7 \pi}{\pi}=56.00$
6. Let S be the mirror image of the point $Q(1,3,4)$ with respect to the plane $2 x-y+z+3=0$ and let $R(3,5, \gamma)$ be a point of this plane. Then the square of the length of the line segment $S R$ is
\qquad —.

Ans. (72)

Sol.

Since R $(3,5, \gamma)$ lies on the plane $2 x-y+z+3=0$.
Therefore, $6-5+\gamma+3=0$
$\Rightarrow \gamma=-4$
Now,
dr's of line QS
are $2,-1,1$
equation of line QS is
$\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{1}=\lambda$ (say)
$\Rightarrow F(2 \lambda+1,-\lambda+3, \lambda+4)$
F lies in the plane
$\Rightarrow 2(2 \lambda+1)-(-\lambda+3)+(\lambda+4)+3=0$
$\Rightarrow 4 \lambda+2+\lambda-3+\lambda+7=0$
$\Rightarrow 6 \lambda+6=0 \Rightarrow \lambda=-1$
$\Rightarrow \mathrm{F}(-1,4,3)$
Since, F is mid-point of QS.
Therefore, co-ordinated of S are $(-3,5,2)$.
So, $S R=\sqrt{36+0+36}=\sqrt{72}$
$S R^{2}=72$
7. Let z_{1} and z_{2} be two complex numbers such that $\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{4}$ and z_{1}, z_{2} satisfy the equation $|z-3|=\operatorname{Re}(z)$. Then the imaginary part of $z_{1}+z_{2}$ is equal to \qquad -.

Ans. (6)
Sol.

$|z-3|=\operatorname{Re}(z)$
let $Z=x=i y$
$\Rightarrow(x-3)^{2}+y^{2}=x^{2}$
$\Rightarrow x^{2}+9-6 x+y^{2}=x^{2}$
$\Rightarrow y^{2}=6 x-9$
$\Rightarrow y^{2}=6\left(x-\frac{3}{2}\right)$
$\Rightarrow z_{1}$ and z_{2} lie on the parabola mentioned in eq. (1)
$\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{4}$
\Rightarrow Slope of $\mathrm{PQ}=1$
Let $\mathrm{P}\left(\frac{3}{2}+\frac{3}{2} \mathrm{t}_{1}^{2}, 3 \mathrm{t}_{1}\right)$ and $\mathrm{Q}\left(\frac{3}{2}+\frac{3}{2} \mathrm{t}_{2}^{2}, 3 \mathrm{t}_{2}\right)$
Slope of $\mathrm{PQ}=\frac{3\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}{\frac{3}{2}\left(\mathrm{t}_{2}^{2}-\mathrm{t}_{1}^{2}\right)}=1$
$\Rightarrow \frac{2}{\mathrm{t}_{1}+\mathrm{t}_{2}}=1$
$\Rightarrow \mathrm{t}_{2}+\mathrm{t}_{1}=2$
$\operatorname{Im}\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right)=3 \mathrm{t}_{1}+3 \mathrm{t}_{2}=3\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=3(2)=6$
8. Two circles each of radius 5 units touch each other at the point (1,2). If the equation of their common tangent is $4 x+3 y=10$, and $C_{1}(\alpha, \beta)$ and $C_{2}(\gamma, \delta), C_{1} \neq C_{2}$ are their centres, then $|(\alpha+\beta)(\gamma+\delta)|$ is equal to. \qquad .

Ans. (40)
Sol. Slope of line joining centres of circles $=\frac{4}{3}=\tan \theta$

$\Rightarrow \cos \theta=\frac{3}{5}, \sin \theta=\frac{4}{5}$
Now using parametric form
$\frac{x-1}{\cos \theta}=\frac{y-2}{\sin \theta}= \pm 5$
$\oplus(x, y)=(1+5 \cos \theta, 2+5 \sin \theta)$
$(a, \beta)=(4,6)$
$\Theta(x, y)=(y, \delta)=(1-5 \cos \theta, 2-5 \sin \theta)$
$(\gamma, \delta)=(-2,-2)$
$\Rightarrow|(a+\beta)(\gamma+\delta)|=|10 \times(-4)|=40$
9. If $\int \frac{2 e^{x}+3 e^{-x}}{4 e^{x}+7 e^{-x}} d x=\frac{1}{14}\left(u x+v \log _{e}\left(4 e^{x}+7 e^{-x}\right)\right)+C$, where C is a constant of integration, then $u+v$ is equal to \qquad .

Ans. (7)
Sol. $\int \frac{2 e^{x}}{4 e^{x}+7 e^{-x}} d x+3 \int \frac{e^{-x}}{4 e^{x}+7 e^{-x}} d x$
$=\int \frac{2 e^{2 x}}{4 e^{2 x}+7} d x+3 \int \frac{e^{-2 x}}{4+7 e^{-2 x}} d x$

Let $4 e^{2 x}+7=T \mid \quad$ Let $4+7 e^{-2 x}=t$
$8 e^{2 x} d x=d T$

$$
-14 e^{-2 x} d x=d t
$$

$2 e^{2 x} d x=\frac{d T}{4}$
$e^{-2 x} d x=-\frac{d t}{14}$
$\int \frac{d T}{4 T}-\frac{3}{14} \int \frac{d t}{t}$
$=\frac{1}{4} \log T-\frac{3}{14} \log t+C$
$=\frac{1}{4} \log \left(4 e^{2 x}+7\right)-\frac{3}{14} \log \left(4+7 e^{-2 x}\right)+C$
$=\frac{1}{14}\left[\frac{1}{2} \log \left(4 \mathrm{e}^{x}+7 \mathrm{e}^{-x}\right)+\frac{13}{2} x\right]+C$
$\mathrm{u}=\frac{13}{2}, \mathrm{v}=\frac{1}{2} \Rightarrow \mathrm{u}+\mathrm{v}=7$
$u=\frac{13}{2} ; v=\frac{1}{2}$
$\Rightarrow u+v=7$
10. $3 \times 7^{22}+2 \times 10^{22}-44$ when divided by 18 leaves the remainder \qquad .

Ans. (15)
Sol. $3(1+6)^{22}+2 \cdot(1+9)^{22}-44=(3+2-44)=18$. I
$=-39+18 . \mathrm{I}$
$=(54-39)+18(\mathrm{I}-3)$
$=15+18 \mathrm{I}$
\Rightarrow Remainder $=15$.

