MATHEMATICS
 JEE-MAIN (July-Attempt) 27 July
 (Shift-2) Paper

SECTION A

1. Which of the following is the negation of the statement "for all $M>0$, there exists $x \in S$ such that $x \geq M^{\prime \prime}$?
(1) there exists $M>0$, such that $x \geq M$ for all $x \in S$
(2) there exists $M>0$, there exists $x \in S$ such that $x \geq M$
(3) there exists $M>0$, such that $x<M$ for all $x \in S$
(4) there exists $M>0$, there exists $x \in S$ such that $x<M$

Sol. (3)
P : for all $M>0$, there exists $x \in S$ such that $x \geq M$.
$\sim P$: there exists $M>0$, for all $x \in S$
Such that $\mathrm{x}<\mathrm{M}$
Negation of 'there exsits' is 'for all'.
2. For real numbers α and $\beta \neq 0$, if the point of intersection of the straight lines
$\frac{x-\alpha}{1}=\frac{y-1}{2}=\frac{z-1}{3}$ and $\frac{x-4}{\beta}=\frac{y-6}{3}=\frac{z-7}{3}$,
lies on the plane $x+2 y-z=8$, then $\alpha-\beta$ is equal to:
(1) 5
(2) 3
(3) 7
(4) 9

Sol. (3)
First line is $(\phi+\alpha, 2 \phi+1,3 \phi+1)$
and second line is $(q \beta+4,3 q+6,3 q+7)$.
For intersection

$$
\begin{aligned}
& \phi+\alpha=q \beta+4 \ldots \text { (i) } \\
& 2 \phi+1=3 q+6 .(i) \\
& 3 \phi+1=3 q+7 .(i i i)
\end{aligned}
$$

for (ii) \& (iii) $\phi=1, q=-1$ So, from (i) $\alpha+\beta=3$
Now, point of intersection is $(\alpha+1,3,4)$ It lies on the plane.
Hence, $\alpha=5 \& \beta=-2$
3. The point $P(a, b)$ undergoes the following three transformations successively:
(a) reflection about the line $y=x$.
(b) translation through 2 units along the positive direction of x-axis.
(c) rotation through angle $\frac{\pi}{4}$ about the origin in the anti-clockwise direction.

If the co-ordinates of the final position of the point P are $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$, then the value of $2 a+b$ is equal to:
(1) 9
(2) 5
(3) 13
(4) 7

Sol. (1)

Image of $A(a, b)$ along $y=x$ is $B(b, a)$. Translating it 2 units it becomes $C(b+2, a)$. Now, applying rotation theorem
$-\frac{1}{\sqrt{2}}+\frac{7}{\sqrt{2}} i=((b+2)+a i)\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
$\frac{-1}{\sqrt{2}}+\frac{7}{\sqrt{2}} i=\left(\frac{b+2}{\sqrt{2}}-\frac{a}{\sqrt{2}}\right)+i\left(\frac{b+2}{\sqrt{2}}+\frac{a}{\sqrt{2}}\right)$
$\Rightarrow \mathrm{b}-\mathrm{a}+2=-1$
and $b+2+a=7$
$\Rightarrow a=4 ; b=1$
$\Rightarrow 2 a+b=9$
4. Let $a=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ and $\beta=\min _{x \in \mathbb{R}}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$

If $8 x^{2}+b x+c=0$ is a quadratic equation whose roots are $\alpha^{1 / 5}$ and $\beta^{1 / 5}$, then the value of $c-b$ is equal to:
(1) 43
(2) 42
(3) 50
(4) 47

Sol. (2)

$$
\alpha=\max \left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}
$$

$=\max \left\{2^{6 \sin 3 x} \cdot 2^{8 \cos 3 x}\right\}$
$=\max \left\{2^{6 \sin 3 x+8 \cos 3 x}\right\}$
and $\beta=\min \left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}=\min \left\{2^{6 \sin 3 x+8 \cos 3 x}\right\}$
Now range of $6 \sin 3 x+8 \cos 3 x$
$=\left[-\sqrt{6^{2}+8^{2}},+\sqrt{6^{2}+8^{2}}\right]=[-10,10]$
$\alpha=2^{10} \& \beta=2^{-10}$
So, $\alpha^{1 / 5}=2^{2}=4$
$\Rightarrow \beta^{1 / 5}=2^{-2}=1 / 4$
quadratic $8 x^{2}+b x+c=0, c-b=$
$8 \times[$ (product of roots) $+($ sum of roots $)]$
$=8 \times\left[4 \times \frac{1}{4}+4+\frac{1}{4}\right]=8 \times\left[\frac{21}{4}\right]=42$
5. Let $f: R \rightarrow R$ be defined as
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1$. Then, the value of
$\sum_{k=1}^{20} \frac{1}{\sin (k) \sin (k+f(k))}$ is equal to:
(1) cosec^{2} (1) $\operatorname{cosec}(21) \sin (20)$
(2) $\sec ^{2}(1) \sec (21) \cos (20)$
(3) $\operatorname{cosec}^{2}(21) \cos (20) \cos (2)$
(4) $\sec ^{2}(21) \sin (20) \sin (2)$

Sol. (1)

$f(x)=\cos a x$
$\because f\left(\frac{1}{2}\right)=-1$
So, $-1=\cos \frac{a}{2}$
$\Rightarrow \mathrm{a}=2(2 \mathrm{n}+1) \pi$
Thus $f(x)=\cos 2(2 n+1) \pi x$
Now k is natural number
Thus $f(k)=1$
$\sum_{k=1}^{20} \frac{1}{\sin k \sin (k+1)}=\frac{1}{\sin 1} \sum_{k=1}^{20}\left[\frac{\sin ((k+1)-k)}{\sin k \cdot \sin (k+1)}\right]$
$=\frac{1}{\sin 1} \sum_{\mathrm{k}=1}^{20}(\cot \mathrm{k}-\cot (\mathrm{k}+1))$
$=\frac{\cot 1-\cot 21}{\sin 1}=\operatorname{cosec}^{2} 1 \operatorname{cosec}(21) \cdot \sin 20$
6. Let $f:(a, b) \rightarrow R$ be twice differentiable function such that $f(x)=\int_{a}^{x} g(t) d t$ for a differentiable function $g(x)$. If $f(x)=0$ has exactly five distinct roots in (a, b), then $g(x) g^{\prime}(x)=0$ has at least:
(1) seven roots in (a, b)
(2) five roots in (a, b)
(3) three roots in (a, b)
(4) twelve roots in (a, b)

Sol. (1)

$f(x)=\int_{a}^{x} g(t) d t$
$f(x) \rightarrow 5$
$\mathrm{f}^{\prime}(\mathrm{x}) \rightarrow 4$
$g(x) \rightarrow 4$
$\mathrm{g}^{\prime}(\mathrm{x}) \rightarrow 3$
7. Let C be the set of all complex numbers. Let
$S_{1}=\{z \in C:|z-2| \leq 1\}$ and
$S_{2}=\{z \in C: z(1+i)+\bar{z}(1-i) \geq 4\}$
Then, the maximum value of $\left|z-\frac{5}{2}\right|^{2}$ for $z \in S_{1} \cap S_{2}$ is equal to:
(1) $\frac{3+2 \sqrt{2}}{4}$
(2) $\frac{5+2 \sqrt{2}}{2}$
(3) $\frac{3+2 \sqrt{2}}{2}$
(4) $\frac{5+2 \sqrt{2}}{4}$

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

Sol. (4)

$\mathrm{S}_{1}:|\mathrm{z}-2| \leq 1$

$z=x+i y$
$(x+i y)(1+i)+(x-i y)(1-i) \geq 4$
$x+i(x+y)-y+x-i(x+y)-y \geq 4$
$2 x-2 y \geq 4$
$\Rightarrow y \leq x-2$
For $P(x-2)^{2}+(x-2)^{2}=1$
$\Rightarrow x=2-\frac{1}{\sqrt{2}}, 2+\frac{1}{\sqrt{2}}$
\therefore from diagram x-coordinate of $P=2-\frac{1}{\sqrt{2}}$
$\therefore P=\left(2-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
$\therefore\left|Z-\frac{5}{2}\right|_{\max }^{2}=\left|2-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i-\frac{5}{2}\right|^{2}$
$=\left|\left(\frac{-1}{2}-\frac{1}{\sqrt{2}}\right)-\frac{i}{\sqrt{2}}\right|^{2}=\frac{5+2 \sqrt{2}}{4}$
8. Two sides of a parallelogram are along the lines $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one of the diagonals of the parallelogram is $11 x+7 y=9$, then other diagonal passes through the point:
(1) $(1,3)$
(2) $(1,2)$
(3) $(2,2)$
(4) $(2,1)$

Sol. (3)

Both the lines pass through origin.

point D is equal of intersection of $4 x+5 y=0 \& 11 x+7 y=9$
So, coordinates of point $D=\left(\frac{5}{3},-\frac{4}{3}\right)$
Also, point B is point of intersection of $7 x+2 y=0 \& 11 x+7 y=9$
So, coordinates of point $B=\left(-\frac{2}{3}, \frac{7}{3}\right)$
diagonals of parallelogram intersect at middle let middle point of B, D
$\Rightarrow\left(\frac{\frac{5}{3}-\frac{2}{3}}{2}, \frac{\frac{-4}{3}+\frac{7}{3}}{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$
equation of diagonal AC
$\Rightarrow(y-0)=\frac{\frac{1}{2}-0}{\frac{1}{2}-0}(x-0)$
$y=x$
diagonal AC passes through $(2,2)$.
9. Let $\mathrm{f}:[0, \infty) \rightarrow[0,3]$ be a function defined by
$f(x)=\left\{\begin{array}{lc}\max \{\sin t: 0 \leq t \leq x\} & , 0 \leq x \leq \pi \\ 2+\cos x, & x>\pi\end{array}\right.$
Then which of the following is true?
(1) f is differentiable everywhere in $(0, \infty)$
(2) f is continuous everywhere but not differentiable exactly at two points in $(0, \infty)$
(3) f is not continuous exactly at two points in $(0, \infty)$
(4) f is continuous everywhere but not differentiable exactly at one point in $(0, \infty)$

Sol. (1)

Graph of $\max \{\sin t: 0 \leq t \leq x\}$ in $x \in[0, \pi]$

\& graph of cos for $\mathrm{x} \in[\pi, \infty)$

So graph of
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
$f(x)=\left\{\begin{array}{cc}\max \{\sin t: 0 \leq t \leq x, & 0 \leq x \leq \pi \\ 2+\cos x & x>\pi\end{array}\right.$

$f(x)$ is differentiable everywhere in $(0, \infty)$
10. The area of the region bounded by $y-x=2$ and $x^{2}=y$ is equal to :
(1) $\frac{4}{3}$
(2) $\frac{9}{2}$
(3) $\frac{16}{3}$
(4) $\frac{2}{3}$

Sol. (2)

$y-x=2, x^{2}=y$
Now, $x^{2}=2+x$
$\Rightarrow x^{2}-x-2=0$
$\Rightarrow(x+1)(x-2)=0$
Area $=\int_{-1}^{2}\left(2+x-x^{2}\right)$
$=\left|2 x+\frac{x^{2}}{2}-\frac{x^{3}}{3}\right|_{-1}^{2}$
$=\left(4+2-\frac{8}{3}\right)-\left(-2+\frac{1}{2}+\frac{1}{3}\right)$
$=6-3+2-\frac{1}{2}=\frac{9}{2}$
11. Let the mean and variance of the frequency distribution
$x: \quad x_{1}=2$
$x_{2}=6$
$x_{3}=8$
α
$x_{4}=9$
β
f: $4 \quad 4 \quad \alpha \quad \beta$
be 6 and 6.8 respectively. If x_{3} is changed from 8 to 7 , then the mean for the new data will be:
(1) $\frac{16}{3}$
(2) 4
(3) $\frac{17}{3}$
(4) 5

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

Sol. (3)

Given $32+8 \alpha+9 \beta=(8+\alpha+\beta) \times 6$
$\Rightarrow 2 \alpha+3 \beta=16$
Also, $4 \times 16+4 \times \alpha+9 \beta=(8+\alpha+\beta) \times 6.8$
$\Rightarrow 640+40 \alpha+90 \beta=544+68 \alpha+68 \beta$
$\Rightarrow 28 \alpha-22 \beta=96$
$\Rightarrow 14 \alpha-11 \beta=48$
...(ii) from (i) \& (ii)
$\alpha=5 \& \beta=2$
so, new mean $=\frac{32+35+18}{15}=\frac{85}{15}=\frac{17}{3}$
12. A possible value of ' x ', for which the ninth term in the expansion of $\left\{3^{\log _{3} \sqrt{5^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ in the increasing powers of $3^{\left(-\frac{1}{8}\right)^{\log _{3}\left(5^{x-1}+1\right)}}$ is equal to 180 , is:
(1) 2
(2) 1
(3) 0
(4) -1

Sol. (2)
${ }^{10} \mathrm{C}_{8}\left(25^{(x-1)}+7\right) \times\left(5^{(x-1)}+1\right)^{-1}=180$
$\Rightarrow \frac{25^{x-1}+7}{5^{(x-1)}+1}=4$
$\Rightarrow \frac{\mathrm{t}^{2}+7}{\mathrm{t}+1}=4$;
$\Rightarrow t=1,3=5^{x-1}$
$\Rightarrow x-1=0$ (one of the possible value).
$\Rightarrow x=1$
13. Let $y=y(x)$ be the solution of the differential equation $\left(x-x^{3}\right) d y=\left(y+y x^{2}-3 x^{4}\right) d x, x>2$. If $y(3)=3$, then $y(4)$ is equal to :
(1) 8
(2) 12
(3) 16
(4) 4

Sol. (2)

$\left(x-x^{3}\right) d y=\left(y+y x^{2}-3 x^{4}\right) d x$
$\Rightarrow x d y-y d x=\left(y x^{2}-3 x^{4}\right) d x+x^{3} d y$
$\Rightarrow \frac{x d y-y d x}{x^{2}}=(y d x+x d y)-3 x^{2} d x$
$\Rightarrow d\left(\frac{y}{x}\right)=d(x y)-d\left(x^{3}\right)$
Integrate
$\frac{y}{x}=x y-x^{3}+c$
$y(3)=3$
$\Rightarrow \frac{3}{3}=3 \times 3-3^{3}+c$
$\Rightarrow \mathrm{C}=19$
$\therefore \frac{y}{x}=x y-x^{3}+19$
at $x=4, \frac{y}{4}=4 y-64+19$
$15 y=4 \times 45$
$\Rightarrow y=12$
14. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}=\vec{b} \times(\vec{b} \times \vec{c})$. If magnitudes of the vectors \vec{a}, \vec{b} and \vec{c} are $\sqrt{2}, 1$ and 2 respectively and the angle between \vec{b} and \vec{c} is $\theta\left(0<\theta<\frac{\pi}{2}\right)$, then the value of $1+\tan \theta$ is equal to:
(1) $\frac{\sqrt{3}+1}{\sqrt{3}}$
(2) 2
(3) $\sqrt{3}+1$
(4) 1

Sol. (2)
$\vec{a}=(\vec{b} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{b}) \vec{c}$
$=1.2 \cos \theta \overrightarrow{\mathrm{~b}}-\overrightarrow{\mathrm{c}} \mathrm{b}$
$\Rightarrow \overrightarrow{\mathrm{a}}=2 \cos \theta \overrightarrow{\mathrm{~b}}-\overrightarrow{\mathrm{c}}$
$|\vec{a}|^{2}=(2 \cos \theta)^{2}+2^{2}-2.2 \cos \theta \vec{b} \cdot \vec{c}$
$\Rightarrow 2=4 \cos ^{2} \theta+4-4 \cos \theta \cdot 2 \cos \theta$
$\Rightarrow-2=-4 \cos ^{2} \theta$
$\Rightarrow \cos ^{2} \theta=\frac{1}{2}$
$\Rightarrow \sec ^{2} \theta=2$
$\Rightarrow \tan ^{2} \theta=1$
$\Rightarrow \quad \theta=\frac{\pi}{4}$
$1+\tan \theta=2$.
15. A student appeared in an examination consisting of 8 true - false type questions. The student guesses the answers with equal probability. The smallest value of n, so that the probability of guessing at least ' n ' correct answers is less than $\frac{1}{2}$, is:
(1) 5
(2) 3
(3) 6
(4) 4

Sol. (1)
$P(E)<\frac{1}{2}$
$\Rightarrow \sum_{r=n}^{8}{ }^{8} C_{r}\left(\frac{1}{2}\right)^{8-r}\left(\frac{1}{2}\right)^{r}<\frac{1}{2}$
$\Rightarrow \sum_{r=n}^{8}{ }^{8} C_{r}\left(\frac{1}{2}\right)^{8}<\frac{1}{2}$
$\Rightarrow{ }^{8} \mathrm{C}_{\mathrm{n}}+{ }^{8} \mathrm{C}_{\mathrm{n}+1}+\ldots .+{ }^{8} \mathrm{C}_{8}<128$
$\Rightarrow 256-\left({ }^{8} \mathrm{C}_{0}+{ }^{8} \mathrm{C}_{1}+\ldots .+{ }^{8} \mathrm{C}_{\mathrm{n}-1}\right)<128$
$\Rightarrow{ }^{8} \mathrm{C}_{0}+{ }^{8} \mathrm{C}_{1}+\ldots+{ }^{8} \mathrm{C}_{\mathrm{n}-1}<128$
$\Rightarrow \mathrm{n}-1 \geq 4$
$\Rightarrow \mathrm{n} \geq 5$
16. If $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ are in arithmetic progression and $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ are also in arithmetic progression, then $|x-2 y|$ is equal to:
(1) 0
(2) 3
(3) 4
(4) 1

Sol. (1)
$x=\frac{1}{2}\left(\tan \frac{\pi}{9}+\tan \frac{7 \pi}{18}\right)$
and $2 y=\tan \frac{\pi}{9}+\tan \frac{5 \pi}{18}$
so, $x-2 y=\frac{1}{2}\left(\tan \frac{\pi}{9}+\tan \frac{7 \pi}{18}\right)$
$-\left(\tan \frac{\pi}{9}+\tan \frac{5 \pi}{18}\right)$
$\Rightarrow|x-2 y|=\left|\frac{\cot \frac{\pi}{9}-\tan \frac{\pi}{9}}{2}-\tan \frac{5 \pi}{18}\right|$
$=\left|\cot \frac{2 \pi}{9}-\cot \frac{2 \pi}{9}\right|=0$
$\left(\operatorname{astan} \frac{5 \pi}{18}=\cot \frac{2 \pi}{9} ; \tan \frac{7 \pi}{18}=\cot \frac{\pi}{9}\right)$
17. Let N be the set of natural numbers and a relation R on N be defined by $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\}$. Then the relation R is:
(1) reflexive and symmetric, but not transitive
(2) reflexive but neither symmetric nor transitive
(3) an equivalence relation
(4) symmetric but neither reflexive nor transitive

Sol. (2)

$x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0$
$\Rightarrow x(x-y)(x+y)-3 y(x-y)(x+y)=0$
$\Rightarrow(x-3 y)(x-y)(x+y)=0$
Now, $x=y \forall(x, y) \in N \times N$ so reflexive
But not symmetric \& transitive
See, $(3,1)$ satisfies but $(1,3)$ does not.
Also $(3,1) \&(1,-1)$ satisfies but $(3,-1)$ does not
18. The value of $\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}\right)$ is equal to:
(1) -1
(2) -4
(3) 0
(4) 4

Sol. (2)

Rationalize denominator three times
$\lim _{x \rightarrow 0} \frac{x\left\{(1-\sin x)^{1 / 8}+(1+\sin x)^{1 / 8}\right\}\left\{(1-\sin x)^{1 / 4}+(1+\sin x)^{1 / 4}\right\}\left\{(1-\sin x)^{1 / 2}+(1+\sin x)^{1 / 2}\right\}}{(1-\sin x-1-\sin x)}$
$\lim _{x \rightarrow 0} \frac{8 x}{-2 \sin x}=-4$
19. Consider a circle C which touches the y-axis at $(0,6)$ and cuts off an intercept $6 \sqrt{5}$ on the x axis. Then the radius of the circle C is equal to:
(1) $\sqrt{82}$
(2) 9
(3) 8
(4) $\sqrt{53}$

Sol. (2)

$r=\sqrt{6^{2}+(3 \sqrt{5})^{2}}$
$=\sqrt{36+45}=9$
20. Let A and B be two 3×3 real matrices such that $\left(A^{2}-B^{2}\right)$ is invertible matrix. If $A^{5}=B^{5}$ and $A^{3} B^{2}=A^{2} B^{3}$, then the value of the determinant of the matrix $A^{3}+B^{3}$ is equal to:
(1) 0
(2) 2
(3) 1
(4) 4

Sol. (1)

$C=A^{2}-B^{2} ;|C| \neq 0$
$A^{5}=B^{5}$ and $A^{3} B^{2}=A^{2} B^{3}$
Now, $A^{5}-A^{3} B^{2}=B^{5}-A^{2} B^{3}$
$\Rightarrow A^{3}\left(A^{2}-B^{2}\right)+B^{3}\left(A^{2}-B^{2}\right)=0$
$\Rightarrow\left(A^{3}+B^{3}\right)\left(A^{2}-B^{2}\right)=0$
Post multiplying inverse of $A^{2}-B^{2}$:
$A^{3}+B^{3}=0$

SECTION B

1. Let E be an ellipse whose axes are parallel to the co-ordinates axes, having its center at (3, 4), one focus at $(4,-4)$ and one vertex at $(5,-4)$. If $m x-y=4, m>0$ is a tangent to the ellipse E, then the value of $5 \mathrm{~m}^{2}$ is equal to \qquad .
Sol. (3)

and $A(5,-4)$
Hence, $a=2 \& a e=1$
$\Rightarrow \mathrm{e}=\frac{1}{2}$
$\Rightarrow b^{2}=3$.
So, $E: \frac{(x-3)^{2}}{4}+\frac{(y+4)^{2}}{3}=1$
Intersecting with given tangent.
$\frac{x^{2}-6 x+9}{4}+\frac{m^{2} x^{2}}{3}=1$
Now, $\mathrm{D}=0$ (as it is tangent)
So, $5 \mathrm{~m}^{2}=3$.
2. If the real part of the complex number $z=\frac{3+2 i \cos \theta}{1-3 i \cos \theta}, \theta \in\left(0, \frac{\pi}{2}\right)$ is zero, then the value of $\sin ^{2} 3 \theta+\cos ^{2} \theta$ is equal to \qquad .

Sol. (1)

$\operatorname{Re}(z)=\frac{3-6 \cos ^{2} \theta}{1+9 \cos ^{2} \theta}=0$
$\Rightarrow \theta=\frac{\pi}{4}$
Hence, $\sin ^{2} 3 \theta+\cos ^{2} \theta=1$.
3. If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $M=A+A^{2}+A^{3}+\ldots+A^{20}$, then the sum of all the elements of the matrix M is equal to \qquad .

Sol. (2020)

$A^{n}=\left[\begin{array}{ccc}1 & n & \frac{n^{2}+n}{2} \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right]$
So, required sum
$=20 \times 3+2 \times\left(\frac{20 \times 21}{2}\right)+\sum_{r=1}^{20}\left(\frac{r^{2}+r}{2}\right)$
$=60+420+105+35 \times 41=2020$
4. The distance of the point $P(3,4,4)$ from the point of intersection of the line joining the points $Q(3,-4,-5)$ and $R(2,-3,1)$ and the plane $2 x+y+z=7$, is equal to \qquad .
Sol. (7)
$\overrightarrow{Q R}: \frac{x-3}{1}=\frac{y+4}{-1}=\frac{z+5}{-6}=r$
$\Rightarrow(x, y, z) \equiv(r+3,-r-4,-6 r-5)$
Now, satisfying it in the given plane.
$2(r+3)+(-r-4)+(-6 r-5)=7$
We get $r=-2$.
so, required point of intersection is $T(1,-2,7)$.
Hence, PT = 7 .
5. The number of real roots of the equation $e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$ is equal to \qquad
Sol. (2)
$\mathrm{t}^{4}-\mathrm{t}^{3}-4 \mathrm{t}^{2}-\mathrm{t}+1=0, \mathrm{e}^{\mathrm{x}}=\mathrm{t}>0$
$\Rightarrow \mathrm{t}^{2}-\mathrm{t}-4-\frac{1}{\mathrm{t}}+\frac{1}{\mathrm{t}^{2}}=0$
$\Rightarrow \alpha^{2}-\alpha-6=0, \alpha=\mathrm{t}+\frac{1}{\mathrm{t}} \geq 2$
$\Rightarrow \alpha=3,-2$ (reject)
$\Rightarrow \mathrm{t}+\frac{1}{\mathrm{t}}=3$
\Rightarrow The number of real roots $=2$
6. Let n be a non-negative integer. Then the number of divisors of the form " $4 \mathrm{n}+1$ " of the number $(10)^{10} \cdot(11)^{11} \cdot(13)^{13}$ is equal to \qquad .
Sol. (924)
$\mathrm{N}=2^{10} \times 5^{10} \times 11^{11} \times 13^{13}$
Now, power of 2 must be zero, power of 5 can be anything, power of 13 can be anything. But, power of 11 should be even.
So, required number of divisors is
$1 \times 11 \times 14 \times 6=924$
7. If $\int_{0}^{\pi}\left(\sin ^{3} x\right) e^{-\sin ^{2} x} d x=\alpha-\frac{\beta}{e} \int_{0}^{1} \sqrt{t} e^{t} d t$, then $\alpha+\beta$ is equal to \qquad -.
Sol. (5)

$$
\begin{aligned}
& I=2 \int_{0}^{\pi / 2} \sin ^{3} x^{-\sin ^{2} x} d x \\
& =2 \int_{0}^{\pi / 2} \sin x e^{-\sin ^{2} x} d x+\int_{0}^{\pi / 2} \cos x \underbrace{e^{-\sin ^{2} x}(-\sin 2 x)}_{\text {II }} d x \\
& =2 \int_{0}^{\pi / 2} \sin x e^{-\sin ^{2} x} d x+\left[\cos x e^{-\sin ^{2} x}\right]_{0}^{\pi / 2}
\end{aligned}
$$

$$
+\int_{0}^{\pi / 2} \sin x e^{-\sin ^{2} x} d x
$$

$$
=3 \int_{0}^{\pi / 2} \sin x e^{-\sin ^{2} x} d x \quad-1
$$

$$
=\frac{3}{2} \int_{-1}^{0} \frac{e^{\alpha} \mathrm{d} \alpha}{\sqrt{1+\alpha}}-1\left(\text { Put }-\sin ^{2} x=\mathrm{t}\right)
$$

$$
=\frac{3}{2} \int_{-1}^{0} \frac{e^{\alpha} d \alpha}{\sqrt{1+\alpha}}-1(\text { put } 1+\alpha=x)
$$

$$
=\frac{3}{2 e} \int_{-1}^{0} e^{x} \frac{1}{\sqrt{x}} d x-1_{\mathrm{II}} b
$$

$=2-\frac{3}{e} \int_{0}^{1} e^{x} \sqrt{x} d x$
Hence, $\alpha+\beta=5$
8. Let $\vec{a}=\vec{i}-\alpha \vec{j}+\beta \hat{k}, \vec{b}=3 \hat{i}+\beta \hat{j}-\alpha \hat{k}$ and $\vec{c}=-\alpha \hat{i}-2 \hat{j}+\hat{k}$, where α and β are integers. If $\vec{a} \cdot \vec{b}=-1$ and $\vec{b} \cdot \vec{c}=10$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to \qquad -.
Sol. (9)
$\overrightarrow{\mathrm{a}}=(1,-\alpha, \beta)$
$\vec{b}=(3, \beta,-\alpha)$
$\overrightarrow{\mathrm{C}}=(-\alpha,-2,1) ; \alpha, \beta \in \mathrm{I}$
$\vec{a} \cdot \vec{b}=-1 \Rightarrow 3-\alpha \beta-\alpha \beta=-1$
$\Rightarrow \alpha \beta=2$
$\overrightarrow{\mathrm{b}} . \overrightarrow{\mathrm{c}}=10$
$\Rightarrow-3 \alpha-2 \beta-\alpha=10$
$\Rightarrow 2 \alpha+\beta+5=0$
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
$\therefore \alpha=-2 ; \beta=-1$
$\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}}\end{array}\right]=\left|\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 2 \\ 2 & -2 & 1\end{array}\right|$
$=1(-1+4)-2(3-4)-1(-6+2)$
$=3+2+4=9$
9. Let $A=\left\{n \in N \mid n^{2} \leq n+10,000\right\}, B=\{3 k+1 \mid k \in N\}$ and $C=\{2 k \mid k \in N\}$, then the sum of all the elements of the set $A \cap(B-C)$ is equal to \qquad -.
Sol. (832)
$B-C \equiv\{7,13,19, \ldots 97, \ldots$.
Now, $n^{2}-n \leq 100 \times 100$
$\Rightarrow \mathrm{n}(\mathrm{n}-1) \leq 100 \times 100$
$\Rightarrow A=\{1,2, \ldots, 100\}$.
So, $A \cap(B-C)=\{7,13,19, \ldots, 97\}$
Hence, sum $=\frac{16}{2}(7+97)=832$.
10. Let $y=y(x)$ be the solution of the differential equation $d y=e^{\alpha x+y} d x ; \alpha \in N$. If $y\left(\log _{e} 2\right)=\log _{e} 2$ and $y(0)=\log _{e}\left(\frac{1}{2}\right)$, then the value of α is equal to

Sol. (2)

$\int e^{-y} d y=\int e^{\alpha x} d x$
$\Rightarrow-\mathrm{e}^{-y}=\frac{\mathrm{e}^{\alpha x}}{\alpha}+\mathrm{c}$
Put $(x, y)=(\ell n 2, \ell n 2)$
$\frac{-1}{2}=\frac{2^{\alpha}}{\alpha}+C$
Put $(x, y) \equiv(0,-\ell n 2)$ in (i)
$-2=\frac{1}{\alpha}+C$
(ii) - (iii)
$\frac{2 \alpha-1}{\alpha}=\frac{3}{2}$
$\Rightarrow \alpha=2($ as $\alpha \in N)$

