MATHEMATICS
 JEE-MAIN (August-Attempt)
 26 August (Shift-2) Paper
 Solution

SECTION - A

1. Let P be the plane passing through the point $(1,2,3)$ and the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+4 \hat{k})=16$ and $\vec{r} .(-\hat{i}+\hat{j}+\hat{k})=6$.
Then which of the following points does NOT lie on P ?
(1) $(3,3,2)$
(2) $(-8,8,6)$
(3) $(4,2,2)$
(4) $(6,-6,2)$

Ans. (3)
Sol. $(x+y+4 z-16)+\lambda(-x+y+z-6)=0$
Passes through $(1,2,3)$
$-1+\lambda(-2) \Rightarrow \lambda=-\frac{1}{2}$
$2(x+y+4 z-16)-(-x+y+z-6)=0$
$3 x+y+7 z-26=0$
2. A hall has a square floor of dimension $10 \mathrm{~m} \times 10 \mathrm{~m}$ (see the figure) and vertical walls. If the angle GPH between the diagonals AG and BH is $\cos ^{-1} \frac{1}{5}$, then the height of the hall (in meters) is :

(1) $5 \sqrt{3}$
(2) 5
(3) $2 \sqrt{10}$
(4) $5 \sqrt{2}$

Ans. (4)
Sol. $A(\hat{j}) \cdot B(10 i \hat{i})$
$\mathbf{H}(\mathrm{h} \hat{\mathrm{j}}+10 \hat{\mathrm{k}})$
$\mathbf{G}(10 \hat{i}+h \hat{j}+10 \hat{k})$
$A G=10 \hat{i}+h \hat{j}+10 \hat{k}$
$\overrightarrow{B H}=-10 \hat{i}+h \hat{j}+10 \hat{k}$
$\cos \theta=\frac{\overrightarrow{\mathrm{AG}} \overrightarrow{\mathrm{BH}}}{|\overrightarrow{\mathrm{AG}}||\overrightarrow{\mathrm{BH}}|}$
$\frac{1}{5}=\frac{h^{2}}{h^{2}+200}$
$4 h^{2}=200 \Rightarrow h=5 \sqrt{2}$
3. Consider the two statements:
(S1) : $(p \rightarrow q) \vee(\sim q \rightarrow p)$ is a tautology
(S2): $(p \wedge \sim q) \wedge(\sim p \vee q)$ is a fallacy.
Then:
(1) only (S1) is true.
(2) only (S2) is true.
(3) both (S1) and (S2) are true.
(4) both (S1) and (S2) are false

Ans. (3)
Sol. $S_{1}:(\sim p \vee q) \vee(q \vee p)=(q \vee \sim p) \vee(q \vee p)$
$\mathrm{S}_{1}=\mathrm{q} \vee(\sim \mathrm{p} \vee \mathrm{p})=\mathrm{q} \vee \mathrm{t}=\mathrm{t}=$ tautology
$S_{2}:(p \wedge \sim q) \wedge(\sim p \vee q)=(p \wedge \sim q) \wedge \sim(p \wedge \sim q)=C$
$=$ fallacy
4. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)$. Then $A^{2025}-A^{2020}$ is equal to :
(1) A^{5}
(2) A^{6}
(3) $A^{6}-A$
(4) $A^{5}-A$

Ans. (3)
Sol. $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right] \Rightarrow A^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
$A^{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 0\end{array}\right] \Rightarrow A^{4}=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
$A^{n}=\left[\begin{array}{ccc}1 & 0 & 0 \\ n-1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
$A^{2025}-A^{2020}=\left[\begin{array}{lll}0 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$A^{6}-A=\left[\begin{array}{lll}0 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
5. The domain of the function $\operatorname{cosec}^{-1}\left(\frac{1+x}{x}\right)$ is :
(1) $\left[-\frac{1}{2}, \infty\right)-\{0\}$
(2) $\left(-\frac{1}{2}, \infty\right)-\{0\}$
(3) $\left[-\frac{1}{2}, 0\right) \cup[1, \infty)$
(4) $\left(-1,-\frac{1}{2}\right] \cup(0, \infty)$

Ans. (1)
Sol. $\frac{1+x}{x} \in(-\infty,-1] \cup[1, \infty)$
$\frac{1}{x} \in(-\infty,-2] \cup[0, \infty)$
$x \in\left[-\frac{1}{2}, 0\right) \cup(0, \infty)$
$x \in\left[-\frac{1}{2}, 0\right)-\{0\}$
6. The value of
$2 \sin \left(\frac{\pi}{8}\right) \sin \left(\frac{2 \pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right) \sin \left(\frac{5 \pi}{8}\right) \sin \left(\frac{6 \pi}{8}\right) \sin \left(\frac{7 \pi}{8}\right)$ is :
(1) $\frac{1}{8}$
(2) $\frac{1}{8 \sqrt{2}}$
(3) $\frac{1}{4 \sqrt{2}}$
(4) $\frac{1}{4}$

Ans. (1)
Sol. $2 \sin \left(\frac{\pi}{8}\right) \sin \left(\frac{2 \pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right) \sin \left(\frac{5 \pi}{8}\right) \sin \left(\frac{6 \pi}{8}\right) \sin \left(\frac{7 \pi}{8}\right)$
$2 \sin ^{2} \frac{\pi}{8} \sin ^{2} \frac{2 \pi}{8} \sin ^{2} \frac{3 \pi}{8}$
$\sin ^{2} \frac{\pi}{8} \sin ^{2} \frac{3 \pi}{8}$
$\sin ^{2} \frac{\pi}{8} \cos ^{2} \frac{\pi}{8}$
$\frac{1}{4} \sin ^{2}\left(\frac{\pi}{4}\right)=\frac{1}{8}$
7. If $(\sqrt{3}+i)^{100}=2^{99}(p+i q)$, then p and q are roots of the equation :
(1) $x^{2}+(\sqrt{3}+1) x+\sqrt{3}=0$
(2) $x^{2}+(\sqrt{3}-1) x-\sqrt{3}=0$
(3) $x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$
(4) $x^{2}-(\sqrt{3}-1) x-\sqrt{3}=0$

Ans. (4)
Sol. $\left(2 e^{i \pi / 6}\right)^{100}=2^{99}(p+i q)$
$2^{100}\left(\cos \frac{50 \pi}{3}+\mathrm{i} \sin \frac{50 \pi}{3}\right)=2^{99}(\mathrm{p}+\mathrm{iq})$
$p+i q=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
$p=-1, q=\sqrt{3}$
$x^{2}-(\sqrt{3}-1) x-\sqrt{3}=0$
8. If $\sum_{\mathrm{r}=1}^{50} \tan ^{-1} \frac{1}{2 \mathrm{r}^{2}}=\mathrm{p}$, then the value of $\tan \mathrm{p}$ is:
(1) $\frac{51}{50}$
(2) $\frac{101}{102}$
(3) 100
(4) $\frac{50}{51}$

Ans. (4)
Sol. $\sum_{r=1}^{50} \tan ^{-1}\left(\frac{2}{4 r^{2}}\right)=\sum_{r=1}^{50} \tan ^{-1}\left(\frac{(2 r+1)-(2 r-1)}{1+(2 r+1)(2 r-1)}\right)$
$\sum_{r=1}^{50} \tan ^{-1}(2 r+1)-\tan ^{-1}(2 r-1)$
$\tan ^{-1}(101)-\tan ^{-1} 1 \Rightarrow \tan ^{-1} \frac{50}{51}$
9. If the value of the integral $\int_{0}^{5} \frac{x+[x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta$, where $\alpha, \beta \in R, 5 \alpha+6 \beta=0$, and $[x]$ denotes the greatest integer less than or equal to x, then the value of $(\alpha+\beta)^{2}$ is equal to :
(1) 36
(2) 100
(3) 16
(4) 25

Ans. (4)
Sol. $I=\int_{0}^{5} \frac{x+[x]}{e^{x-[x]}} d x$

$$
\begin{aligned}
& \int_{0}^{1} \frac{x}{e^{x}} d x+\int_{1}^{2} \frac{x+1}{e^{x-1}} d x+\int_{2}^{3} \frac{x+2}{e^{x-2}} d x+\ldots . . \int_{4}^{5} \frac{x+4}{e^{x-4}} d x \\
& \downarrow \\
& \quad x=t+1 \quad x=z+2 \quad x=y+4 \\
& \int_{0}^{1} \frac{t+2}{e^{t}} d t+\int_{0}^{1} \frac{z+4}{e^{z}} d z+\ldots+\int_{0}^{1} \frac{y+4}{e^{y}} d y \\
& \Rightarrow \int_{0}^{5} \frac{5 x+20}{e^{x}} d t=5 \int_{0}^{1} \frac{x+4}{e^{x}} d x \\
& \Rightarrow 5 \int_{0}^{1}(x+4) e^{-x} d x \\
& \left.\Rightarrow 5 e^{-x}(-x-5)\right]_{0}^{1} \Rightarrow-\frac{30}{e}+25 \\
& \alpha=-30 \\
& \beta=25 \Rightarrow 5 \alpha+6 \beta=0 \\
& (\alpha+\beta)^{2}=5^{2}=25
\end{aligned}
$$

10. Let [t] denote the greatest integer less than or equal to t.

Let $f(x)=x-[x], g(x)=1-x+[x]$, and $h(x)=\min \{f(x), g(x)\}, x \in[-2,2]$. Then h is :
(1) not continuous at exactly four points in $[-2,2]$
(2) not continuous at exactly three points in $[-2,2]$
(3) continuous in $[-2,2]$ but not differentiable at exactly three points in $(-2,2)$
(4) continuous in $[-2,2]$ but not differentiable at more than four points in $(-2,2)$

Ans. (4)

Sol. $\min \{x-[x], 1-x+[x]\}$
$h(x)=\min \{x-[x], 1-(x-[x])\}$

$\Rightarrow \quad$ always continuous in $[-2,2]$
but non differentiable at 7 points
11. A 10 inches long pencil $A B$ with mid point C and a small eraser P are placed on the horizontal top of a table such that $\mathrm{PC}=\sqrt{5}$ inches and $\angle \mathrm{PCB}=\tan ^{-1}(2)$.
The acute angle through which the pencil must be rotated about C so that the perpendicular distance between eraser and pencil becomes exactly 1 inch is :

(1) $\tan ^{-1}\left(\frac{4}{3}\right)$
(2) $\tan ^{-1}\left(\frac{3}{4}\right)$
(3) $\tan ^{-1}\left(\frac{1}{2}\right)$
(4) $\tan ^{-1}(1)$

Ans. (2)

Sol.

From figure
$\sin \beta=\frac{1}{\sqrt{5}}$
$\therefore \tan \beta=\frac{1}{2}$
$\tan (\alpha+\beta)=2$
$\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \cdot \tan \beta}=2$
$\frac{\tan \alpha+\frac{1}{2}}{1-\tan \alpha\left(\frac{1}{2}\right)}=2$
$\tan \alpha=\frac{3}{4}$
$\alpha=\tan ^{-1}\left(\frac{3}{4}\right)$
12. A circle C touches the line $x=2 y$ at the point $(2,1)$ and intersects the circle $C_{1}: x^{2}+y^{2}+2 y-$ $5=0$ at two points P and Q such that $P Q$ is a diameter of C_{1}. Then the diameter of C is :
(1) $\sqrt{285}$
(2) $4 \sqrt{15}$
(3) 15
(4) $7 \sqrt{5}$

Ans. (4)
Sol. $\quad(x-2)^{2}+(y-1)^{2}+\lambda(x-2 y)=0$
C: $x^{2}+y^{2}+x(\lambda-4)+y(-2-2 \lambda)+5=0$
$C_{1}: x^{2}+y^{2}+2 y-5=0$
$\mathrm{S}_{1}-\mathrm{S}_{2}=0$ (Equation of PQ$)$
$(\lambda-4) x-(2 \lambda+4) y+10=0$ Passes through $(0,-1)$
$\Rightarrow \quad \lambda=-7$
C : $x^{2}+y^{2}-11 x+12 y+5=0$
$=\frac{\sqrt{245}}{4}$
Diameter $=7 \sqrt{5}$
13. A fair die is tossed until six is obtained on it. Let X be the number of required tosses, then the conditional probability $P(x \geq 5 \mid x>2)$ is :
(1) $\frac{25}{36}$
(2) $\frac{11}{36}$
(3) $\frac{125}{216}$
(4) $\frac{5}{6}$

Ans. (1)
Sol. $P(x \geq 5 \mid x>2)=\frac{P(x \geq 5)}{P(x>2)}$
$\frac{\left(\frac{5}{6}\right)^{4} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{5} \cdot \frac{1}{6}+\ldots \ldots+\infty}{\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{3} \cdot \frac{1}{6}+\ldots .+\infty}$

$$
\frac{\left(\frac{5}{6}\right)^{4} \cdot \frac{1}{6}}{\frac{1-\frac{5}{6}}{\frac{\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}}{1-\frac{5}{6}}}=\left(\frac{5}{6}\right)^{2}}=\frac{25}{36}
$$

14. Two fair dice are thrown. The numbers on them are taken as λ and μ, and a system of linear equations

$$
\begin{aligned}
& x+y+z=5 \\
& x+2 y+3 z=\mu \\
& x+3 y+\lambda z=1
\end{aligned}
$$

is constructed. If p is the probability that the system has a unique solution and q is the probability that the system has no solution, then :
(1) $p=\frac{5}{6}$ and $q=\frac{5}{36}$
(2) $p=\frac{1}{6}$ and $q=\frac{1}{36}$
(3) $p=\frac{1}{6}$ and $q=\frac{5}{36}$
(4) $p=\frac{5}{6}$ and $q=\frac{1}{36}$

Ans. (1)
Sol. $\quad D \neq 0 \Rightarrow\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \lambda\end{array}\right| \neq 0 \Rightarrow \lambda \neq 5$
For no solution $\mathrm{D}=0 \Rightarrow \lambda=5$
$D_{1}=\left|\begin{array}{lll}1 & 1 & 5 \\ 1 & 2 & \mu \\ 1 & 3 & 1\end{array}\right| \neq 0 \Rightarrow \mu \neq 3$
$p=\frac{5}{6}$
$q=\frac{1}{6} \times \frac{5}{6}=\frac{5}{36}$
15. The local maximum value of the function
$f(x)=\left(\frac{2}{x}\right)^{x^{2}}, x>0$ is :
$(1)(e)^{\frac{2}{e}}$
(2) $\left(\frac{4}{\sqrt{\mathrm{e}}}\right)^{\frac{\mathrm{e}}{4}}$
(3) $(2 \sqrt{e})^{\frac{1}{e}}$
(4) 1

Ans. (1)

Sol. $f(x)=\left(\frac{2}{x}\right)^{x^{2}} ; x>0$
$\ell \operatorname{nf}(x)=x^{2}(\ell \operatorname{n} 2-\ln x)$
$f^{\prime}(x)=f(x)\{-x+(\ell n 2-\ell n x) 2 x\}$
$f^{\prime}(x)=f(x) \cdot x \underbrace{(2 \ell n 2-2 \ell n x-1)}_{g(x)}$
$g(x)=2 \ell n^{2}-2 \ell n x-1$
$=\ln \frac{4}{x^{2}}-1=0 \Rightarrow x=\frac{2}{\sqrt{\mathrm{e}}}$

$L M=\frac{2}{\sqrt{e}}$
Local maximum value $=\left(\frac{2}{2 / \sqrt{e}}\right)^{\frac{4}{e}} \Rightarrow e^{\frac{2}{e}}$
16. Let $y(x)$ be the solution of the differential equation $2 x^{2} d y+\left(e^{y}-2 x\right) d x=0, x>0$. If $y(e)=1$. Then $y(1)$ is equal to:
(1) 0
(2) 2
(3) $\log _{e}(2 e)$
(4) $\log _{\mathrm{e}} 2$

Ans. (4)
Sol. $\quad 2 x^{2} d y+\left(e^{y}-2 x\right) d x=0$
$\frac{d y}{d x}+\frac{e^{y}-2 x}{2 x^{2}}=0 \Rightarrow \frac{d y}{d x}+\frac{e^{y}}{2 x^{2}}-\frac{1}{x}=0$
$e^{-y} \frac{d y}{d x}-\frac{e^{-y}}{x}=-\frac{1}{2 x^{2}} \Rightarrow$ Put $^{-y}=z$
$\frac{-d z}{d x}-\frac{z}{x}=-\frac{1}{2 x^{2}} \Rightarrow x d z+z d x=\frac{d x}{2 x}$
$d(x z)=\frac{d x}{2 x} \Rightarrow x z=\frac{1}{2} \log _{e} x+c$
$X e^{-y}=\frac{1}{2} \log _{e} x+x$, passes through $(e, 1)$
$\Rightarrow \mathrm{c}=\frac{1}{2}$
$x^{-y}=\frac{\log _{e} e x}{2}$
$e^{-y}=\frac{1}{2} \Rightarrow y=\log _{e} 2$
17. The locus of the mid points of the chords of the hyperbola $x^{2}-y^{2}=4$, which touch the parabola $y^{2}=8 x$ is :
(1) $x^{3}(x-2)=y^{2}$
(2) $x^{2}(x-2)=y^{3}$
(3) $y^{2}(x-2)=x^{3}$
(4) $y^{3}(x-2)=x^{2}$

Ans. (3)

Sol. $\quad T=S_{1}$
$x h-y k=h^{2}-k^{2}$
$y=\frac{x h}{2 k}-\frac{\left(h^{2}-k^{2}\right)}{k}$
this touches $y^{2}=8 x$ then $c=\frac{a}{m}$
$\left(\frac{\mathrm{k}^{2}-\mathrm{h}^{2}}{\mathrm{k}}\right)=\frac{2 \mathrm{k}}{\mathrm{h}}$
$2 y^{2}=x\left(y^{2}-x^{2}\right)$
$y^{2}(x-2)=x^{3}$
18. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{1+\sin ^{2} x}{1+\pi^{\sin x}}\right) d x$ is :
(1) $\frac{3 \pi}{2}$
(2) $\frac{\pi}{2}$
(3) $\frac{3 \pi}{4}$
(4) $\frac{5 \pi}{4}$

Ans. (3)
Sol. $I=\int_{0}^{\pi / 2} \frac{\left(1+\sin ^{2} x\right)}{\left(1+\pi^{\sin x}\right)}+\frac{\pi^{\sin x}\left(1+\sin ^{2} x\right)}{\left(1+\pi^{\sin x}\right)} d x$
$I=\int_{0}^{\pi / 2}\left(1+\sin ^{2} x\right) d x$
$I=\frac{\pi}{2}+\frac{\pi}{2} \cdot \frac{1}{2}=\frac{3 \pi}{4}$
19. $\lim _{x \rightarrow 2}\left(\sum_{n=1}^{9} \frac{x}{n(n+1) x^{2}+2(2 n+1) x+4}\right)$ is equal to :
(1) $\frac{7}{36}$
(2) $\frac{5}{24}$
(3) $\frac{1}{5}$
(4) $\frac{9}{44}$

Ans. (4)
Sol. $S=\lim _{x \rightarrow 2} \sum_{n=1}^{9} \frac{x}{n(n+1) x^{2}+2(2 n+1) x+4}$
$S=\sum_{n=1}^{9} \frac{x}{4\left(n^{2}+3 n+2\right)}=\frac{1}{2} \sum_{n=1}^{9}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)$
$S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)=\frac{9}{44}$
20. The point $P(-2 \sqrt{6}, \sqrt{3})$ lies on the hyerpbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ having eccentricity $\frac{\sqrt{5}}{2}$. If the tangent and normal at P to the hyerpbola intersect its conjugate axis at the points Q and R respectively, then $Q R$ is equal to :
(1) $6 \sqrt{3}$
(2) $4 \sqrt{3}$
(3) 6
(4) $3 \sqrt{6}$

Ans. (1)
Sol. $\quad \mathrm{P}(-2 \sqrt{6}, \sqrt{3})$ lies on hyperbola
$\begin{aligned} \Rightarrow \quad & \frac{24}{a^{2}}-\frac{3}{b^{2}}=1 \ldots \ldots . .(i) \\ e & =\frac{\sqrt{5}}{2} \Rightarrow b^{2}=a^{2}\left(\frac{5}{4}-1\right) \Rightarrow 4 b^{2}=a^{2}\end{aligned}$
Put in (i) $\Rightarrow \frac{6}{\mathrm{~b}^{2}}-\frac{3}{\mathrm{~b}^{2}}=1 \Rightarrow \mathrm{~b}=\sqrt{3}$
$\Rightarrow \mathrm{a}=\sqrt{12}$
$\frac{x^{2}}{12}-\frac{y^{2}}{3}=1$

Tangent at P :
$\frac{-x}{\sqrt{6}}-\frac{y}{\sqrt{3}}=1 \Rightarrow Q(0, \sqrt{3})$
Slope of $T=-\frac{1}{\sqrt{2}}$
Normal at P :

$$
\begin{array}{ll}
y-\sqrt{3}=\sqrt{2}(x+2 \sqrt{6}) \\
\Rightarrow \quad & R=(0,5 \sqrt{3}) \\
& Q R=6 \sqrt{3}
\end{array}
$$

Section B

1. Let $\binom{n}{k}$ denote ${ }^{n} C_{k}$ and $\left[\begin{array}{l}n \\ k\end{array}\right]=\left\{\begin{array}{l}\binom{n}{k}, \text { if } 0 \leq k \leq n \\ 0, \text { otherwise }\end{array}\right.$
If $A_{k}=\sum_{i=0}^{9}\binom{9}{i}\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\binom{8}{i}\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$ and $A_{4}-A_{3}=190 \mathrm{p}$, then p is equal to \qquad
Ans. (49)
Sol. $\quad A_{k}=\sum_{i=0}^{9}{ }^{9} C_{i}{ }^{12} C_{k-i}+\sum_{i=0}^{8}{ }^{8} C_{i}{ }^{13} C_{k-i}$
$A_{k}={ }^{21} C_{k}+{ }^{21} C_{k}=2 .{ }^{21} C_{k}$
$A_{4}-A_{3}=2\left({ }^{21} \mathrm{C}_{4}-{ }^{21} \mathrm{C}_{3}\right)=2(5985-1330)$
$190 \mathrm{p}=2(5985-1330) \Rightarrow \mathrm{p}=49$
2. The least positive integer n such that $\frac{(2 i)^{n}}{(1-i)^{n-2}}, i=\sqrt{-1}$, is a positive integer is

Ans. (6)
Sol. $\frac{(2 i)^{n}}{(1-i)^{n-2}}=\frac{(2 i)^{n}}{(-2 i)^{\frac{n-2}{2}}}$

$$
=\frac{(2 i)^{\frac{n+2}{2}}}{(-1)^{\frac{n-2}{2}}}=\frac{(2)^{\frac{n+2}{2}} i^{\frac{n+2}{2}}}{(-1)^{\frac{n-2}{2}}}
$$

This positive integer for $\mathrm{n}=6$
3. If the projection of vector $\hat{i}+2 \hat{j}+\hat{k}$ on the sum of the vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $-\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is 1 , then λ is equal to \qquad .
Ans. (5)
Sol. $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$
$\vec{b}=(2-\lambda) \hat{i}+6 \hat{j}-2 \hat{k}$
$\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=1, \vec{a} \cdot \vec{b}=12-\lambda$
$(\vec{a} \cdot \vec{b})=|\vec{b}|^{2}$
$\lambda^{2}-24 \lambda+144=\lambda^{2}-4 \lambda+4+40$
$20 \lambda=100 \Rightarrow \lambda=5$.
4. The sum of all 3 -digit numbers less than or equal to 500 , that are formed without using the digit " 1 " and they all are multiple of 11 , is \qquad .
Ans. (7744)
Sol. 209, 220, 231,, 495
Sum $=\frac{27}{2}(209+495)=9504$
$\begin{array}{lllll} & & 2 & 3 & 1 \\ \text { Number containing } 1 \text { at unit place } & \frac{3}{3} & \mathbf{4} & \frac{1}{1} \\ & \frac{4}{3} & \frac{5}{2} & \frac{1}{2} \\ \text { Number containing } 1 \text { at } 10^{\text {th }} \text { place } & \frac{3}{4} & \frac{1}{2} & \frac{9}{8}\end{array}$
Required $=9501-(231+341+451+319+418)=7744$
5. Let A be a 3×3 real matrix. If det (2Adj (2Adj (Adj (2A)))) $=2^{41}$, then the value of $\operatorname{det}\left(A^{2}\right)$ equals \qquad -
Ans. (4)
Sol. $\quad \operatorname{adj}(2 A)=2^{2} \operatorname{adj} A$
$\Rightarrow \quad \operatorname{adj}(\operatorname{adj}(2 A))=\operatorname{adj}(4 \operatorname{adj} A)=16 \operatorname{adj}(\operatorname{adj} A)$

$$
=16|\mathrm{~A}| \mathrm{A}
$$

$\Rightarrow \quad \operatorname{adj}(32|A| A)=(32|A|)^{2} \operatorname{adj} A$
$12(32|A|)^{2}|\operatorname{adj} A|=2^{3}(32|A|)^{6}|\operatorname{adj} A|$
$2^{3} \cdot 2^{30}|A|^{6} \cdot|A|^{2}=2^{41}$
$|A|^{8}=2^{8} \Rightarrow|A|= \pm 2$
$|A|^{2}=4$
6. Let a and b respectively be the points of local maximum and local minimum of the function $f(x)=2 x^{3}-3 x^{2}-12 x$.
If A is the total area of the region bounded by $y=f(x)$, the x-axis and the lines $x=a$ and $x=b$, then 4 A is equal to \qquad
Ans. (114)
Sol. $f^{\prime}(x)=6 x^{2}-6 x-12=6(x-2)(x+1)$
Point $=(2,-20) \&(-1,7)$

$A=\int_{-1}^{0}\left(2 x^{3}-3 x^{2}-12 x\right) d x+\int_{0}^{2}\left(12 x+3 x^{2}-2 x^{3}\right) d x$
$A=\left(\frac{x^{4}}{2}-x^{3}-6 x^{2}\right)_{-1}^{0}+\left(6 x^{2}+x^{3}-\frac{x^{4}}{2}\right)_{0}^{2}$
$4 \mathrm{~A}=114$
7. Let $a_{1}, a_{2} \ldots . . a_{10}$ be an AP with common difference -3 and b_{1}, b_{2} \qquad b_{10} be a GP with common ratio 2. Let $c_{k}=a_{k}+b_{k}, k=1,2, \ldots ., 10$. If $c_{2}=12$ and $c_{3}=13$, then $\sum_{k=1}^{10} c_{k}$ is equal to

Ans. (2021)
Sol. $\quad c_{2}=a_{2}+b_{2}=a_{1}-3+2 b_{1}=12$
$a_{1}+2 b_{1}=15$
$c_{3}=a_{3}+b_{3}=a_{1}-6+4 b_{1}=13$
$a_{1}+4 b_{1}=19$
from (1) \& (2) $b_{1}=2, a_{1}=11$
$\sum_{k=1}^{10} C_{k}=\sum_{k=1}^{10}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{10} a_{k}+\sum_{k=1}^{10} b_{k}$
$=\frac{10}{2}(2 \times 11+9 \times(-3))+\frac{2\left(2^{10}-1\right)}{2-1}$
$=5(22-27)+2(1023)$
$=2046-25=2021$
8. Let $\lambda \neq 0$ be in R. If α and β are the roots of the equation $x^{2}-x+2 \lambda=0$ and α and γ are the roots of the equation $3 x^{2}-10 x+27 \lambda=0$, then $\frac{\beta \gamma}{\lambda}$ is equal to \qquad -.
Ans. (18)
Sol. $3 \alpha^{2}-10 \alpha+27 \lambda=0$
$\alpha^{2}-\alpha+2 \lambda=0$
Equation (1) - 3(2) gives
$-7 \alpha+21 \lambda=0 \Rightarrow \alpha=3 \lambda$
Put $\alpha=3 \lambda$ in Equation (1) we get $9 \lambda^{2}-3 \lambda+2 \lambda=0$
$9 \lambda^{2}=\lambda \Rightarrow \lambda=\frac{1}{9}$ as $\lambda \neq 0$
Now $\alpha=3 \lambda \Rightarrow \lambda=\frac{1}{3}$
$\alpha+\beta=1 \Rightarrow \beta=2 / 3$
$\alpha+\gamma=\frac{10}{3} \Rightarrow \gamma=3$
$\therefore \frac{\beta \gamma}{\lambda}=\frac{\frac{2}{3} \times 3}{\frac{1}{9}}=18$
9. Let Q be the foot of the perpendicular from the point $P(7,-2,13)$ on the plane containing the lines, $\frac{x+1}{6}=\frac{y-1}{7}=\frac{z-3}{8}$ and $\frac{x-1}{3}=\frac{y-2}{5}=\frac{z-3}{7}$.
Then $(P Q)^{2}$, is equal to \qquad
Ans. (96)
Sol. Containing the line $\left|\begin{array}{ccc}x+1 & y-1 & z-3 \\ 6 & 7 & 8 \\ 3 & 5 & 7\end{array}\right|=0$
$9(x+1)-18(y-1)+9(z-3)=0$
$x-2 y+z=0$
$\mathrm{PQ}=\left|\frac{7+4+13}{\sqrt{6}}\right|=4 \sqrt{6}$
$P Q^{2}=96$
10. Let the mean and variance of four numbers $3,7, x$ and $y(x>y)$ be 5 and 10 respectively. Then the mean of four numbers $3+2 x, 7+2 y, x+y$ and $x-y$ is \qquad _.
Ans. (12)
Sol. $5=\frac{3+7+x+y}{4} \Rightarrow x+y=10$
$\operatorname{Var}(x)=10=\frac{3^{2}+7^{2}+x^{2}+y^{2}}{4}-25$
$140=49+9+x^{2}+y^{2}$
$x^{2}+y^{2}=82$
$x+y=10$
$\Rightarrow(x, y)=(9,1)$
Four numbers are $21,9,10,8$
Mean $=\frac{48}{4}=12$

