MATHEMATICS
 JEE-MAIN (July-Attempt) 20 July
 (Shift-1) Paper

SECTION - A

1. If in a triangle $A B C, A B=5$ units, $\angle B=\cos ^{-1}\left(\frac{3}{5}\right)$ and radius of circum circle of $\triangle A B C$ is 5 units, then the area (in sq. units) of $\triangle A B C$ is:
(1) $6+8 \sqrt{3}$
(2) $8+2 \sqrt{2}$
(3) $4+2 \sqrt{3}$
(4) $10+6 \sqrt{2}$

Sol. (1)

$\cos B=\frac{3}{5} \Rightarrow \sin B=\frac{4}{5}$
Now, $\frac{b}{\sin B}=2 R \Rightarrow b=2(5)\left(\frac{4}{5}\right)=8$
Now, by cosine formula
$\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$\Rightarrow \frac{3}{5}=\frac{a^{2}+25-64}{2(5) a}$
$\Rightarrow \mathrm{a}^{2}-6 \mathrm{a}-3 \mathrm{~g}=0$
$\therefore=\frac{6 \pm \sqrt{192}}{2}=\frac{6 \pm 8 \sqrt{3}}{2}$
$3+4 \sqrt{3}$ (Reject $a=3-4 \sqrt{3}$)
Now, $\Delta=\frac{a b c}{4 R}=\frac{(3+4 \sqrt{3})(8)(5)}{4(5)}=2(2+4 \sqrt{3})$
$\Rightarrow \Delta=(6+8 \sqrt{3})$
2. Words with or without meaning are to be formed using all the letters of the word EXAMINATION. The probability that the letter M appears at the fourth position in any such word is:
(1) $\frac{1}{9}$
(2) $\frac{1}{66}$
(3) $\frac{2}{11}$
(4) $\frac{1}{11}$

Sol. (4)
AAEIIMNNOTX
Total words $=\frac{11:}{2: 2: 21}=n(s)$

```
---M-------
```

Total words with M at fourth place $=\frac{10!}{2!2!2!}=n(\mathrm{~A})$
Probability $=\frac{10!}{11!}=\frac{1}{11}$
3. The mean of 6 distinct observations is 6.5 and their variance is 10.25 . If 4 out of 6 observations are $2,4,5$ and 7 , then the remaining two observations are:
(1) 10,11
(2) 8,13
(3) 1,20
(4) 3,18

Sol. (1)

Let other two numbers be a, (21-a)
Now,
$10.25=\frac{\left(4+16+25+49+a^{2}+(21-a)^{2}\right)}{6}$
(Using formula for variance)
$\Rightarrow 6(10.25)+6(6.5)^{2}=94+a^{2}+(21-a)^{2}$
$\Rightarrow a 2+\left(21-a^{2}\right)=221$
$\therefore a=10$ and $(21-a)=21-10=11$
so, remaining two observations are $10,11$.
4. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. If \vec{c} is a vector such that $\vec{a}, \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is $\frac{\pi}{6}$, then the value of $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is:
(1) $\frac{2}{3}$
(2) 4
(3) 3
(4) $\frac{3}{2}$

Sol. (4)
$|\vec{a}|=a ; \vec{a} \cdot \vec{c}=c$
Now $|\vec{c}-\vec{a}|=2 \sqrt{2}$
$\Rightarrow c^{2}+a^{2}-2 \vec{c} \cdot \vec{a}=8$
$\Rightarrow c^{2}+9-2(c)=8$
$\Rightarrow C^{2}-2 C+1=0 \Rightarrow \mathbf{C}=1 \Rightarrow|\vec{C}|=1$
Also, $\vec{a} \times \vec{b}=2 \hat{i}-2 \hat{j}+k$
$|(\vec{a} \times \vec{b}) \times \vec{c}|=|\vec{a} \times \vec{b}||\vec{c}| \sin \frac{\pi}{6}$
$=(3)(1)(1 / 2)$
$=3 / 2$
5. The value of the integral $\int_{-1}^{1} \log _{e}(\sqrt{1-x}+\sqrt{1+x}) d x$ is equal to:
(1) $2 \log _{e} 2+\frac{\pi}{4}-1$
(2) $\frac{1}{2} \log _{e} 2+\frac{\pi}{4}-\frac{3}{2}$
(3) $2 \log _{\mathrm{e}} 2+\frac{\pi}{2}-\frac{1}{2}$
(4) $\log _{e} 2+\frac{\pi}{2}-1$

Sol. (4)

Let $\mathrm{I}=2 \int_{0}^{1} \underbrace{\operatorname{In}(\sqrt{1-x}+\sqrt{1+x})}_{I}{\underset{\text { (II) }}{ }}^{d x}$
(I.B.P.)
$\therefore I=\mid x \cdot I n(\sqrt{1-x}+\sqrt{1-x})_{0}^{1}$
$\left.-\int_{0}^{1} x \cdot\left(\frac{1}{\sqrt{1-x}+\sqrt{1+x}}\right) \cdot\left(\frac{1}{2 \sqrt{1+x}}-\frac{1}{2 \sqrt{1-x}}\right) d x\right]$
$=2(\operatorname{In} \sqrt{2}-0)-\frac{2}{2} \int_{0}^{1} \frac{x \sqrt{1-x}-\sqrt{1+x} d x}{\sqrt{1-x}+\sqrt{1+x} \sqrt{1-x^{2}}}$
$=2\left(\log _{e} 2\right) \int_{0}^{1} \frac{x \cdot\left(2-2 \sqrt{1-x^{2}}\right)}{-2 x \sqrt{1-x^{2}}} d x$
(After rationalisation)
$=\left(\log _{e} 2\right)+\int_{0}^{1}\left(\frac{\left(1-\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}}\right) d x$
$=\left(\log _{e} 2\right)+\left(\sin ^{-1} x\right)_{0}^{1}-1$
$=\log _{e} 2+\left(\frac{\pi}{2}-0\right)-1$
$\therefore \mathrm{I}=\left(\mathrm{Io}_{\mathrm{e}} 2\right)+\frac{\pi}{2}-1$
6. The probability of selecting integers $a \in[-5,30]$ such that $x^{2}+2(a+4) x-5 a+64>0$, for all $x \in R$, is :
(1) $\frac{1}{4}$
(2) $\frac{7}{36}$
(3) $\frac{2}{9}$
(4) $\frac{1}{6}$

Sol. (3)

D <0
$\Rightarrow 4(a+4)^{2}-4(-5 a+64)<0$
$\Rightarrow a^{2}+16+8 a+5 a-64<0$
$\Rightarrow a^{2}+13 a-48<0$
$\Rightarrow(a+16)(a-3)<0$
$\Rightarrow a \in(-16,3)$
\therefore Possible a : $\{-5,-4, \ldots ., 2\}$
\therefore Required probability $=\frac{8}{36}$
$=\frac{2}{9}$
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
7. Let $y=y(x)$ be the solution of the differential equation
$x \tan \left(\frac{y}{x}\right) d y=\left(y \tan \left(\frac{y}{x}\right)-x\right) d x,-1 \leq x \leq 1, y\left(\frac{1}{2}\right)=\frac{\pi}{6}$.
Then the area of the region bounded by the curves $x=0, x=\frac{1}{\sqrt{2}}$ and $y=y(x)$ in the upper half plane is :
(1) $\frac{1}{12}(\pi-3)$
(2) $\frac{1}{6}(\pi-1)$
(3) $\frac{1}{8}(\pi-1)$
(4) $\frac{1}{4}(\pi-2)$

Sol. (3)

We have
$\tan \left(\frac{y}{x}\right)(x d y-y d x)=-x d x$
$\Rightarrow \quad \tan \left(\frac{y}{x}\right)\left(\frac{x d y-y d x}{x^{2}}\right)=-\frac{x}{x^{2}} d x$
$\Rightarrow \quad \int \tan \left(\frac{y}{x}\right)\left(d\left(\frac{y}{x}\right)\right)=\int-\frac{1}{x} d x$
$\Rightarrow \quad \ln |\sec (y / x)|=-\ln x+C$
$\Rightarrow \quad$ $\quad \mathrm{n}|x \sec (y / x)|=C$
Now $y=(1 / 2) \& x=\pi / 6$
As $\ln \left|\frac{1}{2} \cdot \sec \left(\frac{\pi}{3}\right)\right|=C \Rightarrow C=0$
$\therefore \sec \left(\frac{y}{x}\right)=\frac{1}{x}$
$\Rightarrow \cos \left(\frac{y}{x}\right)=x$
$\therefore y=x \cos ^{-1}(x)$
So, required bounded area
$\mathrm{A}=\int_{0}^{\frac{1}{\sqrt{2}}} \underset{(I I)}{x}\left(\underset{(I)}{\cos ^{-1}}\right) d x=\left(\frac{\pi-1}{8}\right)$
(I.B.P.)
8. If α and β are the distinct roots of the equation $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-\right.$ 1) $+\beta^{96}\left(\beta^{12}-1\right)$ is equal to:
(1) 56×3^{25}
(2) 52×3^{24}
(3) 56×3^{24}
(4) 28×3^{25}

Sol. (2)

As, $\left(a^{2}+\sqrt{3}\right)=-(3)^{1 / 4} \cdot \alpha$
$\Rightarrow\left(\alpha^{2}+2 \sqrt{3} \alpha^{2}+3\right)=\sqrt{3} \alpha^{2}$ (On squaring)
$\left.\therefore\left(a^{4}+3\right)=(-) \sqrt{3} \alpha^{2}\right)$
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
$\Rightarrow \alpha^{8}+6 \alpha^{4}+9=3 \alpha^{2}$ (Again squaring)
$\therefore \alpha^{8}+3 \alpha^{4}+9=0$
$\Rightarrow \alpha^{8}=-9-3 \alpha^{4}$
(Multiply by α^{4})
So, $\alpha^{12}=-9 \alpha^{4}-3 \alpha^{8}$
$\therefore \alpha^{12}=-9 \alpha^{4}-3\left(-9-3 \alpha^{4}\right)$
$\Rightarrow \alpha^{12}=-9 \alpha^{4}+27+9 \alpha^{4}$
Hence, $\alpha^{12}=(27)$
$\Rightarrow\left(\alpha^{12}\right)^{18}=(27)^{8}$
$\Rightarrow \alpha^{96}=(3)^{24}$
Similarly $\beta^{96}=(3)^{24}$
$\therefore \alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)=(3)^{24} \times 52$
9. Let a function $f: R \rightarrow R$ be defined as
$f(x)= \begin{cases}\sin x-e^{x} & \text { if } x \leq 0 \\ a+[-x] & \text { if } 0<x<1 \\ 2 x-b & \text { if } x \geq 1\end{cases}$
where $[x]$ is the greatest integer less than or equal to x. If f is continuous on R, then ($a+b$) is equal to:
(1) 5
(2) 3
(3) 2
(4) 4

Sol. (2)
Continuous at $x=0$
$\mathrm{f}\left(0^{+}\right)=\mathrm{f}\left(0^{-}\right) \Rightarrow \mathrm{a}-1=0-\mathrm{e}^{0}$
$\Rightarrow a=0$
Continuous at $x=1$
$f\left(1^{+}\right)=f\left(1^{-}\right)$
$\Rightarrow 2(1)-\mathrm{b}=\mathrm{a}+(-1)$
$\Rightarrow b=2-a+1 \Rightarrow b=3$
$\therefore \mathrm{a}+\mathrm{b}=3$
10. Let $y=y(x)$ be the solution of the differential equation $e^{x} \sqrt{1-y^{2}} d x+\left(\frac{y}{x}\right) d y=0, y(1)=-1$.

Then the value of $(y(3))^{2}$ is equal to:
(1) $1+4 e^{3}$
(2) $1+4 e^{6}$
(3) $1-4 e^{6}$
(4) $1-4 e^{3}$

Sol. (3)
$e^{x} \sqrt{1-y^{2}} d x+\frac{y}{x} d y=0$
$\Rightarrow e^{x} \sqrt{1-y^{2}} d x+\frac{-y}{x} d y=0$
$\Rightarrow \int \frac{\mathrm{ydy}}{\sqrt{1-\mathrm{y}^{2}}}=\int \mathrm{x} . \mathrm{e}^{\mathrm{x}} \mathrm{dx}$
$\Rightarrow \int \frac{-y}{\sqrt{1-y^{2}}} d y=\int x e^{x} d x$
$\Rightarrow \sqrt{1-y^{2}}=e^{x}(x-1)+c$
Given: At $x=1, y=-1$
$\Rightarrow 0=0+c \Rightarrow c=0$
$\therefore \sqrt{1-y^{2}}=e^{x}(x-1)$
At $\mathrm{x}=3,1-\mathrm{y}^{2}=\left(\mathrm{e}^{3} 2\right)^{2} \Rightarrow \mathrm{y}^{2}=1-4 \mathrm{e}^{6}$
11. If z and ω are two complex numbers such that $|z \omega|=1$ and $\arg (z)-\arg (\omega)=\frac{3 \pi}{2}$, then $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ is:
(Here $\arg (z)$ denotes the principal argument of complex number z)
(1) $\frac{3 \pi}{4}$
(2) $-\frac{\pi}{4}$
(3) $-\frac{3 \pi}{4}$
(4) $\frac{\pi}{4}$

Sol. (3)
As $|z \omega|=1$
$\Rightarrow|z|=r$, then $|\omega|=\frac{1}{r}$
Let $\arg (z)=q$
$\therefore \arg (\omega)=\left(\theta-\frac{3 \pi}{2}\right)$
So, $z=r e^{1 \theta}$
$\Rightarrow \bar{z}=r e^{i(-\theta)}$
$\omega=\frac{1}{r} e^{i\left(\theta-\frac{3 \pi}{2}\right)}$
Now, consider
$\frac{1-w \bar{z} \omega}{1+3 \bar{z} \omega}=\frac{1-2 e^{i\left(-\frac{3 \pi}{2}\right)}}{1-3 e^{i\left(-\frac{3 \pi}{2}\right)}}=\left(\frac{1-2 i}{1+3 i}\right)$
\therefore prin $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$
$=$ prin $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$
$=\left(-\frac{1}{2}(1+i)\right)$
$=-\left(\pi-\frac{\pi}{4}\right)=\frac{-3 \pi}{4}$
12. Let $[x]$ denote the greatest integer $\leq x$, where $x \in R$. If the domain of the real valued function $f(x)=\sqrt{\frac{[x] \mid-2}{[x] \mid-3}}$ is $(-\infty, a) \cup[b, c) \cup[4, \infty), a<b<c$, then the value of $a+b+c$ is:
(1) -3
(2) 1
(3) -2
(4) 8

Sol. (3)

For domain,
$\frac{|[x]|-2}{[x] \mid-3} \geq 0$
Case I: When $|[x]|-2 \geq 0$
and $|[x]|-3>0$
$\therefore \mathrm{x} \in(-\infty,-3) \cup[4, \infty] \ldots$. . (1)
Case II: When $|[x]|-2 \leq 0$
and $|[x]|-3<0$
$\therefore \mathrm{x} \in[-2,3)$
So, from (1) and (2)
We get
Domain of function
$=(-\infty,-3) \cup[-2,3) \cup[4, \infty)$
$\therefore(a+b+c)=-3+(-2)+3=-2(a<b<c)$
13. The number of real roots of the equation $\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{4}$ is:
(1) 0
(2) 4
(3) 1
(4) 2

Sol. (1)

$\tan ^{-1} \sqrt{x^{2}+x}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{4}$
For equation to be defined,
$x^{3}+x \geq 0$
$\Rightarrow x^{2}+x+1 \geq 1$
\therefore Only possibility that the equation is defined
$x^{2}+x=0 \Rightarrow x=0 ; x=-1$
None of these values satisfy
\therefore No of roots $=0$
14. The coefficient of x^{256} in the expansion of $(1-x)^{101}\left(x^{2}+x+1\right)^{100}$ is:
(1) ${ }^{100} \mathrm{C}_{16}$
(2) ${ }^{100} \mathrm{C}_{16}$
(3) ${ }^{100} \mathrm{C}_{15}$
(4) $-^{100} C_{15}$

Sol. (3)

$y=(1-x)(1-x)^{100}\left(x^{2}+x+1\right)^{100}$
$y=(1-x)\left(x^{3}-1\right)^{100}$
$y=\left(x^{3}-1\right)^{100}-x\left(x^{3}-1\right)^{100}$
Coff. Of x^{256} in $y=-$ coff of x^{255} in $\left(x^{3}-1\right)^{100}$

$$
={ }^{-100} \mathrm{C}_{85}(-1)^{15}={ }^{100} \mathrm{C}_{15}
$$

15. Let the tangent to the parabola $S: y^{2}=2 x$ at the point $P(2,2)$ meet the x-axis at Q and normal at it meet the parabola S at the point R. Then the area (in sq. units) of the triangle $P Q R$ is equal to:
(1) 25
(2) $\frac{25}{2}$
(3) $\frac{15}{2}$
(4) $\frac{35}{2}$

Sol. (2)

Tangent at $P: y(2)=2(1 / 2)(x+2)$
$\Rightarrow 2 y=x+2$
$\therefore \mathrm{Q}=(-2,0)$
Normal at $\mathrm{P}: \mathrm{y}-2=-\frac{(2)}{2.1 / 2}(x-2)$
$\Rightarrow y-2=-2(x-2)$
$\Rightarrow y=6-2 x$
\therefore Solving with $y^{2}=2 x \Rightarrow R\left(\frac{9}{2}-3\right)$
$\therefore \operatorname{Ar}(\triangle \mathrm{PQR})=\frac{1}{2}\left|\begin{array}{ccc}2 & 2 & 1 \\ -2 & 1 & 1 \\ \frac{9}{2} & 3- & 1\end{array}\right|$
$=\frac{25}{2}$ sq. units
16. Let a be a positive real number such that

$$
\int_{0}^{a} e^{x-[x]} d x=10 e-9
$$

where $[x]$ is the greatest integer less than or equal to x. Then a is equal to:
(1) $10+\log _{e} 3$
(2) $10-\log _{\mathrm{e}}(1+e)$
(3) $10+\log _{\mathrm{e}} 2$
(4) $10+\log _{\mathrm{e}}(1+e)$

Sol. (3)
$a>0$
Let $\geq a<n+1, n \in W$
$\therefore a=\begin{gathered}{[a]+} \\ \text { G.I.F } \\ \text { Fractional part }\end{gathered}$
Here [a] = n

Now, $\int_{0}^{a} e^{x-[x]} d x=10 e-9$
$\Rightarrow \int_{0}^{a} e^{x} d x+\int_{n}^{a} e^{x-[x]} d x=10 e-9$
$\therefore n \int_{0}^{1} e^{x} d x+\int_{n}^{a} e^{x-n} d x=10 e-9$
$\Rightarrow \mathrm{n}(\mathrm{e}-1)+\left(\mathrm{e}^{\mathrm{a}-\mathrm{n}}-1\right)=10 \mathrm{e}-9$
$\therefore \mathrm{n}=10$ and $\{\mathrm{a}\}=\log _{\mathrm{e}}-9$
So, $a=[a]+\{a\}=\left(10+\log _{e} 2\right)$
17. Let ' a ' be a real number such that the function $f(x)=a x^{2}+6 x-15, x \in R$ is increasing in $\left(-\infty, \frac{3}{4}\right)$ and decreasing in $\left(\frac{3}{4}, \infty\right)$. Then the function $g(x)=a x^{2}-6 x+15, x \in R$ has a :
(1) local minimum at $x=-\frac{3}{4}$
(2) local maximum at $x=\frac{3}{4}$
(3) local minimum at $x=\frac{3}{4}$
(4) local maximum at $x=-\frac{3}{4}$

Sol. (4)

$f(x)=a x^{2}+6 x-15$
$f^{\prime}=2 a x+6=2 a\left(x+\frac{3}{a}\right)$

$\Rightarrow-\frac{3}{a}=\frac{3}{4} \Rightarrow a=-4$
Now $g(x)=-4 x^{2}-6 x+15$

$$
\begin{aligned}
g^{\prime}(x) & =-8 x-6 \\
& =-2\{4 x+3\}
\end{aligned}
$$

18. Let $A=\left[a_{i j}\right]$ be a 3×3 matrix, where
$a_{i j}= \begin{cases}1 & , \text { if } i=j \\ -x & , \\ \text { if }|i-j|=1 \\ 2 x+1, & \text { otherwise }\end{cases}$
Let a function $f: R \rightarrow R$ be defined as $f(x)=\operatorname{det}(A)$. Then the sum of maximum and minimum values of f on R is equal to:
(1) $\frac{20}{27}$
(2) $-\frac{88}{27}$
(3) $-\frac{20}{27}$
(4) $\frac{88}{27}$

Sol. (2)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -x & 2 x+1 \\
-x & 1 & -x \\
2 x+1 & -x & 1
\end{array}\right]} \\
& |\mathrm{A}|=4 \mathrm{x}^{3}-4 \mathrm{x}^{2}-4 \mathrm{x}=\mathrm{f}(\mathrm{x}) \\
& \mathrm{f}(\mathrm{x})=4\left(3 \mathrm{x}^{2}-2 \mathrm{x}-1\right)=0 \\
& \Rightarrow \mathrm{x}=1 ; \mathrm{x}=\frac{-1}{3} \\
& \therefore \underbrace{f(1)=-4}_{\min } ; \mathrm{f} ; \underbrace{f\left(-\frac{1}{3}\right)=\frac{20}{27}}_{\max }
\end{aligned}
$$

$$
\text { Sum }=-4+\frac{20}{27}=-\frac{88}{27}
$$

19. Let $A=\left[\begin{array}{ll}2 & 3 \\ a & 0\end{array}\right], a \in R$ be written as $P+Q$ where P is a symmetric matrix and Q is skew symmetric matrix. If $\operatorname{det}(Q)=9$, then the modulus of the sum of all possible values of determinant of P is equal to:
(1) 24
(2) 18
(3) 45
(4) 36

Sol. (4)
$A=\left[\begin{array}{ll}2 & 3 \\ a & 0\end{array}\right], a \in R$
and and $P \frac{A+A^{T}}{2}=\left[\begin{array}{cc}2 & \frac{3+a}{2} \\ \frac{a+3}{2} & 0\end{array}\right]$
and and $Q \frac{A-A^{T}}{2}=\left[\begin{array}{cc}0 & \frac{3-a}{2} \\ \frac{a-3}{2} & 0\end{array}\right]$
As, $\operatorname{det}(Q)=9$
$\Rightarrow(a-3)^{2}=36$
$\Rightarrow a=3 \pm 6$
$\therefore a=9,-3$

$$
\begin{aligned}
& \operatorname{det}(P)= \\
& =0-\frac{(a+3)^{2}}{4}=0 \text {, for } a=-3 \Rightarrow \operatorname{det}(P)=0 \\
& =0-\frac{(a+3)^{2}}{4}=\frac{1}{4}(12)^{2}, \text { for } a=9 \Rightarrow \operatorname{det}(P)=36
\end{aligned}
$$

\therefore Modulus of the sum of all possible values of det. $(P)=|36|+|0|=36$ Ans.
20. The Boolean expression $(p \wedge \sim q) \Rightarrow(q \vee \sim p)$ is equivalent to:
(1) $\sim q \Rightarrow p$
(2) $p \Rightarrow q$
(3) $p \Rightarrow \sim q$
(4) $q \Rightarrow p$

Sol. (2)

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\mathrm{p} \wedge \sim \mathrm{p}$	$(\mathrm{p} \vee \sim \mathrm{q})$	$(\mathrm{p} \wedge \sim \mathrm{p}) \Rightarrow(\mathrm{q} \vee \sim \mathrm{p})$	$\mathrm{p} \Rightarrow \mathrm{q}$
T	F	F	T	T	F	F	F
F	T	T	F	F	T	T	T
T	T	F	F	F	T	T	T
F	F	T	T	F	T	T	T
$(\mathrm{P} \wedge \sim \mathrm{q})(\mathrm{q} \vee \sim \mathrm{p})$							

SECTION - B

1. Let T be the tangent to the ellipse $E: x^{2}+4 y^{2}=5$ at the point $P(1,1)$. If the area of the region bounded by the tangent T, ellipse E, lines $x=1$ and $x=\sqrt{5}$ is $\alpha \sqrt{5}+\beta+\gamma \cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)$, then $|\alpha+\beta+\gamma|$ is equal to \qquad .
Sol. (1) NTA
(1.25) Motion or Bonus

Tangent at $P: x+4 y=5$
Required Area
$=\int_{1}^{\sqrt{5}}\left(\frac{5-x}{4}-\frac{\sqrt{5-x^{2}}}{2}\right) d x$

$=\left[\frac{5 x}{4}-\frac{x^{2}}{8}-\frac{x}{4} \sqrt{5-x^{2}}-\frac{5}{2} \sin ^{-1} \frac{x}{\sqrt{5}}\right]_{1}^{\sqrt{5}}$
$=\frac{5}{4} \sqrt{5}-\frac{5}{4}-\frac{5}{4} \cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)$
It we assume $\alpha, \beta, \gamma, \in \mathrm{Q}$ (Not given in question)
then $\alpha=\frac{5}{4}, \beta=-\frac{5}{4} \& \gamma=-\frac{5}{4}$
$|\alpha+\beta+\gamma|=1.25$
2. The number of rational terms in the binomial expansion of $\left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120}$ is \qquad -.
Sol. (21)
$\left(4^{1 / 4}+5^{1 / 6}\right)^{120}$
$T_{r+1}={ }^{120} C_{r}\left(2^{1 / 2}\right)^{120-r}(5)^{r / 6}$
for rational terms $r=6 \lambda 0 \leq r \leq 120$
so total no of forms are 21.
3. There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is \qquad .
Sol. (777)
15: Players
6: Bowlers
7: Bastman
2: Wicket keepers
Total number of ways for:
at least 4 bowlers, 5 bastsman $\& 1$ wicket keeper
${ }^{6} \mathrm{C}_{4} \cdot{ }^{7} \mathrm{C}_{5} \cdot{ }^{2} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{4} \cdot{ }^{7} \mathrm{C}_{6} \cdot{ }^{2} \mathrm{C}_{1}$
$+{ }^{6} \mathrm{C}_{5} \cdot{ }^{7} \mathrm{C}_{5} \cdot{ }^{2} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{5} \cdot{ }^{7} \mathrm{C}_{4} \cdot{ }^{2} \mathrm{C}_{2}$
$+{ }^{6} \mathrm{C}_{6} \cdot{ }^{7} \mathrm{C}_{4} \cdot{ }^{2} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{6} \cdot{ }^{7} \mathrm{C}_{3} \cdot{ }^{2} \mathrm{C}_{2}$
$=777$
4. Let $\vec{a}, \vec{b}, \vec{c}$ be three mutually perpendicular vectors of the same magnitude and equally inclined at angle θ, with the vector $\vec{a}+\vec{b}+\vec{c}$. Then $36 \cos ^{2} 2 \theta$ is equal to \qquad
Sol. (4)
$|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c})=3$
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}$
$\vec{a}(\vec{a}+\vec{b}+\vec{c})=|\vec{a}|+|\vec{a}+\vec{b}+\vec{c}| \cos \theta$
$\Rightarrow 1=\sqrt{3} \cos \theta$
$\Rightarrow \cos 2 \theta=-\frac{1}{3}$
$\Rightarrow 36 \cos ^{2} 2 \theta=4$
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
5. Let P be a plane passing through the points $(1,0,1),(1,-2,1)$ and $(0,1,-2)$. Let a vector $\overrightarrow{\mathrm{a}}=\alpha \hat{\mathrm{i}}+\beta \hat{\mathbf{j}}+\gamma \hat{\mathrm{k}}$ be such that $\overrightarrow{\mathrm{a}}$ is parallel to the plane P, perpendicular to $(\hat{\mathbf{i}}+2 \hat{j}+3 \hat{k})$ and $\overrightarrow{\mathrm{a}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})=2$, then $(\alpha-\beta+\gamma)^{2}$ equals \qquad -
Sol. (81)
$\overline{\mathrm{a}}=\overline{\mathrm{n}}_{\mathrm{p}} \times(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{k})$
$\overline{\mathrm{a}}=(\overline{\mathrm{AB}} \times \overline{\mathrm{AC}}) \times(\hat{\mathrm{i}}+2 \hat{j}+3 \hat{k})$
$\overline{\mathrm{a}}=((-2 \hat{j}) \times(-\hat{i}+\hat{j}-3 \hat{k})) \times(\hat{i}+2 \hat{j}+3 \hat{k})$
$\bar{a}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & -2 & 0 \\ -1 & 1 & -3\end{array}\right| \times(\hat{i}+2 \hat{j}+3 \hat{k})$
$\bar{a}=(3 \hat{i}-\hat{k}) \times(\hat{i}+2 \hat{j}+3 \hat{k})$
$\Rightarrow \bar{a}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 0 & -1 \\ 1 & 2 & 3\end{array}\right|$
$\bar{a}=(2 \hat{i}-10 \hat{j}+6 \hat{k})$
$\overline{\mathrm{a}}=(1,-5,3)$ in S.F.
6. Let a, b, c, d be in arithmetic progression with common difference λ. If
$\left|\begin{array}{lll}x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c\end{array}\right|=2$,
then value of λ^{2} is equal to \qquad .
Sol. (1)
$\left|\begin{array}{lll}x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c\end{array}\right|=2$
$\mathbf{C}_{\mathbf{2}} \rightarrow \mathrm{C}_{\mathbf{2}}-\mathrm{C}_{3}$
$\left|\begin{array}{ccc}x-2 \lambda & \lambda & x+a \\ x-1 & \lambda & x+b \\ x+2 \lambda & \lambda & x+C\end{array}\right|=2$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\Rightarrow\left|\begin{array}{ccc}x-2 \lambda & 1 & x+a \\ 2 \lambda-1 & 0 & \lambda \\ 4 \lambda & 0 & 2 \lambda\end{array}\right|=2$
$\Rightarrow 1\left(4 \lambda-4 \lambda^{2}+2 \lambda\right)=2 \Rightarrow \lambda^{2}=1$
7. If the value of $\lim _{x \rightarrow 0}(2-\cos x \sqrt{\cos 2 x})^{\left(\frac{x+2}{x^{2}}\right)}$ is equal to e^{a}, then a is equal to \qquad .

Sol. (3)

$\lim _{x \rightarrow 0}(2-\cos x \sqrt{\cos x})^{\frac{x+2}{x^{2}}}$

form 1^{∞}

$e^{\lim _{x \rightarrow 0}}\left(\frac{1-\cos x \sqrt{\cos 2} x}{x^{2}}\right) \times(x+2)$
Now limt $\lim _{x \rightarrow 0} \frac{1-\cos x \sqrt{\cos 2} x}{x^{2}}$
$\lim _{x \rightarrow 0} \frac{\sin x \sqrt{\cos 2} x-\cos x \times \frac{1}{2 \sqrt{\cos 2 x}} \times(-2 \sin 2 x)}{x^{2}}$
(by L' Hospital Rule)
$\lim _{x \rightarrow 0} \frac{\sin x \cos 2 x+\sin 2 x \cdot \cos x}{2 x}$
$=\frac{1}{2}+1=\frac{3}{2}$
So, e^{x}
$=e^{\frac{3}{2} \times 2}=e^{3}$
$\Rightarrow a=3$
8. If the shortest distance between the lines $\vec{r}_{1}=\alpha \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}), \lambda \in R, \alpha>0$ and $\vec{r}_{2}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k}), \mu \in R$ is 9 , then α is equal to \qquad .
Sol. (6)
If $\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\vec{c}+\lambda \vec{d}$
then shortest distance between two lines is
$L=\frac{(\vec{a}-\vec{c}) \cdot(\vec{b} \times \vec{d})}{|b \times d|}$
$\therefore \vec{a}-\vec{c}=((\alpha+4) \hat{i}+2 \hat{j}+3 k)$
$\frac{\vec{b} \times \vec{d}}{|b \times d|}=\frac{(2 \hat{i}+2 \hat{j}+k)}{3}$
$\therefore((\alpha+4) \hat{i}+2 \hat{j}+3 \hat{j}) \cdot \frac{(2 \hat{i}+2 \hat{j}+k)}{3}=9$
or $\alpha=6$
9. Let $y=m x+c, m>0$ be the focal chord of $y^{2}=-64 x$, which is tangent to $(x+10)^{2}+y^{2}=4$. Then, the value of $4 \sqrt{2}(m+c)$ is equal to \qquad -.

Sol. (34)

y2 $=-64$
focus : $(-16,0)$
$y=m x+c$ is focal chord
$\Rightarrow c=16 \mathrm{~m}$
$y=m x+c$ is tangent to $(x+10)^{2}+y^{2}=4$
$\Rightarrow y-m(x+10) \pm 2 \sqrt{1+m^{2}}$
$\Rightarrow c=10 \mathrm{~m} \pm 2 \sqrt{1+m^{2}}$
$\Rightarrow 16 \mathrm{~m}=10 \pm 2 \sqrt{1+m^{2}}$
$\Rightarrow 6 \mathrm{~m}=2 \sqrt{1+m^{2}} \quad(\mathrm{~m}>0)$
$\Rightarrow 9 \mathrm{~m}^{2}=1+\mathrm{m}^{2}$
$\Rightarrow m=\frac{1}{2 \sqrt{2}} \& c=\frac{8}{\sqrt{2}}$
$4 \sqrt{2}(m+c)=4 \sqrt{2}\left(\frac{17}{2 \sqrt{2}}\right)=34$
10. Let $A=\left(\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$ and $B=7 A^{20}-20 A^{7}+2 I$, where I is an identity matrix of order 3×3. If $B=\left[b_{i j}\right]$, then b_{13} is equal to \qquad -
Sol. (910)
Let $A=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)=1+C$
Where $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), C=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right)$
$C^{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
$C^{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), C^{4}=C^{5}=\ldots$.
$B=7 A^{20}-20 A^{7}+2 I$
$=7(1+c)^{20}-20(1+C)^{7}+2 I$
So
$\mathrm{B} 13=7 \times{ }^{20} \mathrm{C}_{2}-20 \times{ }^{7} \mathrm{C}_{2}=910$

