MATHEMATICS
 JEE-MAIN (MARCH-Attempt) 18 MARCH
 (Shift-2) Paper

SECTION - A

1. Let the system of linear equations
$4 x+\lambda y+2 z=0$
$2 x-y+z=0$
$\mu \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=0, \lambda, \mu \in \mathrm{R}$
Has a non-trivial solution. Then which of the following is true?
(1) $\mu=6, \quad \lambda \in R$
(2) $\mu=2, \quad \mu \in R$
(3) $\mu=3, \quad \mu \in R$
(4) $\mu=-6, \quad \lambda \in R$

Ans. (1)
Sol. For non trivial solution

$$
\begin{aligned}
& \quad \begin{array}{l}
\Delta=0 \\
\left|\begin{array}{ccc}
4 & \lambda & 2 \\
2 & -1 & 1 \\
\mu & 2 & 3
\end{array}\right|=0 \\
4(-3-2)-\lambda(6-\mu)+2(4+\mu)=-20-6 \lambda+\lambda \mu+8+2 \mu \\
\\
=12-6 \lambda+\lambda \mu+2 \mu \\
\\
-12-6 \lambda+(\lambda+2) \mu \\
\\
\mu=6, \lambda \in R
\end{array}
\end{aligned}
$$

2. A pole stands vertically inside a triangular park $A B C$. Let the angle of elevation of the top of the pole from each corner of the park be $\frac{\pi}{3}$. If the radius of the circumcircle of $\triangle A B C$ is 2 , then the height of the pole is equal to:
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{3}$
(3) $2 \sqrt{3}$
(4) $\frac{2 \sqrt{3}}{3}$

Ans. (3)

Sol.

$$
\tan 60^{\circ}=\frac{h}{2} \Rightarrow h=2 \sqrt{3}
$$

3. Let in a series of $2 n$ observations, half of them are equal to a and remaining half are equal to -a . Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20 , respectively. Then the value of $a^{2}+b^{2}$ is equal to:
(1) 250
(2) 925
(3) 650
(4) 425

Ans. (4)
Sol. Given series
(a,a,a......n times), (-a, -a, -a,......n times)
Now $\bar{x}=\frac{\sum \mathrm{x}_{\mathrm{i}}}{2 \mathrm{n}}=0$
as $x_{i} \rightarrow x_{i}+b$
then $\bar{x} \rightarrow \bar{x}+b$
So, $\bar{x}+b=5 \Rightarrow b=5$
No change in S.D. due to change in origin
$\sigma=\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{2 \mathrm{n}}-(\overline{\mathrm{x}})^{2}=\sqrt{\frac{2 \mathrm{na}^{2}}{2 \mathrm{n}}-0}$
$20=\sqrt{\mathrm{a}^{2}} \Rightarrow \mathrm{a}=20$
$a^{2}+b^{2}=425$
4. Let $g(x)=\int_{0}^{x} f(t) d t$, where f is continuous function in $[0,3]$ such that $\frac{1}{3} \leq f(t) \leq 1$ for all $t \in[0,1]$ and $0 \leq f(t) \leq \frac{1}{2}$ for all $t \in(1,3]$. The largest possible interval in which $g(3)$ lies is:
(1) $[1,3]$
(2) $\left[-1,-\frac{1}{2}\right]$
(3) $\left[-\frac{3}{2},-1\right]$
(4) $\left[\frac{1}{3}, 2\right]$

Ans. (4)
Sol. $\int_{0}^{1} \frac{1}{3} \mathrm{dt}+\int_{1}^{3} 0 . \mathrm{dt} \leq \mathrm{g}(3) \leq \int_{0}^{1} 1 . \mathrm{dt}+\int_{1}^{3} \frac{1}{2} \mathrm{dt}$
$\frac{1}{3} \leq g(3) \leq 2$
5. If $15 \sin ^{4} \alpha+10 \cos ^{4} \alpha=6$, for some $\alpha \in R$, then the value of $27 \sec ^{6} \alpha+8 \operatorname{cosec}^{6} \alpha$ is equal to:
(1) 250
(2) 500
(3) 400
(4) 350

Ans. (1)
Sol. $\quad 15 \sin ^{4} \theta+10 \cos ^{4} \theta=6$
$\Rightarrow 15 \sin ^{4} \theta+10\left(1-\sin ^{2} \theta\right)^{2}=6$
$\Rightarrow 25 \sin ^{4} \theta-20 \sin ^{2} \theta+4=0$
$\Rightarrow \quad\left(5 \sin ^{2} \theta-2\right)^{2}=0 \Rightarrow \sin ^{2} \theta=\frac{2}{5}, \cos ^{2} \theta=\frac{3}{5}$
Now $27 \operatorname{cosec}^{6} \theta+8 \sec ^{6} \theta=27\left(\frac{125}{27}\right)+8\left(\frac{125}{8}\right)=250$
6. Let $f: R-\{3\} \rightarrow R-\{1\}$ be defind by $f(x)=\frac{x-2}{x-3}$.

Let $g: R-R$ be given as $g(x)=2 x-3$. The, the sum of all the values of x for which $f^{-1}(x)+g^{-1}(x)=\frac{13}{2}$ is equal to
(1) 7
(2) 5
(3) 2
(4) 3

Ans. (2)
Sol. $\quad f^{-1}(x)+g^{-1}(x)=\frac{13}{2}$
$\Rightarrow \frac{3 x-2}{x-1}+\frac{x+3}{2}=\frac{13}{2}$
$\Rightarrow 2(3 x-2)+(x-1)(x+3)=13(x-1)$
$\Rightarrow \mathrm{x}^{2}-5 \mathrm{x}+6=0$
$\Rightarrow x=2$ or 3
7. Let S_{1} be the sum of frist $2 n$ terms of an arithmetic progression. Let S_{2} be the sum of first $4 n$ terms of the same arithmetic progression. If $\left(S_{2}-S_{1}\right)$ is 1000 , then the sum of the first $6 n$ terms of the arithmetic progression is equal to :
(1) 3000
(2) 7000
(3) 5000
(4) 1000

Ans (1)
Sol. $\quad S_{4 n}-S_{2 n}=1000$
$\Rightarrow \frac{4 \mathrm{n}}{2}(2 \mathrm{a}+(4 \mathrm{n}-1) \mathrm{d})-\frac{2 \mathrm{n}}{2}(2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d})=1000$
$\Rightarrow 2 \mathrm{an}+6 \mathrm{n}^{2} \mathrm{~d}-\mathrm{nd}=1000$
$\Rightarrow \frac{6 \mathrm{n}}{2}(2 \mathrm{a}+(6 \mathrm{n}-1) \mathrm{d})=3000$
$\therefore \mathrm{S}_{\text {6n }}=3000$
8. Let $S_{1}: x^{2}+y^{2}=9$ and $S_{2}:(x-2)^{2}+y^{2}=1$. Then the locus of center of a variable circle S which touches S_{1} internally and S_{2} externally always passes through the points:
(1) $\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)$
(2) $\left(2, \pm \frac{3}{2}\right)$
(3) $(1, \pm 2)$
(4) $(0, \pm \sqrt{3})$

Ans. (2)
Sol. $\quad C_{1}:(0,0), r_{1}=3$
$C_{2}:(2,0), r_{2}=1$
Let centre of variable circle be $C_{3}(\mathrm{~h}, \mathrm{k})$ and radius be r .

$\mathrm{C}_{3} \mathrm{C}_{1}=3-\mathrm{r}$
$\mathrm{C}_{2} \mathrm{C}_{1}=1+r$
$\mathrm{C}_{3} \mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{C}_{1}=4$
So locus is ellipse whose focii are $C_{1} \& C_{2}$
And major axis is $2 \mathrm{a}=4$ and $2 \mathrm{ae}=\mathrm{C}_{1} \mathrm{C}_{2}=2$
$\Rightarrow \quad e=\frac{1}{2}$
$\Rightarrow \quad b^{2}=4\left(1-\frac{1}{4}\right)=3$
Centre of ellipse is midpoint of $C_{1} \& C_{2}$ is $(1,0)$
Equation of ellipse is $\frac{(x-1)^{2}}{2^{2}}+\frac{y^{2}}{(\sqrt{3})^{2}}=1$
Now by cross checking the option $\left(2, \pm \frac{3}{2}\right)$ satisfied it.
9. Let the centroid of an equilateral triangle $A B C$ be at the origin. Let one of the sides of the equilateral triangle be along the straight line $x+y=3$. If R and r be the radius of circumcircle and incircle respectively of $\triangle A B C$, then $(R+r)$ is equal to
(1) $2 \sqrt{2}$
(2) $3 \sqrt{2}$
(3) $7 \sqrt{2}$
(4) $\frac{9}{\sqrt{2}}$

Ans. (4)
Sol.

$r=\left|\frac{0+0-3}{\sqrt{2}}\right|=\frac{3}{\sqrt{2}}$
$\sin 30^{\circ}=\frac{r}{R}=\frac{1}{2}$
$R=2 r$
So, $r+R=3 r=3 \times\left(\frac{3}{\sqrt{2}}\right)=\frac{9}{\sqrt{2}}$
10. In a triangle $A B C$, if $|\overrightarrow{B C}|=8,|\overrightarrow{C A}|=7,|\overrightarrow{A B}|=10$, then the projection of the vector $\overrightarrow{A B}$ on $\overrightarrow{A C}$ is equal to:
(1) $\frac{25}{4}$
(2) $\frac{85}{14}$
(3) $\frac{127}{20}$
(4) $\frac{115}{16}$

Ans. (2)
Sol.

Projection of $A B$ on $A C$ is $=A B \cos A$

$$
=10 \cos \mathrm{~A}
$$

By cosine rule

$$
\begin{aligned}
& \cos A= \frac{10^{2}+7^{2}-8^{2}}{2 \cdot 10 \cdot 7} \\
&=\frac{85}{140} \\
& \Rightarrow \quad 10 \cos A=10\left(\frac{85}{140}\right)=\frac{85}{14}
\end{aligned}
$$

11. Let in a Binomial distribution, consisting of 5 independent trials, probabilities of exactly 1 and 2 successes be 0.4096 and 0.2048 respectively. Then the probability of getting exactly 3 successes is equal to:
(1) $\frac{80}{243}$
(2) $\frac{32}{625}$
(3) $\frac{128}{625}$
(4) $\frac{40}{243}$

Ans. (2)
Sol. $\quad{ }^{5} \mathrm{C}_{1} \mathrm{p}^{1} q^{4}=0.4096 \quad \ldots(1)$
${ }^{5} C_{2} p^{2} q^{3}=0.2048$
$\frac{(1)}{(2)} \Rightarrow \frac{q}{2 p}=2 \Rightarrow q=4 p$
$p+q=1 \Rightarrow P=\frac{1}{5}, q=\frac{4}{5}$
$P($ exactly 3$)={ }^{5} C_{3}(p)^{3}(q)^{2}={ }^{5} C_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{2}$

$$
=10 \times \frac{1}{125} \times \frac{16}{25}=\frac{32}{625}
$$

12. Let \vec{a} and \vec{b} be two non-zero vectors perpendicular to each other and $|\vec{a}|=|\vec{b}|$. If $|\vec{a} \times \vec{b}|=|\vec{a}|$, then the angle between the vectors $(\vec{a}+\vec{b}+(\vec{a} \times \vec{b}))$ and \vec{a} is equal to:
(1) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(2) $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(3) $\sin ^{-1}\left(\frac{1}{\sqrt{6}}\right)$
(4) $\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Ans. (2)
Sol. Given $|\vec{a} \times \vec{b}|=|\vec{a}|=|\vec{b}|$
$\cos \theta=\frac{\vec{a}(\vec{a}+\vec{b}+(\vec{a} \times \vec{b}))}{|\vec{a}| \cdot \vec{a}+\vec{b}+\vec{a} \times \vec{b} \mid}$
Let $|\vec{a}|=a$
$\cos \theta=\frac{a^{2}+0+0}{a \times \sqrt{a^{2}+a^{2}+a^{2}}}=\frac{a^{2}}{a^{2} \sqrt{3}}=\frac{1}{\sqrt{3}}$
$\theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
13. Let a complex number be $w=1-\sqrt{3 i}$. Let another complex number z be such that $|z w|=1$ and $\arg (z)-$ $\arg (w)=\frac{\pi}{2}$. Then the area of the triangle with vertices origin, z and w is equal to:
(1) $\frac{1}{2}$
(2) 4
(3) 2
(4) $\frac{1}{4}$

Ans. (1)
Sol. $\quad w=1-\sqrt{3 i}$
$|w|=2$
$|z w|=1 \Rightarrow|z|=\frac{1}{|w|}=\frac{1}{2}$
$\arg (z)-\arg (w)=\pi / 2$

Area of $\Delta=\frac{1}{2} \cdot \frac{1}{2} \cdot 2=\frac{1}{2}$
14. The area bounded by the curver $4 y^{2}=x^{2}(4-x)(x-2)$ is equal to:
(1) $\frac{3 \pi}{2}$
(2) $\frac{\pi}{16}$
(3) $\frac{\pi}{8}$
(4) $\frac{3 \pi}{8}$

Ans. (1)
Sol. domain of $4 y^{2}=x^{2}(4-x)(x-2)$

Area of loop $=2 \times \frac{1}{2} \times \int_{2}^{4} x \sqrt{(4-x)(x-2)} d x$
Put $\quad x=4 \sin ^{2} \theta+2 \cos ^{2} \theta$

$$
d x=(8 \sin \theta \cos \theta-4 \cos \theta \sin \theta) d \theta
$$

$$
=4 \sin \theta \cos \theta d \theta
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2}\left(4 \sin ^{2} \theta+2 \cos ^{2} \theta\right) \sqrt{\left(2 \cos ^{2} \theta\right)\left(2 \sin ^{2} \theta\right)}(4 \sin \theta \cos \theta) d \theta \\
& =\int_{0}^{\pi / 2}\left(4 \sin ^{2} \theta+2 \cos ^{2} \theta\right) 8(\cos \theta \sin \theta)^{2} \\
& =\int_{0}^{\pi / 2} 32 \sin ^{4} \theta \cos ^{2} \theta d \theta+\int_{0}^{\pi / 2} 16 \sin ^{2} \theta \cos ^{4} \theta d \theta
\end{aligned}
$$

Using wallis theorm

$$
\begin{aligned}
& =32 \cdot \frac{3 \cdot 1 \cdot 1}{6 \cdot 4 \cdot 2} \frac{\pi}{2}+16 \cdot \frac{3 \cdot 1 \cdot 1 \cdot}{6 \cdot 4 \cdot 2 \cdot} \frac{\pi}{2} \\
& =\pi+\pi / 2=3 \pi / 2
\end{aligned}
$$

15. Define a relation R over a class of $n \times n$ real matrices A and B as "ARB iff there exists a non-singular matrix P such that PAP ${ }^{-1}=B^{\prime \prime}$
The which of the following is true?
(1) R is reflexive, symmetric but not transitive
(2) R is symmetric, transitive but not reflexive,
(3) R is an equivalence relation
(4) R is reflexive, transitive but not symmetic

Ans. (3)
Sol. For reflexive

$$
(B, B) \in R \Rightarrow B=P B P^{-1}
$$

Which is true for $P=1$
$\therefore \mathrm{R}$ is Reflexive
For symmetry
As $(B, A) \in R$ for matrix P
$\mathrm{B}=\mathrm{PAP}^{-1} \Rightarrow \mathrm{P}^{-1} \mathrm{~B}=\mathrm{P}^{-1} \mathrm{PAP}{ }^{-1}$
$\Rightarrow \quad P^{-1} B P=I A P^{-1} P=I A I$
$P^{-1} B P=A \Rightarrow A=P^{-1} B P$
$\therefore \quad(\mathrm{A}, \mathrm{B}) \in \mathrm{R}$ for matrix P^{-1}
$\therefore \quad \mathrm{R}$ is symmetric
For transitivity
$\mathrm{B}=\mathrm{PAP}^{-1}$ and $\mathrm{A}=\mathrm{PCP}^{-1}$
$\Rightarrow \quad B=P\left(P C P^{-1}\right) P^{-1}$
$\Rightarrow \quad B=P^{2} C\left(P^{-1}\right)^{2} \Rightarrow B=P^{2} C\left(P^{2}\right)^{-1}$
$\therefore \quad(B, C) \in R$ for matrix P^{2}
$\therefore \quad \mathrm{R}$ is transitive
So R is equivalence
16. If P and Q are two statements, then which of the following compound statement is a tautology?
(1) $\left((P \Rightarrow Q)^{\wedge} \sim Q\right) \Rightarrow P$
(2) $\left((P \Rightarrow Q)^{\wedge} \sim Q\right) \Rightarrow \sim P$
(3) $\left((P \Rightarrow Q)^{\wedge} \sim Q\right) \Rightarrow\left(P^{\wedge} Q\right)$
(4) $\left((P \Rightarrow Q)^{\wedge} \sim Q\right) \Rightarrow Q$

Ans. (2)
Sol. $\quad(P \Rightarrow Q)^{\wedge} \sim Q$
$\equiv(\sim P \vee Q)^{\wedge} \sim Q$
$\equiv(\sim P \vee \sim Q) \vee\left(Q^{\wedge} \sim Q\right)$
$\equiv \sim(P \vee Q)$
Now,
(1) $\sim(P \vee Q) \Rightarrow P$
$\equiv(P \vee Q) \vee P$
$\equiv \mathrm{P} \vee \mathrm{Q}$
(2) $\sim(P \vee Q) \Rightarrow \sim P$
$\equiv(P \vee Q) \vee \sim P$
$\equiv \mathrm{T}$

$$
\text { (3) } \quad \begin{aligned}
& \sim(P \vee Q) \Rightarrow(P \wedge Q) \\
& \equiv(P \vee Q) \vee(P \wedge Q) \\
& \equiv P \vee Q \\
(4) \quad & \sim(P \vee Q) \Rightarrow Q \\
& \equiv(P \vee Q) \vee Q \\
& \equiv P \vee Q
\end{aligned}
$$

17. Consider a hyperbola $H: x^{2}-2 y^{2}=4$. Let the tangent at a point $P(4, \sqrt{6})$ meet the x-axis at Q and latus rectum at $R\left(x_{1}, y_{1}\right), x_{1}>0$. If F is a focus of H which is nearer to the point P, then the are of $\Delta Q F R$ is equal to:
(1) $\sqrt{6}-1$
(2) $4 \sqrt{6}-1$
(3) $4 \sqrt{6}$
(4) $\frac{7}{\sqrt{6}}-2$

Ans. (4)

Sol.

Tangent at $P(4, \sqrt{6})$
$4(x)-2 \cdot \sqrt{6}(y)=4$
$\Rightarrow 2 \mathrm{x}-\sqrt{6}(\mathrm{y})=2$
For Q , put $\mathrm{y}=0$
Q(1,0)
Equation of Latus rectum:
$X=a e=2 \sqrt{\frac{3}{2}}=\sqrt{6}$
Solving (1) \& (2), we get
$R\left(\sqrt{6}, 2-\frac{2}{\sqrt{6}}\right)$

Area of $\triangle \mathrm{QFR}=\frac{1}{2} \times \mathrm{QF} \times \mathrm{FR}$

$$
\begin{aligned}
& =\frac{1}{2}(\sqrt{6}-1)\left(2-\frac{2}{\sqrt{6}}\right) \\
& =\frac{7}{\sqrt{6}}-2
\end{aligned}
$$

18. Let $f: R \rightarrow R$ be a function defined as
$f(x)=\left\{\begin{array}{cc}\frac{\sin (a+1) x+\sin 2 x}{2 x} & , \text { if } x<0 \\ b & , \text { if } x=0 \\ \frac{\sqrt{x+b x^{3}}-\sqrt{x}}{b x^{5 / 2}} & , \text { if } x>0\end{array}\right.$
If f is continuous at $x=0$, then the value of $a+b$ is equal
(1) -2
(2) $-\frac{2}{5}$
(3) $-\frac{3}{2}$
(4) -3

Ans. (3)
Sol. ' f ' is continuous at $\mathrm{x}=0$
$\Rightarrow f\left(0^{-}\right)=f(0)=f\left(0^{+}\right)$
$f\left(0^{-}\right)=\lim _{x \rightarrow 0^{-}} \frac{\sin (a+1) x+\sin 2 x}{2 x}$
$\lim _{x \rightarrow 0^{-}}\left\{\frac{\sin (a+1) x}{(a+1) x} \cdot \frac{(a+1)}{2}+\frac{\sin (2 x)}{2 x}\right\}$
$=\frac{a+1}{2}+1$
$f\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+b x^{3}}-\sqrt{x}}{b x^{5 / 2}}$
$=\lim _{x \rightarrow 0^{+}} \frac{b x^{3}}{b \cdot x^{5 / 2} \cdot\left(\sqrt{x+b x^{3}}+\sqrt{x}\right)}$
$=\lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{1+b x^{2}}+1}$

$$
\begin{equation*}
=\frac{1}{2} \tag{2}
\end{equation*}
$$

$f(0)=b$
From (1),(2) and (3)
$\therefore \frac{\mathrm{a}+1}{2}+1=\frac{1}{2}=\mathrm{b}$
$\Rightarrow a=-2 \& b=1 / 2$
Thus, $a+b=-3 / 2$
19. Let $y=y(x)$ be the solution of the differential equation $\frac{d y}{d x}=(y+1)\left((y+1) e^{x / 2}-x\right), \quad 0<x<2.1$, with $y(2)=0$. Then the value of $\frac{d y}{d x}$ at $x=1$ is equal to:
(1) $\frac{e^{5 / 2}}{\left(1+e^{2}\right)^{2}}$
(2) $\frac{5 e^{1 / 2}}{\left(e^{2}+1\right)^{2}}$
(3) $-\frac{2 \mathrm{e}^{2}}{\left(1+\mathrm{e}^{2}\right)^{2}}$
(4) $\frac{-e^{3 / 2}}{\left(e^{2}+1\right)^{2}}$

Ans. (4)
Sol.

$$
\begin{aligned}
& \frac{d y}{d x}=(y+1)\left((y+1) e^{\frac{x^{2}}{2}}-x\right) \\
\Rightarrow \quad & \frac{-1}{(y+1)^{2}} \frac{d y}{d x}-x\left(\frac{1}{y+1}\right)=-e^{\frac{x^{2}}{2}}
\end{aligned}
$$

Put, $\quad \frac{1}{y+1}=z$

$$
-\frac{1}{(y+1)^{2}} \cdot \frac{d y}{d x}=\frac{d z}{d x}
$$

$$
\therefore \quad \frac{d z}{d x}+z(-x)=-e^{\frac{x^{2}}{2}}
$$

$$
\text { I.F }=e^{\int-x d x}=e^{\frac{-x^{2}}{2}}
$$

$$
\text { z. }\left(e^{-\frac{x^{2}}{2}}\right)=-\int e^{-\frac{x^{2}}{2}} \cdot e^{\frac{x^{2}}{2}} d x=-\int 1 \cdot d x=-x+C
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{e^{-\frac{x^{2}}{2}}}{y+1}=-x+C \tag{1}
\end{equation*}
$$

Given $y=0$ at $x=2$
Put in (1)

$$
\begin{align*}
& \frac{\mathrm{e}^{-2}}{0+1}=-2+C \\
& C=e^{-2}+2 \tag{2}
\end{align*}
$$

From (1) and (2)

$$
y+1=\frac{e^{-x^{2} / 2}}{e^{-2}+2-x}
$$

Again, at $x=1$
$\Rightarrow y+1=\frac{e^{3 / 2}}{e^{2}+1}$
$\Rightarrow y+1=\frac{e^{3 / 2}}{e^{2}+1}$
$\left.\therefore \quad \frac{d y}{d x}\right|_{x=1}=\frac{e^{3 / 2}}{e^{2}+1}\left(\frac{e^{3 / 2}}{e^{2}+1} \times e^{1 / 2}-1\right)$

$$
=-\frac{e^{3 / 2}}{\left(e^{2}+1\right)^{2}}
$$

20. Let a tangent be drawn to the ellipse $\frac{x^{2}}{27}+y^{2}=1$ at $(3 \sqrt{3} \cos \theta, \sin \theta)$ where $\theta \in\left(0, \frac{\pi}{2}\right)$. Then the value of θ such that the sum of intercepts on axes made by tangent is minimum is equal to :
(1) $\frac{\pi}{8}$
(2) $\frac{\pi}{6}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{4}$

Ans. (2)
Sol.

Equation of tangent
$\frac{x}{3 \sqrt{3}} \cos \theta+y \sin \theta=1$
$A\left(\frac{3 \sqrt{3}}{\cos \theta}, 0\right), B\left(0, \frac{1}{\sin \theta}\right)$

Now sum of intercept $=\frac{3 \sqrt{3}}{\cos \theta}+\frac{1}{\sin \theta}$
Let $y=3 \sqrt{3} \sec \theta+\operatorname{cosec} \theta$
$y^{\prime}=3 \sqrt{3} \sec \theta \tan \theta-\operatorname{cosec} \theta \cot \theta$
$y^{\prime}=0 \Rightarrow \tan \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \theta=\frac{\pi}{6}$

SECTION - B

1. Let P be a plane containing the line $\frac{x-1}{3}=\frac{y+6}{4}=\frac{z+5}{2}$ and parallel to the line $\frac{x-3}{4}=\frac{y-2}{-3}=\frac{z+5}{7}$. If the point $(1,-1, \alpha)$ lies on the plane P, then the value of $|5 \alpha|$ is equal to \qquad .
Ans. (12)
Sol. DR's of normal $\vec{n} \equiv \vec{b}_{1} \times \vec{b}_{2}$
$\vec{n}=\left|\begin{array}{ccc}i & j & i \\ 3 & 4 & 2 \\ 4 & -3 & 7\end{array}\right|$
$(34,-13,-25)$
$P \equiv 34(x-1)-13(y+6)-25(z+5)=0$
$Q(1,-1, \alpha)$ lies on P.
$\Rightarrow 3(1-1)-13(-1+6)-25(\alpha+5)=0$
$\Rightarrow-25(\alpha+5)=65$
$\Rightarrow+5 \mathrm{a}=-38$
$\Rightarrow|5 \alpha|=38$
2. $\quad \sum_{r=1}^{10} r!\left(r^{3}+6 r^{2}+2 r+5\right)=\alpha(11!)$

Then the value of α is equal to \qquad .
Ans. (160)
Sol. $\quad T_{r}=r!((r+1)(r+2)(r+3)-9 r-1)$
$=(r+3)!-9 r . r!-r!$
$=(r+3)!-9(r+1-1)) r!-r!$
$=(r+3)!-9(r+1)!+8 r!$
$=\{(r+3)!-(r+1)!\}-8\{(r+1)!-r!\}$
Now, $\quad \sum_{r=1}^{10} T_{r}=\{13!+12!-3!-2!\}-8\{11!-1!\}$
$=13!+12$! -811 !
$=(13 \times 12+12-8) 11!$
$=160 \times 11$!
Thus, $\alpha=160$
3. The term independent of x in the expansion of $\left[\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right]^{10}, x \neq 1$, is equal to \qquad .
Ans. (210)
Sol. Given, $\left(\left(x^{1 / 3}+1\right)-\left(\frac{\sqrt{x}+1}{\sqrt{x}}\right)\right)^{10}=\left(x^{1 / 3}-x^{-1 / 2}\right)^{10}$
General term, $T_{r+1}={ }^{10} C_{r}\left(x^{1 / 3}\right)^{10-r}\left(-x^{-1 / 2}\right)^{r}$
For term independent of x
$\frac{10-r}{3}-\frac{r}{2}=0 \Rightarrow 20-2 r-3 r=0$
$\Rightarrow \mathrm{r}=4$
Therefore required term, $\mathrm{T}_{5}={ }^{10} \mathrm{C}_{4}=\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}=210$
4. Let ${ }^{n} C_{r}$ denote the binomial coefficient of x^{r} in the expansion of $(1+x)^{n}$. If $\sum_{k=0}^{10}\left(2^{2}+3 k\right)^{n} C_{k}=\alpha \cdot 3^{10}+\beta \cdot 2^{10}, \alpha, \beta \in R$, then $\alpha+\beta$ is equal to \qquad
Bonus
Sol. n must be equal to 10
$\sum_{k=0}^{10}\left(2^{2}+3 k\right){ }^{n} C_{k}$
$=\sum_{k=0}^{10}(4+3 k){ }^{n} C_{k}$
$=4 \sum_{k=0}^{10}{ }^{n} C_{k}+3 \sum_{k=0}^{10} k^{n} C_{k}$
$=4\left(2^{10}\right)+3 \times 10 \times 2^{9}$
$=19 \times 2^{10}$
$\therefore \alpha=0$ and $\beta=19$
Thus, $\alpha+\beta=19$
5. Let $P(x)$ be a real polynomial of degree 3 which vanishes at $x=-3$. Let $P(x)$ have local minima at $x=1$, local maxima at $x=-1$ and $\int_{-1}^{1} P(x) d x=18$, then the sum of all the coefficients of the polynomial $P(x)$ is equal to

Ans. (8)
Sol. $\quad P^{\prime}(x)=a(x+1)(x-1)$
$\therefore \mathrm{P}(\mathrm{x})=\frac{\mathrm{ax}{ }^{3}}{3}-\mathrm{ax}+\mathrm{C}$
$P(-3)=0$ (given)
$\Rightarrow \mathrm{a}(-9+3)+\mathrm{C}=0$
$\Rightarrow 6 \mathrm{a}=\mathrm{C}$
Also, $\int_{-1}^{1} P(x) d x=18 \Rightarrow \int_{-1}^{1}\left(a\left(\frac{x^{3}}{3}-x\right)+C\right) d x=18$
$\Rightarrow 0+2 \mathrm{C}=18 \Rightarrow \mathrm{C}=9$
from(i)
$a=\frac{3}{2}$
$\therefore \mathrm{P}(\mathrm{x})=\frac{\mathrm{x}^{3}}{2}-\frac{3}{2} \mathrm{x}+9$
Sum of co-efficient $=-1+9=8$
6. Let the mirror image of the point $(1,3, a)$ with respect to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})-b=0$ be $(-3,5,2)$. Then, the value of $|a+b|$ is equal to \qquad _.
Ans. (1)
Sol.

Plane: $2 x-y+z=b$
$R \equiv\left(-1,4, \frac{a+2}{2}\right) \rightarrow$ on plane
$\therefore-2-4+\frac{\mathrm{a}+2}{2}=\mathrm{b}$
$\Rightarrow a+2=2 b+12 \Rightarrow a=2 b+10$
$\mathrm{PQ}<4,-2, \mathrm{a}-2>$
$\therefore \frac{2}{4}=\frac{-1}{-2}=\frac{1}{a-2} \Rightarrow a-2=2 \Rightarrow a=4, b=-3$
$\therefore|a+b|=1$
7. If $f(x)$ and $g(x)$ are two polynomials such that the polynomial $P(x)=f\left(x^{3}\right)+x g\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then $P(1)$ is equal to \qquad _.
Ans. 0
Sol. roots of $x^{2}+x+1$ are ω and ω^{2} now
$Q(\omega)=f(1)+\omega g(1)=0$
$Q\left(\omega^{2}\right)=f(1)+\omega^{2} g(1)=0$
Adding (1) and (2)
$\Rightarrow 2 f(1)-\mathrm{g}(1)=0$
$\Rightarrow g(1)=2 f(1)$
$\Rightarrow f(1)=g(1)=0$
Therefore, $Q(1)=f(1)+g(1)=0+0=0$
8. Let I be an identity matrix of order 2×2 and $P=\left[\begin{array}{ll}2 & -1 \\ 5 & -3\end{array}\right]$. Then the value of $n \in N$ for which $P^{n}=5 I-8 P$ is equal to \qquad _.
Ans. (6)
Sol. $\quad P^{2}=\left[\begin{array}{ll}2 & -1 \\ 5 & -3\end{array}\right]\left[\begin{array}{ll}2 & -1 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}-1 & 1 \\ -5 & 4\end{array}\right]$
$P^{4}=\left[\begin{array}{ll}-1 & 1 \\ -5 & 4\end{array}\right]\left[\begin{array}{ll}-1 & 1 \\ -5 & 4\end{array}\right]=\left[\begin{array}{cc}-4 & 3 \\ -15 & 11\end{array}\right]$
$P^{6}=\left[\begin{array}{cc}-4 & 3 \\ -15 & 11\end{array}\right]\left[\begin{array}{ll}-1 & 1 \\ -5 & 4\end{array}\right]=\left[\begin{array}{cc}-11 & 8 \\ -40 & 29\end{array}\right]$
and $5 I-8 P=\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]-8\left[\begin{array}{cc}2 & -1 \\ 5 & -3\end{array}\right]=\left[\begin{array}{cc}-11 & 8 \\ -40 & 29\end{array}\right]$
$\Rightarrow P^{6}=5 I-8 P$
Thus, $\mathrm{n}=6$
9. Let $f: R \rightarrow R$ satisfy the equation $f(x+y)=f(x) . f(y)$ for all $x, y \in R$ and $f(x) \neq 0$ for any $x \in R$. If the function f is differentiable at $x=0$ and $f^{\prime}(0)=3$, then $\lim _{h \rightarrow 0} \frac{1}{h}(f(h)-1)$ is equal to \qquad _.

Ans. (3)
Sol. $\quad f(x+y)=f(x) \cdot f(y)$ then
$\Rightarrow \quad \mathrm{f}(\mathrm{x})=\mathrm{a}^{\mathrm{x}}$
$\Rightarrow \quad f^{\prime}(x)=a^{x} \ell n a$
$\Rightarrow \quad f^{\prime}(0)=\ell \cap \mathrm{na}=3\left(\right.$ given $\left.\mathrm{f}^{\prime}(0)=3\right)$
$\Rightarrow \quad a=e^{3}$
$\therefore \quad f(x)=\left(e^{3}\right)^{x}=e^{3 x}$
Now, $\quad \lim _{h \rightarrow 0} \frac{f(h)-1}{h}=\lim _{h \rightarrow 0}\left(\frac{e^{3 h}-1}{3 h} \times 3\right)=1 \times 3=3$
10. Let $y=y(x)$ be the solution of the differential equation $x d y-y d x=\sqrt{\left(x^{2}-y^{2}\right)} d x, x \geq 1$, with $y(1)=0$. If the area bounded by the line $x=1, x=e^{\pi}, y=0$ and $y=y(x)$ is $\alpha e^{2 \pi}+b$, then the value of $10(\alpha+\beta)$ is equal to

Ans. (4)

Sol. $x d y-y d x=\sqrt{x^{2}-y^{2}} d x \Rightarrow \frac{x d y-y d x}{x^{2}}=\frac{1}{x} \sqrt{1-\frac{y^{2}}{x^{2}}} d x \Rightarrow \int \frac{d\left(\frac{x}{y}\right)}{\sqrt{1-\left(\frac{y}{x}\right)^{2}}}=\int \frac{d x}{x}$
$\Rightarrow \quad \sin ^{-1}\left(\frac{y}{x}\right)=\ln |x|+c$
At $x=1, y=0 \Rightarrow c=0$
$y=x \sin (\ell n x)$
$A=\int_{1}^{e^{\pi}} x \sin (\ell n x) d x$
$x=e^{t}, d x=e^{t} d t=\int_{0}^{\pi} e^{2 t} \sin (t) d t$
$\alpha \mathrm{e}^{2 \pi}+\beta=\left(\frac{\mathrm{e}^{2 t}}{5}(2 \sin \mathrm{t}-\cos \mathrm{t})\right)_{0}^{\pi}=\frac{1+\mathrm{e}^{2 \pi}}{5}$
$\alpha=\frac{1}{5}, \beta=\frac{1}{5}$
Thus, $10(\alpha+\beta)=4$

