MATHEMATICS
 JEE-MAIN (MARCH-Attempt) 16 MARCH
 (Shift-1) Paper

SECTION - A

1. Consider three observations a, b and c such that $b=a+c$. If the standard deviation of $a+2$, $b+2, c+2$ is d, then which of the following is true?
(1) $b^{2}=a^{2}+c^{2}+3 d^{2}$
(2) $b^{2}=3\left(a^{2}+c^{2}\right)-9 d^{2}$
(3) $b^{2}=3\left(a^{2}+c^{2}\right)+9 d^{2}$
(4) $b^{2}=3\left(a^{2}+c^{2}+d^{2}\right)$

Ans. (2)
Sol. for a, b, c
mean $=\bar{x}=\frac{a+b+c}{3}$
$\bar{x}=\frac{2 b}{3}$
S.D. of $a, b, c=d$
$d^{2}=\frac{a^{2}+b^{2}+c^{2}}{3}-\frac{4 b^{2}}{9}$
$b^{2}=3 a^{2}+3 c^{2}-9 d^{2}$
2. Let a vector $\alpha \hat{i}+\beta \hat{j}$ be obtained by rotating the vector $\sqrt{3} \hat{i}+\hat{j}$ by an angle 45° about the origin in counter clockwise direction in the first quadrant. Then the area of triangle having vertices (α, β), $(0, \beta)$ and $(0,0)$ is equal to :
(1) 1
(2) $\frac{1}{2}$
(3) $\frac{1}{\sqrt{2}}$
(4) $2 \sqrt{2}$

Ans. (2)

Sol.

$(\alpha, \beta) \equiv\left(2 \cos 75^{\circ}, 2 \sin 75^{\circ}\right)$
Area $=\frac{1}{2}\left(2 \cos 75^{\circ}\right)\left(2 \sin 75^{\circ}\right)$
$=\sin \left(150^{\circ}\right)=\frac{1}{2}$ square unit
3. If for $a>0$, the feet of perpendiculars from the points $A(a,-2 a, 3)$ and $B(0,4,5)$ on the plane $I x$ $+m y+n z=0$ are points $C(0,-a,-1)$ and D respectively, then the length of line segment $C D$ is equal to :
(1) $\sqrt{41}$
(2) $\sqrt{55}$
(3) $\sqrt{31}$
(4) $\sqrt{66}$

Ans. (4)

Sol.

$C D=A R=|A B| \sin \phi$
$C D=|A B| \sqrt{1-\cos ^{2} \phi}$
$|A B| \sqrt{1-\left(\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{n}}}{|\overrightarrow{\mathrm{AB}}|}\right)^{2}}$
$=\sqrt{(\mathrm{AB})^{2}-(\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{n}})^{2}}$
$\operatorname{Cos} \phi=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{n}}}{|\overrightarrow{\mathrm{n}}||\overrightarrow{\mathrm{AB}}|}$
$|\overrightarrow{\mathrm{AB}}|=a \hat{i}-(2 \mathrm{a}+4) \hat{j}-2 \hat{k}$
$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{n}}=\ell \mathrm{a}-(2 \mathrm{a}+4)-2 \mathrm{n}$
C on plane
$0 \ell-\mathrm{am}-\mathrm{n}=0$
$\overrightarrow{\mathrm{AC}} \| \overrightarrow{\mathrm{n}}$
$\frac{\mathrm{a}}{\ell}=\frac{-\mathrm{a}}{\mathrm{m}}=\frac{4}{\mathrm{n}}$
$\mathrm{m}=-\ell \& \mathrm{an}+4 \mathrm{~m}=0$
From (1) and (2)
$a^{2} m+a n=0$
$4 \mathrm{~m}+\mathrm{an}=0$
$\left(a^{2}-4\right) m=0 \Rightarrow a=2$.
$2 \mathrm{~m}+\mathrm{n}=0$
$\mathrm{m}+\ell=0$
$\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
$\mathrm{m}^{2}+\mathrm{m}^{2}+4 \mathrm{~m}^{2}=1$
$\mathrm{m}^{2}=\frac{1}{6}$
$m=\frac{1}{\sqrt{6}}$
$n=\frac{-2}{\sqrt{6}}$
$\ell=\frac{-1}{\sqrt{6}}$
Now $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{n}}=2\left(\frac{-1}{\sqrt{6}}\right)-8\left(\frac{1}{\sqrt{6}}\right)-2\left(\frac{-2}{\sqrt{6}}\right)$

$$
=\frac{-2-8+4}{\sqrt{6}}=-\sqrt{6}
$$

$|\overrightarrow{\mathrm{AB}}|=\sqrt{4+64+4}=\sqrt{72}$
$C D=\sqrt{72-6}$
$C D=\sqrt{66}$
4. The range of $a \in R$ for which the function
$f(x)=(4 a-3)\left(x+\log _{e} 5\right)+2(a-7) \cot \left(\frac{x}{2}\right) \sin ^{2}\left(\frac{x}{2}\right), x \neq 2 n \pi, n \in N$ has critical points, is :
(1) $\left[-\frac{4}{3}, 2\right]$
(2) $[1, \infty)$
(3) $(-\infty,-1]$
(4) $(-3,1)$

Ans. (1)
Sol. $f(x)=(4 a-3)(x+\ln 5)+2(a-7)\left(\frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} \cdot \sin ^{2} \frac{x}{2}\right)$
$f(x)=(4 a-3)(x+\ln 5)+(a-7) \sin x$
$f^{\prime}(x)=(4 a-3)+(a-7) \cos x=0$
$\cos x=\frac{-(4 a-3)}{a-7}$
$-1 \leq-\frac{4 a-3}{a-7} \leq 1$
$-1 \leq \frac{4 a-3}{a-7} \leq 1$
$\frac{4 a-3}{a-7}-1 \leq 0$ and $\frac{4 a-3}{a-7}+1 \geq 0$
$\Rightarrow \frac{-4}{3} \leq \mathrm{a} \leq 2$
5. Let the functions $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined as:
$f(x)=\left\{\begin{array}{cc}x+2, & x<0 \\ x^{2}, & x \geq 0\end{array}\right.$ and $g(x)=\left\{\begin{array}{cc}x^{3}, & x<1 \\ 3 x-2, & x \geq 1\end{array}\right.$
Then, the number of points in R where $(f \circ g)(x)$ is NOT differentiable is equal to :
(1) 1
(2) 2
(3) 3
(4) 0

Ans. (1)
Sol. $\quad f \circ g(x)=\left\{\begin{array}{cc}x^{3}+2, & x \leq 0 \\ x^{6}, & 0 \leq x \leq 1 \\ (3 x-2)^{2}, & x \geq 1\end{array}\right.$
$\because f o g(x)$ is discontinuous at $x=0$ then non-differentiable at $x=0$
Now,
at $x=1$
$R H D=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{(3(1+h)-2)^{2}-1}{h}=6$
LHD $=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}=\lim _{h \rightarrow 0} \frac{(1-h)^{6}-1}{-h}=6$
Number of points of non-differentiability $=1$
6. Let a complex number $z,|z| \neq 1$, satisfy $\log _{\frac{1}{\sqrt{2}}}\left(\frac{|z|+11}{(|z|-1)^{2}}\right) \leq 2$. Then, the largest value of $|z|$ is equal to \qquad
(1) 5
(2) 8
(3) 6
(4) 7

Ans. (4)
Sol. $\frac{|z|+11}{(|z|-1)^{2}} \geq \frac{1}{2}$
$2|z|+22 \geq(|z|-1)^{2}$
$2|z|+22 \geq|z|^{2}-2|z|+1$
$|z|^{2}-4|z|-21 \leq 0$
$(|z|-7)(|z|+3) \leq 0$
$\Rightarrow|z| \leq 7$
$\therefore|z|_{\text {max }}=7$
7. A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is :
(1) $\frac{3}{4}$
(2) $\frac{52}{867}$
(3) $\frac{39}{50}$
(4) $\frac{22}{425}$

Ans. (3)
Sol. $P\left(\bar{S}_{\text {missing }} /\right.$ both found spade $)=\frac{P\left(\overline{S_{m}} \cap B F S\right)}{P(B F S)}$
$=\frac{\left(1-\frac{13}{52}\right) \times \frac{13}{51} \times \frac{12}{50}}{\left(1-\frac{13}{52}\right) \times \frac{13}{51} \times \frac{12}{50}+\frac{13}{52} \times \frac{12}{51} \times \frac{11}{50}}$
$=\frac{39}{50}$
8. If n is the number of irrational terms in the expansion of $\left(3^{\frac{1}{4}}+5^{\frac{1}{8}}\right)^{60}$, then $(\mathrm{n}-1)$ is divisible by :
(1) 8
(2) 26
(3) 7
(4) 30

Ans. (2)
Sol. $\quad T_{r+1}={ }^{60} C_{r}\left(3^{1 / 4}\right)^{60-r}\left(5^{1 / 8}\right)^{r}$
rational if $\frac{60-r}{4}, \frac{r}{8}$, both are whole numbers, $r \in\{0,1,2, \ldots . .60\}$
$\frac{60-r}{4} \in W \Rightarrow r \in\{0,4,8, \ldots 60\}$
and $\frac{r}{8} \in W \Rightarrow r \in\{0,8,16, . .56\}$
\therefore Common terms $r \in\{0,8,16, \ldots .56\}$
So 8 terms are rational
Then Irrational terms $=61-8=53=n$
$\therefore \mathrm{n}-1=52=13 \times 2^{2}$
factors $1,2,4,13,26,52$
9. Let the position vectors of two points P and Q be $3 \hat{i}-\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}-4 \hat{k}$, respectively. Let R and S be two points such that the direction ratios of lines $P R$ and $Q S$ are $(4,-1,2)$ and $(-2,1,-$ 2) respectively. Let lines $P R$ and $Q S$ intersect at T. If the vector $\overrightarrow{T A}$ is perpendicular to both $\overrightarrow{P R}$ and $\overline{\mathrm{QS}}$ and the length of vector $\overrightarrow{\mathrm{TA}}$ is $\sqrt{5}$ units, then the modulus of a position vector of A is :
(1) $\sqrt{5}$
(2) $\sqrt{171}$
(3) $\sqrt{227}$
(4) $\sqrt{482}$

Ans. (2)
Sol. $\vec{p}=3 \hat{i}-\hat{j}+2 \hat{k} \& \vec{\theta}=\hat{i}+2 \hat{j}-4 \hat{k}$
$\overrightarrow{\mathrm{v}}_{\mathrm{PR}}=\langle 4,-1,2\rangle \& \overrightarrow{\mathrm{v}}_{\mathrm{QS}}=\langle-2,1,-2\rangle$

$L_{P R}: \vec{r}=(3 \hat{i}-\hat{j}+2 \hat{k})+\lambda\langle 4,-1,2\rangle$
$\mathrm{L}_{\mathrm{QS}}: \overrightarrow{\mathrm{r}}=\langle\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{k}\rangle+\mu\langle-2,1,-2\rangle$
Now T on PR $=\langle 3+4 \lambda,-1-\lambda, 2+2 \lambda\rangle$
Similarly T on QS $=\langle 1-2 \mu, 2+\mu,-4-2 \mu\rangle$
For $\left.\lambda \& \mu: \begin{array}{l}3+4 \lambda=1-2 \mu \Rightarrow \mu+2 \lambda=-1 \\ -1-\lambda=2+\mu \Rightarrow \mu+\lambda=-3\end{array}\right\} \begin{aligned} & \lambda=2 \\ & \mu=-5\end{aligned}$
$2+2 \lambda=-4-2 \mu$
$\Rightarrow \mathrm{T}:\langle 11,-3,6\rangle$
D.R. of $T A=\vec{v}_{Q S} \times \vec{v}_{P R}$
$=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & -2 \\ 4 & -1 & 2\end{array}\right|=0 \hat{i}-4 \hat{j}-2 \hat{k}$
$L_{T A}: \vec{r}=(11 \hat{i}-3 \hat{j}+6 \hat{k})+\lambda\langle-4 \hat{j}-2 \hat{k}\rangle$
Now $A=\langle 11,-3-4 \lambda, 6-2 \lambda\rangle$
$T A=\sqrt{5}$
$(-3+4 \lambda+3)^{2}+(6+2 \lambda-6)^{2}=5$
$16 \lambda^{2}+4 \lambda^{2}=5$
$20 \lambda^{2}=5$
$\lambda= \pm \frac{1}{2}$
A: (11, -3-2, 6-1)
A: $(11,-3+2,6+1)$
$|A|=\sqrt{121+25+25} ; \quad|A|=\sqrt{121+1+49}$
$=\sqrt{171}$
$\sqrt{171}$
10. If the three normals drawn to the parabola, $y^{2}=2 x$ pass through the point $(a, 0) a \neq 0$, then ' a ' must be greater than:
(1) 1
(2) $\frac{1}{2}$
(3) $-\frac{1}{2}$
(4) -1

Ans. (1)
Sol. Let the equation of the normal is
$y=m x-2 a m-a m^{3}$
here $4 a=2 \Rightarrow a=\frac{1}{2}$
$y=m x-m-\frac{1}{2} m^{3}$
It passing through $A(a, 0)$ then
$0=a m-m-\frac{1}{2} m^{3}$
$m=0, a-1-\frac{1}{2} m^{2}=0$
$m^{2}=2(a-1)>0$
$\therefore \mathrm{a}>1$
11. Let $S_{k}=\sum_{r=1}^{k} \tan ^{-1}\left(\frac{6^{r}}{2^{2 r+1}+3^{2 r+1}}\right)$. Then $\lim _{k \rightarrow \infty} S_{k}$ is equal to :
(1) $\tan ^{-1}\left(\frac{3}{2}\right)$
(2) $\cot ^{-1}\left(\frac{3}{2}\right)$
(3) $\frac{\pi}{2}$
(4) $\tan ^{-1}(3)$

Ans. (2)
Sol. $\sum_{r=1}^{\infty} \tan ^{-1}\left(\frac{6^{r}(3-2)}{\left(1+\left(\frac{3}{2}\right)^{2 r+1}\right) 2^{2 r+1}}\right)$
$\sum_{r=1}^{\infty} \tan ^{-1}\left(\frac{2^{r} \cdot 3^{r+1}-3^{r} 2^{r+1}}{\left(1+\left(\frac{3}{2}\right)^{2 r+1}\right) 2^{2 r+1}}\right)$
$\sum_{r=1}^{\infty} \tan ^{-1}\left(\frac{\left(\frac{3}{2}\right)^{r+1}-\left(\frac{3}{2}\right)^{r}}{1+\left(\frac{3}{2}\right)^{r+1}\left(\frac{3}{2}\right)^{r}}\right)=\sum_{r=1}^{\infty}\left[\tan ^{-1}\left(\frac{3}{2}\right)^{r+1}-\tan ^{-1}\left(\frac{3}{2}\right)^{r}\right]=\frac{\pi}{2}-\tan ^{-1} \frac{3}{2}=\cot ^{-1} \frac{3}{2}$
12. The number of roots of the equation, $(81)^{\sin ^{2} x}+(81)^{\cos ^{2} x}=30$ in the interval $[0, \pi]$ is equal to :
(1) 3
(2) 2
(3) 4
(4) 8

Ans. (3)
Sol. $\quad(81)^{\sin ^{2} x}+(81)^{1-\sin ^{2} x}=30$
$(81)^{\sin ^{2} x}+\frac{81}{(81)^{\sin ^{2} x}}=30$
Let $(81)^{\sin ^{2} x}=t$
$\mathrm{t}+\frac{81}{\mathrm{t}}=30 \Rightarrow \mathrm{t}^{2}+81=30 \mathrm{t}$
$t^{2}-30 t+81=0$
$t^{2}-27 t-3 t+81=0$
$(t-3)(t-27)=0$
$t=3,27$
$(81)^{\sin ^{2} x}=3,3^{3}$
$3^{4 \sin ^{2} x}=3^{1}, 3^{3}$
$4 \sin ^{2} x=1,3$
$\sin ^{2} x=\frac{1}{4}, \frac{3}{4}$
$\operatorname{in}[0, \pi] \sin x>0$
$\sin x=\frac{1}{2}, \frac{\sqrt{3}}{2}$
$x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{\pi}{3}, \frac{2 \pi}{3}$
Number of solution $=4$
13. If $y=y(x)$ is the solution of the differential equation, $\frac{d y}{d x}+2 y \tan x=\sin x, y\left(\frac{\pi}{3}\right)=0$, then the maximum value of the function $y(x)$ over R is equal to :
(1) 8
(2) $\frac{1}{2}$
(3) $-\frac{15}{4}$
(4) $\frac{1}{8}$

Ans. (4)
Sol. $\frac{d y}{d x}+2 \tan x \cdot y=\sin x$
I.F. $=e^{2 \ell n(\sec x)}=\sec ^{2} x$
$y \cdot \sec ^{2} x=\int \sin x \sec ^{2} x d x=\int \tan x \sec x d x+c$
$y \sec ^{2} x=\sec x+c$
$y=\cos x+c \cos ^{2} x$
$x=\frac{\pi}{3}, y=0$
$\Rightarrow \frac{1}{2}+\frac{c}{4} \Rightarrow c=-2$
$\therefore \mathrm{y}=\cos \mathrm{x}-2 \cos ^{2} \mathrm{x}$
$y=-2\left(\cos ^{2} x-\frac{1}{2} \cos x\right)=-2\left(\left(\cos x-\frac{1}{4}\right)^{2}-\frac{1}{16}\right)$
$y=\frac{1}{8}-2\left(\cos x-\frac{1}{4}\right)^{2}$
$\therefore \quad y_{\text {max }}=\frac{1}{8}$
14. Which of the following Boolean expression is a tautology?
(1) $(p \wedge q) \wedge(p \rightarrow q)$
(2) $(p \wedge q) \vee(p \vee q)$
(3) $(p \wedge q) \vee(p \rightarrow q)$
(4) $(p \wedge q) \rightarrow(p \rightarrow q)$

Ans. (4)
Sol. $\quad p \quad q \quad p \wedge q \quad p \vee q \quad p \rightarrow q \quad(p \wedge q) \rightarrow(p \rightarrow q)$

T	T	T	T	T	T
F	T	F	T	T	T
T	F	F	T	F	T
F	F	F	F	T	T

15. Let $A=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right], i=\sqrt{-1}$. Then, the system of linear equations $A^{8}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}8 \\ 64\end{array}\right]$ has :
(1) No solution
(2) Exactly two solutions
(3) A unique solution
(4) Infinitely many solutions

Ans. (1)
Sol. $\quad A=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right]\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right]=\left[\begin{array}{cc}-2 & 2 \\ 2 & -2\end{array}\right]=2\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$
$A^{4}=4\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]=4\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]=8\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
$A^{8}=64\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=64\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]=128\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
$128\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}8 \\ 64\end{array}\right]$
$128\left[\begin{array}{c}x-y \\ -x+y\end{array}\right]=\left[\begin{array}{l}8 \\ 64\end{array}\right] \Rightarrow 128(x-y)=8$
$\Rightarrow \mathrm{x}-\mathrm{y}=\frac{1}{16}$.
and $128(-x+y)=64 \Rightarrow x-y=\frac{-1}{2}$
\Rightarrow no solution (from eq. (1) \& (2))
16. If for $x \in\left(0, \frac{\pi}{2}\right), \log _{10} \sin x+\log _{10} \cos x=-1$ and $\log _{10}(\sin x+\cos x)=\frac{1}{2}\left(\log _{10} n-1\right), n>0$, then the value of n is equal to :
(1) 16
(2) 20
(3) 12
(4) 9

Ans. (3)
Sol. $\log _{10}(\sin x)+\log _{10}(\cos x)=-1$
$\sin x \cos x=\frac{1}{10}$
and $\log _{10}(\sin x+\cos x)=\frac{1}{2}\left(\log _{10} n-1\right)$
$\Rightarrow \sin x+\cos x=\left(\frac{n}{10}\right)^{\frac{1}{2}}$
$\Rightarrow \sin ^{2} x+\cos ^{2} x+2 \sin x \cos x=\frac{n}{10}$ (squaring)
$\Rightarrow 1+2\left(\frac{1}{10}\right)=\frac{\mathrm{n}}{10}$ (using equation $\left.(1)\right)$
$\Rightarrow \frac{\mathrm{n}}{10}=\frac{12}{10} \Rightarrow \mathrm{n}=12$
17. The locus of the midpoints of the chord of the circle, $x^{2}+y^{2}=25$ which is tangent to the hyperbola, $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ is :
(1) $\left(x^{2}+y^{2}\right)^{2}-16 x^{2}+9 y^{2}=0$
(2) $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+144 y^{2}=0$
(3) $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}-16 y^{2}=0$
(4) $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+16 y^{2}=0$

Ans. (4)
Sol. tangent of hyperbola
$y=m x \pm \sqrt{9 m^{2}-16}$
which is a chord of circle with mid-point (h, k)
so equation of chord $T=S_{1}$
$h x+k y=h^{2}+k^{2}$
$y=-\frac{h x}{k}+\frac{h^{2}+k^{2}}{k}$
by (i) and (ii)
$m=-\frac{h}{k}$ and $\sqrt{9 m^{2}-16}=\frac{h^{2}+k^{2}}{k}$
$9 \frac{h^{2}}{k^{2}}-16=\frac{\left(h^{2}+k^{2}\right)^{2}}{k^{2}}$
locus $9 x^{2}-16 y^{2}=\left(x^{2}+y^{2}\right)^{2}$
18. Let $[x]$ denote greatest integer less than or equal to x. If for $n \in N,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, then $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ is equal to :
(1) 1
(2) n
(3) 2^{n-1}
(4) 2

Ans. (1)
Sol. $\quad\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$
$\left(1-x+x^{3}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .+a_{3 n} x^{3 n}$
Put $x=1$
$1=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+\ldots . .+a_{3 n}$
Put $x=-1$
$1=a_{0}-a_{1}+a_{2}-a_{3}+a_{4} \ldots \ldots(-1)^{3 n} a_{3 n}$
Add (1) $+(2)$
$\Rightarrow a_{0}+a_{2}+a_{4}+a_{6}+\ldots \ldots=1$
Sub (1) - (2)
$\Rightarrow a_{1}+a_{3}+a_{5}+a_{7}+\ldots \ldots=0$
Now $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$
$=\left(a_{0}+a_{2}+a_{4}+\ldots.\right)+4\left(a_{1}+a_{3}+\ldots\right)$
$=1+4 \times 0$
$=1$
19. Let P be a plane $I x+m y+n z=0$ containing the line, $\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$. If plane P divides the line segment $A B$ joining points $A(-3,-6,1)$ and $B(2,4,-3)$ in ratio k : 1 then the value of k is equal to :
(1) 1.5
(2) 2
(3) 4
(4) 3

Ans. (2)

Line lies on plane
$-\ell+2 m+3 n=0$
Point on line $(1,-4,-2)$ lies on plane
$\ell-4 m-2 n=0$
from (1) \& (2)
$-2 \mathrm{~m}+\mathrm{n}=0 \Rightarrow 2 \mathrm{~m}=\mathrm{n}$
$\ell=3 n+2 m \Rightarrow \ell=4 n$
$\ell: m: n:: 4 n: \frac{n}{2}: n$
$\ell: m: n:: 8 n: n: 2 n$
$\ell: m: n:: 8: 1: 2$
Now equation of plane is $8 x+y+2 z=0$
R divide $A B$ is ratio k : 1
$R:\left(\frac{-3+2 k}{k+1}, \frac{-6+4 k}{k+1}, \frac{1-3 k}{k+1}\right)$ lies on plane
$8\left(\frac{-3+2 k}{k+1}\right)+\left(\frac{-6+4 k}{k+1}\right)+2\left(\frac{1-3 k}{k+1}\right)=0$
$-24+16 k-6+4 k+2-6 k=0$
$-28+14 k=0$
$\mathrm{k}=2$
20. The number of elements in the set $\{x \in R:(|x|-3)|x+4|=6\}$ is equal to :
(1) 2
(2) 1
(3) 3
(4) 4

Ans. (1)
Sol. Case- $1 x \leq-4$
$(-x-3)(-x-4)=6$
$\Rightarrow(x+3)(x+4)=6$
$\Rightarrow x^{2}+7 x+6=0$
$\Rightarrow x=-1$ or -6
but $x \leq-4$
$x=-6$
Case-2 $x \in(-4,0)$
$(-x-3)(x+4)=6$
$\Rightarrow-x^{2}-7 x-12-6=0$
$\Rightarrow x^{2}+7 x+18=0$
D <0 No solution
Case-3 $x \geq 0$
$(x-3)(x+4)=6$
$\Rightarrow x^{2}+x-12-6=0$
$\Rightarrow x^{2}+x-18=0$
$x=\frac{-1 \pm \sqrt{1+72}}{2}$
$\therefore x=\frac{\sqrt{73}-1}{2}$ only

SECTION - B

1. Let $f:(0,2) \rightarrow R$ be defined as $f(x)=\log _{2}\left(1+\tan \left(\frac{\pi x}{4}\right)\right)$. Then, $\lim _{n \rightarrow \infty} \frac{2}{n}\left(f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\ldots+f(1)\right)$ is equal to
Ans. (1)
Sol. $E=2 \lim _{x \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n} f\left(\frac{r}{n}\right)$
$\mathrm{E}=\frac{2}{\ln 2} \int_{0}^{1} \ln \left(1+\tan \frac{\pi \mathrm{x}}{4}\right) \mathrm{dx}$
replacing $x \rightarrow 1-x$
$E=\frac{2}{\ln 2} \int_{0}^{1} \ln \left(1+\tan \frac{\pi}{4}(1-x)\right) d x$
$E=\frac{2}{\ell n 2} \int_{0}^{1} \ell n\left(1+\tan \left(\frac{\pi}{4}-\frac{\pi}{4} x\right)\right) d x$
$E=\frac{2}{\ell n 2} \int_{0}^{1} \ell n\left(1+\frac{1-\tan \frac{\pi}{4} x}{1+\tan \frac{\pi}{4} x}\right) d x$
$E=\frac{2}{\ell n 2} \int_{0}^{1} \ell n\left(\frac{2}{1+\tan \frac{\pi x}{4}}\right) d x$
$E=\frac{2}{\ell n 2} \int_{0}^{1}\left(\ell \operatorname{n} 2-\ell n\left(1+\tan \frac{\pi x}{4}\right)\right) d x$
equation (i) + (ii)
$\mathrm{E}=1$
2. The total number of 3×3 matrices A having entries from the set $\{0,1,2,3\}$ such that the sum of all the diagonal entries of $A A^{\top}$ is 9 , is equal to \qquad
Ans. (766)
Sol. $\quad A A^{\top}=\left[\begin{array}{lll}x & y & z \\ a & b & c \\ d & e & f\end{array}\right]\left[\begin{array}{lll}x & a & d \\ y & b & e \\ z & c & f\end{array}\right]$
$=\left[\begin{array}{lll}x^{2}+y^{2}+z^{2} & a x+b y+c z & d x+e y+f z \\ a x+b y+c z & a^{2}+b^{2}+c^{2} & a d+b e+c f \\ d x+e y+f z & a d+b e+c f & d^{2}+e^{2}+f^{2}\end{array}\right]$
$\operatorname{Tr}\left(A A^{\top}\right)=x^{2}+y^{2}+z^{2}+a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}=9$
all $\rightarrow 1$
1
one 3 , rest $=0$
$\frac{9!}{8!}=9$
two 2 , one $1 \&$ rest 0

$$
\frac{9!}{2!6!}=63 \times 4=252
$$

one 2 , five 1 , rest 0
$\frac{9!}{5!3!}=63 \times 8=504$

$$
=766
$$

3. Let $f: R \rightarrow R$ be a continuous function such that $f(x)+f(x+1)=2$, for all $x \in R$. If $I_{1}=\int_{0}^{8} f(x) d x$ and $I_{2}=\int_{-1}^{3} f(x) d x$, then the value of $I_{1}+2 I_{2}$ is equal to \qquad
Ans. (16)
Sol. $f(x)+f(x+1)=2 \ldots$. (i)
$x \rightarrow(x+1)$
$f(x+1)+f(x+2)=2$
by (i) \& (ii)
$f(x)-f(x+2)=0$
$f(x+2)=f(x)$
$f(x)$ is periodic with $T=2$
$I_{1}=\int_{0}^{2 \times 4} f(x) d x=4 \int_{0}^{2} f(x) d x$
$I_{2}=\int_{-1}^{3} f(x) d x=\int_{0}^{4} f(x+1) d x=\int_{0}^{4}(2-f(x)) d x$
$I_{2}=8-2 \int_{0}^{2} f(x) d x$
$I_{1}+2 I_{2}=16$
4. Consider an arithmetic series and a geometric series having four initial terms from the set $\{11,8,21,16,26,32,4\}$. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to \qquad
Ans. (3)
Sol. AP - 11, 16, 21, $26 \ldots .$.
GP - 4, 8, 16, 32
So common terms are 16, 256, 4096
5. If the normal to the curve $y(x)=\int_{0}^{x}\left(2 t^{2}-15 t+10\right) d t$ at a point (a, b) is parallel to the line $x+3 y$ $=-5, a>1$, then the value of $|a+6 b|$ is equal to \qquad

Ans. (406)

Sol. $y^{\prime}(x)=\left(2 x^{2}-15 x+10\right)$
at point P
$3=\left(2 a^{2}-15 a+10\right)$
$\Rightarrow 2 a^{2}-15 a+7=0$
$\Rightarrow 2 a^{2}-14 a-a+7=0$
$\Rightarrow 2 a(a-7)-1(a-7)=0$
$a=\frac{1}{2}$ or 7 ,
given $\mathrm{a}>1 \therefore \mathrm{a}=7$
also P lies on curve
$\therefore \mathrm{b}=\int_{0}^{\mathrm{a}}\left(2 \mathrm{t}^{2}-15 \mathrm{t}+10\right) \mathrm{dt}$
$\mathrm{b}=\int_{0}^{7}\left(2 \mathrm{t}^{2}-15 \mathrm{t}+10\right) \mathrm{dt}$
$6 b=-413$
$\therefore|a+6 b|=406$
6. If $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then $a+b+c$ is equal to \qquad
Ans. (4)
Sol. $\lim _{x \rightarrow 0} \frac{\left\{a\left(1+x+\frac{x^{2}}{2!}+\ldots\right)-b\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \ldots\right)+c\left(1-x+\frac{x^{2}}{2!} \ldots\right)\right\}}{x\left(x-\frac{x^{3}}{3!}+\ldots\right)}=2$
$\therefore \lim _{x \rightarrow 0} \frac{(a-b+c)+x(a-c)+x^{2}\left(\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)+\ldots}{x^{2}\left(1-\frac{x^{2}}{6} \cdots\right)}=2$
$\therefore a-b+c=0$
$\& a-c=0$
$\& \frac{a}{2}+\frac{b}{2}+\frac{c}{2}=2$
$\Rightarrow a+b+c=4$
7. Let $A B C D$ be a square of side of unit length. Let a circle C_{1} centered at A with unit radius is drawn. Another circle C_{2} which touches C_{1} and the lines $A D$ and $A B$ are tangent to it, is also drawn. Let a tangent line from the point C to the circle C_{2} meet the side $A B$ at E. If the length of EB is $\alpha+\sqrt{3} \beta$, where α, β are integers, then $\alpha+\beta$ is equal to \qquad
Ans. (1)

Sol.

(i) $\sqrt{2} r+r=1$
$r=\frac{1}{\sqrt{2}+1}$
$r=\sqrt{2}-1$
(ii) $\mathrm{CC}_{2}=2 \sqrt{2}-2=2(\sqrt{2}-1)$

From $\Delta \mathrm{CC}_{2} \mathrm{~N}=\sin \phi=\frac{\sqrt{2}-1}{2(\sqrt{2}-1)}$
$\phi=30^{\circ}$
(iii) In $\triangle \mathrm{ACE}$ are sine law
$\frac{A E}{\sin \phi}=\frac{A C}{\sin 105^{\circ}}$
$A E=\frac{1}{2} \times \frac{\sqrt{2}}{\sqrt{3}+1} \cdot 2 \sqrt{2}$
$A E=\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$
$\therefore \mathrm{EB}=1-(\sqrt{3}-1)$
$2-\sqrt{3}$
$\alpha=2, \beta=-1 \Rightarrow \alpha+\beta=1$
8. Let z and ω be two complex numbers such that $\omega=z \bar{z}-2 z+2,\left|\frac{z+i}{z-3 i}\right|=1$ and Re (w) has minimum value. Then, the minimum value of $n \in N$ for Which ω^{n} is real, is equal to \qquad
Ans. (4)
Sol. Let $z=x+i y$
$|z+i|=|z-3 i|$
$\Rightarrow y=1$
Now $\quad \omega=x^{2}+y^{2}-2 x-2 i y+2$
$\omega=x^{2}+1-2 x-2 i+2$
$\operatorname{Re}(\omega)=x^{2}-2 x+3$
$\operatorname{Re}(\omega)=(x-1)^{2}+2$
$\operatorname{Re}(\omega)_{\min }$ at $x=1 \Rightarrow z=1+i$
Now $\omega=1+1-2-2 i+2$

$$
\omega=2(1-\mathrm{i})=2 \sqrt{2} \mathrm{e}^{i\left(\frac{-\pi}{4}\right)}
$$

$\omega^{n}=2 \sqrt{2} \mathrm{e}^{\mathrm{i}\left(\frac{-n \pi}{4}\right)}$
If ω^{n} is real $\Rightarrow n=4$
9. Let $P=\left[\begin{array}{ccc}-30 & 20 & 56 \\ 90 & 140 & 112 \\ 120 & 60 & 14\end{array}\right]$ and $A=\left[\begin{array}{ccc}2 & 7 & \omega^{2} \\ -1 & -\omega & 1 \\ 0 & -\omega & -\omega+1\end{array}\right]$ where $\omega=\frac{-1+i \sqrt{3}}{2}$, and I_{3} be the identity matrix of order 3. If the determinant of the matrix $\left(P^{-1} A P-I_{3}\right)^{2}$ is $\alpha \omega^{2}$, then the value of α is equal to \qquad
Ans. (36)
Sol. $\left|\mathrm{P}^{-1} \mathrm{AP}-\mathrm{I}\right|^{2}$
$=\left|\left(\mathrm{P}^{-1} \mathrm{AP}-\mathrm{I}\right)\left(\mathrm{P}^{-1} \mathrm{AP}-\mathrm{I}\right)\right|^{2}$
$=\left|\mathrm{P}^{-1} \mathrm{APP}^{-1} \mathrm{AP}-2 \mathrm{P}^{-1} \mathrm{AP}+\mathrm{I}\right|$
$=\left|\mathrm{P}^{-1} \mathrm{~A}^{2} \mathrm{P}-2 \mathrm{P}^{-1} \mathrm{AP}+\mathrm{P}^{-1} \mathrm{IP}\right|$
$=\left|P^{-1}\left(A^{2}-2 A+I\right) P\right|$
$=\left|\mathrm{P}^{-1}(\mathrm{~A}-\mathrm{I})^{2} \mathrm{P}\right|$
$=\left|\mathrm{P}^{-1}\right||\mathrm{A}-\mathrm{I}|^{2}|\mathrm{P}|$
$=|A-I|^{2}$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & 7 & \omega^{2} \\
-1 & -\omega-1 & 1 \\
0 & -\omega & -\omega
\end{array}\right|^{2} \\
& =\left(1(\omega(\omega+1)+\omega)-7 \omega+\omega^{2} \cdot \omega\right)^{2} \\
& =\left(\omega^{2}+2 \omega-7 \omega+1\right)^{2} \\
& =\left(\omega^{2}-5 \omega+1\right)^{2} \\
& =(-6 \omega)^{2} \\
& =36 \omega^{2} \Rightarrow \alpha=36
\end{aligned}
$$

10. Let the curve $y=y(x)$ be the solution of the differential equation, $\frac{d y}{d x}=2(x+1)$. If the numerical value of area bounded by the curve $y=y(x)$ and x-axis is $\frac{4 \sqrt{8}}{3}$, then the value of $y(1)$ is equal to

Ans. (2)
Sol. $y=x^{2}+2 x+c$
$y=x^{2}+2 x+c$
Area of rectangle $(A B C D) \neq(c-1)(\sqrt{1-c}) \mid$
Area of parabola and x-axis $=2\left(\frac{2}{3}\left((1-c)^{3 / 2}\right)\right)=\frac{4 \sqrt{8}}{3}$
$1-\mathrm{c}=2 \Rightarrow \mathrm{c}=-1$
Equation of $f(x)=x^{2}+2 x-1$
$\mathrm{f}(1)=1+2-1=2$

