MATHEMATICS JEE-MAIN (February-Attempt) 24 February (Shift-2) Paper

SECTION - A

1.	Let $a, b \in R$.	If the mirror	image	of the	point	P(a, 6, 9)	with	respect	to	the	line
	$\frac{x-3}{7} = \frac{y-2}{5} =$	$\frac{z-1}{-9}$ is (20,b,-a)	–9), th	en <i>a</i> + b	∣ is equ	al to :					
	(1) 86	(2) 88		(3)84		(4))90				
Ans.	(2)										
Sol.	P(a, 6, 9), Q (20, b, –a–9)									
	mid point of P	$PQ = \left(\frac{a+20}{2}, \frac{b+6}{2}\right)$	$\left(-\frac{a}{2}\right)$								
	lie on line										
	$\frac{\frac{a+20}{2}-3}{7} = \frac{b}{2}$	$\frac{+6}{2} - 2 = \frac{-\frac{a}{2} - 1}{-9}$									
	a + 20 - 6 b -	+6-4 $-a-2$									
	<u> </u>	$\frac{+6-4}{10} = \frac{-a-2}{-18}$									
	$\frac{a+14}{14} = \frac{a+2}{18}$										
	18a + 252 = 14a	a + 28									
	4a = -224										
	a = -56										
	$\frac{b+2}{10} = \frac{a+2}{18}$										
	$\frac{b+2}{10} = \frac{-54}{18}$										
	$\frac{b+2}{10} = -3 \Longrightarrow b$	y = -32									
	$\left \mathbf{a} + \mathbf{b}\right = \left -56 - 3\right $	32 = 88									

2. Let f be a twice differentiable function defined on R such that f(0) = 1, f'(0) = 2 and $f'(x) \neq 0$ for all $x \in R$. If $\begin{vmatrix} f(x) & f'(x) \\ f'(x) & f''(x) \end{vmatrix} = 0$, for all $x \in R$ then the value of f(1) lies in the interval: (1) (9, 12) (2) (6, 9) (3) (3, 6) (4) (0, 3)

Ans. (2)

Sol. Given $f(x) f''(X) - (f'(x))^2 = 0$

Let h (x) = $\frac{f(x)}{f'(x)}$ $\Rightarrow h'(x) = 0 \qquad \qquad \Rightarrow h(x) = k$ $\Rightarrow \frac{f(x)}{f'(x)} = k \qquad \Rightarrow f(x) = k f'(x)$ $\Rightarrow f(0) = k f'(0) \qquad \Rightarrow 1 = k(2) \Rightarrow k = \frac{1}{2}$ Now $f(x) = \frac{1}{2} f'(x) \Rightarrow \int 2dx = \int \frac{f'(x)}{f(x)} dx$ $\Rightarrow 2x = ln|f(x)| + C$ As $f(0) = 1 \Rightarrow C = 0$ $\Rightarrow 2x = ln|f(X)| \Rightarrow f(x) = \pm e^{2x}$ As $f(0) = 1 \Rightarrow f(x) = e^{2x} \Rightarrow f(1) = e^2$

3. A possible value of
$$tan\left(\frac{1}{4}sin^{-1}\frac{\sqrt{63}}{8}\right)$$
 is:
(1) $\frac{1}{2\sqrt{2}}$ (2) $\frac{1}{\sqrt{7}}$ (3) $\sqrt{7}-1$ (4) $2\sqrt{2}-1$

$$\cos^2 \frac{\theta}{2} = \frac{9}{16}$$
$$\cos \frac{\theta}{2} = \frac{3}{4}$$
$$\frac{1 - \tan^2 \frac{\theta}{4}}{1 + \tan^2 \frac{\theta}{4}} = \frac{3}{4}$$
$$\tan \frac{\theta}{4} = \frac{1}{\sqrt{7}}$$

 $= \frac{10 \times 27}{2^{10}} = \frac{135}{2^9}$

4. The probability that two randomly selected subsets of the set {1,2,3,4,5} have exactly two elements in their intersection, is:

(1)
$$\frac{65}{2^7}$$
 (2) $\frac{135}{2^9}$ (3) $\frac{65}{2^8}$ (4) $\frac{35}{2^7}$
(2)
Required probability
 $= \frac{{}^5C_2 \times 3^3}{4^5}$

5. The vector equation of the plane passing through the intersection of the planes $\vec{\mathbf{r}} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and $\vec{\mathbf{r}} \cdot (\hat{i} - 2\hat{j}) = -2$, and the point (1,0,2) is :

(1)
$$\vec{r} \cdot (\hat{i} - 7\hat{j} + 3\hat{k}) = \frac{7}{3}$$

(2) $\vec{r} \cdot (\hat{i} + 7\hat{j} + 3\hat{k}) = 7$
(3) $\vec{r} \cdot (3\hat{i} + 7\hat{j} + 3\hat{k}) = 7$
(4) $\vec{r} \cdot (\hat{i} + 7\hat{j} + 3\hat{k}) = \frac{7}{3}$

Ans. (2)

Ans. Sol.

Sol. Plane passing through intersection of plane is

$$\left\{\vec{r}\cdot\left(\hat{i}+\hat{j}+\hat{k}\right)-1\right\}+\lambda\left\{\vec{r}\cdot\left(\hat{i}-2\hat{j}\right)+2\right\}=0$$

Passes through $\hat{i} + 2\hat{k}$, we get

$$(3-1) + \lambda (1+2) = 0 \Rightarrow \lambda = -\frac{2}{3}$$

Hence, equation of plane is $3\left\{\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) - 1\right\} - 2\left\{\vec{r} \cdot (\hat{i} - 2\hat{j}) + 2\right\} = 0$
$$\Rightarrow \quad \vec{r} \cdot (\hat{i} + 7\hat{j} + 3\hat{k}) = 7$$

- **6.** If P is a point on the parabola $y = x^2 + 4$ which is closest to the straight line y = 4x 1, then the co-ordinates of P are :
- (1) (-2, 8) (2) (1, 5) (3) (3, 13) (4) (2, 8) Ans. (4) Sol. $\frac{dy}{dx}|_{p} = 4$ $\therefore 2x_{1} = 4$ $y=x^{2}+4$ $y=x^{2}$
 - ⇒ $x_1 = 2$ ∴ Point will be (2, 8)
- 7. Let *a*, *b*, *c* be in arithmetic progression. Let the centroid of the triangle with vertices (a,c),(2,b) and (a,b) be $\left(\frac{10}{3},\frac{7}{3}\right)$. If α,β are the roots of the equation $ax^2+bx+1=0$, then the value of $\alpha^2 + \beta^2 \alpha\beta$ is:

(1)
$$\frac{71}{256}$$
 (2) $-\frac{69}{256}$ (3) $\frac{69}{256}$ (4) $-\frac{71}{256}$

Ans. (4)

Sol.

2b = a + c $\frac{2a+2}{3} = \frac{10}{3}$ and $\frac{2b+c}{3} = \frac{7}{3}$

a = 4,
$$\frac{2b + c}{2b - c} = 4$$
, solving
b =
$$\frac{11}{4}$$

c =
$$\frac{3}{2}$$

- $\therefore \text{ Quadratic Equation is } 4x^2 + \frac{11}{4}x + 1 = 0$ $\therefore \text{ The value of } (\alpha + \beta)^2 - 3\alpha\beta = \frac{121}{256} - \frac{3}{4} = -\frac{71}{256}$
- **8.** The value of the integral, $\int_{1}^{3} [x^2 2x 2] dx$, where [x] denotes the greatest integer less than or equal to x, is:

(1) -4 (2) -5 (3)
$$-\sqrt{2}-\sqrt{3}-1$$
 (4) $-\sqrt{2}-\sqrt{3}+1$

Ans. (3)
Sol.
$$I = \int_{1}^{3} - 3dx + \int_{1}^{3} \left[(x-1)^{2} \right] dx$$

Put x -1 = t ; dx = dt
 $I = (-6) + \int_{0}^{2} \left[t^{2} \right] dt$
 $I = -6 + \int_{0}^{1} 0 dt + \int_{1}^{\sqrt{2}} 1 dt + \int_{\sqrt{2}}^{\sqrt{3}} 2 dt + \int_{\sqrt{3}}^{2} 3 dt$
 $I = -6 + (\sqrt{2} - 1) + 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3}$
 $I = -1 - \sqrt{2} - \sqrt{3}$

9. Let $f : \mathbf{R} \to \mathbf{R}$ be defined as

$$f(x) = \begin{cases} -55x, & \text{if } x < -5\\ 2x^3 - 3x^2 - 120x, & \text{if } -5 \le x \le 4\\ 2x^3 - 3x^2 - 36x - 336, & \text{if } x > 4 \end{cases}$$

Let $A = \{x \in R : f \text{ is increasing}\}$. Then A is equal to :

 $(1)(-5,-4)\cup(4,\infty)$ $(2)(-5,\infty)$ $(3)(-\infty,-5)\cup(4,\infty)$ $(4)(-\infty,-5)\cup(-4,\infty)$

Ans. (1)

Sol.
$$f(x) = \begin{cases} -55 & ; \quad x < -5 \\ 6(x^2 - x - 20) & ; \quad -5 < x < 4 \\ 6(x^2 - x - 6) & ; \quad x > 4 \end{cases}$$
$$f(x) = \begin{cases} -55 & ; \quad x < -5 \\ 6(x - 5)(x + 4) & ; \quad -5 < x < 4 \\ 6(x - 3)(x + 2) & ; \quad x > 4 \end{cases}$$

Hence, f(x) is monotonically increasing in interval $(-5, -4) \cup (4, \infty)$

If the curve $y = ax^2 + bx + c$, $x \in R$, passes through the point (1,2) and the tangent line to this 10. curve at origin is y = x, then the possible values of a,b,c are :

(1) a =1, b=1, c=	=0	(2) a= -1, b=1, c =1
(3) a =1, b=0, c	=1	(4) $a = \frac{1}{2}, b = \frac{1}{2}, c = 1$

- **Ans. (1)** Sol. 2 = a + b + c(i) Rankers $\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = 2\mathrm{a}\mathbf{x} + \mathbf{b} \Rightarrow \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}\Big|_{(0,0)}$ \Rightarrow b = 1 \Rightarrow a + c = 1 (0,0) lie on curve ∴ c=0, a=1
- 11. The negation of the statement

~ $p \land (p \lor q)$ is : (1) $\sim p \land q$ (2) $p \land \sim q$ (3) ~p∨q (4) p∨~q

Ans. (4)

Sol.

	pq~ p $p \lor q$ $(\sim p) \land (p \lor q)$ ~ q $p \lor \sim q$ TTFTFTTFFTTTTFFTTFTTTFFTFFFTTT $(\sim p) \land (p \lor q) \equiv p \lor \sim q$
12.	For the system of linear equations:
	$x - 2y = 1, x - y + kz = -2, ky + 4z = 6, k \in \mathbf{R}$
	consider the following statements:
	(A) The system has unique solution if $k \neq 2, k \neq -2$.
	(B) The system has unique solution if $k = -2$.
	(C) The system has unique solution if $k = 2$. (D) The system has no-solution if $k = 2$.
	(E) The system has infinite number of solutions if $k \neq -2$.
	Which of the following statements are correct?
	(1) (B) and (E) only (2)(C) and (D) only
	(3) (A) and (D) only (4) (A) and (E) only
Ans.	(3)
Sol.	$\mathbf{x} - 2\mathbf{y} + 0.\mathbf{z} = 1$
	x - y + kz = -2
	0.x + ky + 4z = 6
	$\Delta = \begin{vmatrix} 1 & -1 & \mathbf{k} \\ 0 & \mathbf{k} & 4 \end{vmatrix} = 4 - \mathbf{k}^2$
	For unique solution $4 - k^2 \neq 0$
	$k \neq \pm 2$
	For k=2
	x - 2y + 0.z = 1 $x - y + 2z = -2$
	x - y + 2z2 0.x + 2y + 4z = 6
	0.A + 2 y + + 2 · 0

$$\Delta x = \begin{vmatrix} 1 & -2 & 0 \\ -2 & -1 & 2 \\ 6 & 2 & 4 \end{vmatrix} = (-8) + 2[-20]$$

$$\Delta x = -48 \neq 0$$

For k=2 $\Delta x \neq 0$

13. For which of the following curves, the line $x + \sqrt{3}y = 2\sqrt{3}$ is the tangent at the point $\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)$?

(1) $x^{2} + 9y^{2} = 9$ (2) $2x^{2} - 18y^{2} = 9$ (3) $y^{2} = \frac{1}{6\sqrt{3}}x$ (4) $x^{2} + y^{2} = 7$

Ans. (1)

Sol. Tangent to
$$x^2 + 9y^2 = 9$$
 at point $\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)$ is $x \left|\frac{3\sqrt{3}}{2}\right| + 9y\left(\frac{1}{2}\right) = 9$
 $3\sqrt{3}x + 9y = 18 \Rightarrow x + \sqrt{3}y = 2\sqrt{3}$

- \Rightarrow option (1) is true
- **14.** The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 20 seconds at the speed of 432 km/ hour, the angle of elevation changes to 30°. If the jet plane is flying at a constant height, then its height is:

(1)
$$1200\sqrt{3}m$$
 (2) $1800\sqrt{3}m$ (3) $3600\sqrt{3}m$ (4) $2400\sqrt{3}m$

Ans. (1)

Sol.

 $v = 432 \times \frac{1000}{60 \times 60}$ m/sec = 120 m/sec Distance $AB = v \times 20 = 2400$ meter In ∆PAC $\tan 60^\circ = \frac{h}{PC} \Rightarrow PC = \frac{h}{\sqrt{3}}$ In ∆PBD $\tan 30^\circ = \frac{h}{PD} \Rightarrow PD = \sqrt{3}h$ PD = PC + CD $\sqrt{3}h = \frac{h}{\sqrt{3}} + 2400 \Rightarrow \frac{2h}{\sqrt{3}} = 2400$ h = 1200 $\sqrt{3}$ meter

For the statements $p \mbox{ and } q$, consider the following compound statements: 15.

(a)
$$(\sim q \land (p \rightarrow q)) \rightarrow \sim p$$

(b) $((p \lor q) \land \sim p) \rightarrow q$

Then which of the following statements is correct?

(1) (a) is a tautology but not (b)

- (3) (a) and (b) both are tautologies.
- (2) (a) and (b) both are not tautologies.
- (4) (b) is a tautology but not (a).

(3) Ans.

(b)

		р	q	$\sim q$	$p \rightarrow q$	$\sim q \wedge (p \rightarrow q)$	$\sim p$	$(\sim q) \land (p \rightarrow q) \rightarrow \sim p$
		Т	Т	F	Т	F	F	Т
Sol.	(a)	Т	F	Т	F	F	F	Т
		F	Т	F	Т	F	Т	Т
		F	F	Т	Т	Т	Т	Т

(a) is tautologies

р	q	$p \lor q$	~ p	$(p \lor q) \land \sim p$	$ ((p \lor q) \land \sim p) \rightarrow q $
Т	Т	Т	F	F	Т
Т	F	Т	F	F	Т
F	Т	Т	Т	Т	Т
F	F	F	Т	F	Т

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

(b) is tautologies

- \therefore a & b are both tautologies.
- **16.** Let A and B be 3×3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $(A^2 B^2 B^2 A^2)X = O$, where X is a 3×1 column matrix of unknown variables and O is a 3×1 null matrix, has :
 - a unique solution
- (2) exactly two solutions
- (3) infinitely many solutions
- (4) no solution

Ans. (3)

- Sol. $A^{T} = A, B^{T} = -B$ Let $A^{2}B^{2} - B^{2}A^{2} = P$ $P^{T} = (A^{2}B^{2} - B^{2}A^{2})^{T} = (A^{2}B^{2})^{T} - (B^{2}A^{2})^{T}$ $= (B^{2})^{T} (A^{2})^{T} - (A^{2})^{T} (B^{2})^{T}$ $= B^{2}A^{2} - A^{2}B^{2}$
 - \Rightarrow P is skew-symmetric matrix

$$\begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\therefore \quad ay + bz = 0 \qquad \dots(1)$$

$$-ax + cz = 0 \qquad \dots(2)$$

$$-bx - cy = 0 \qquad \dots(3)$$

From equation 1,2,3

$$\Delta = 0 \& \Delta_1 = \Delta_2 = \Delta_3 = 0$$

- \therefore equation have infinite number of solution
- **17.** If $n \ge 2$ is a positive integer, then the sum of the series

 ${}^{n+1}C_2+2\left({}^2C_2+{}^3C_2+{}^4C_2+\ldots+{}^nC_2\right)$ is :

(1)
$$\frac{n(n+1)^2(n+2)}{12}$$
 (2) $\frac{n(n-1)(2n+1)}{6}$
(3) $\frac{n(n+1)(2n+1)}{6}$ (4) $\frac{n(2n+1)(3n+1)}{6}$

Ans. (3)

Sol. ${}^{2}C_{2} = {}^{3}C_{3}$

$$S = {}^{3}C_{3} + {}^{3}C_{2} + \dots + {}^{n}C_{2} = {}^{n+1}C_{3}$$

$$\therefore {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

$$\therefore {}^{n+1}C_{2} + {}^{n+1}C_{3} + {}^{n+1}C_{3} = {}^{n+2}C_{3} + {}^{n+1}C_{3}$$

$$= \frac{(n+1)!}{3!(n-1)!} + \frac{(n+1)!}{3!(n-2)!}$$

$$= \frac{(n+2)(n+1)n}{6} + \frac{(n+1)(n)(n-1)}{6} = \frac{n(n+1)(2n+1)}{6}$$

If a curve y = f(x) passes through the point (1,2) and satisfies $x \frac{dy}{dx} + y = bx^4$, then for what 18. value of $b, \int_{1}^{2} f(x) dx = \frac{62}{5}$? (2) $\frac{62}{5}$ (3) $\frac{31}{5}$ (1)5 (4) 10(4) Ans. $\frac{dy}{dx} + \frac{y}{x} = bx^{3} \cdot I.F. = e^{\int \frac{dx}{x}} = x$ Sol. kers $\therefore yx = \int bx^4 dx = \frac{bx^5}{5} + C$ Passes through (1,2), we get $2 = \frac{b}{5} + C$ (i) Also, $\int_{-\infty}^{2} \left(\frac{bx^4}{5} + \frac{c}{x} \right) dx = \frac{62}{5}$ $\Rightarrow \frac{b}{25} \times 32 + \text{Cln}2 - \frac{b}{25} = \frac{62}{5} \Rightarrow \text{C} = 0 \text{ \& } \text{b} = 10$

19. The area of the region : $R = \{(x, y) : 5x^2 \le y \le 2x^2 + 9\}$ is: (1)9 $\sqrt{3}$ square units (2) $12\sqrt{3}$ square units (3) $11\sqrt{3}$ square units (4) $6\sqrt{3}$ square units

Ans. (2)

Sol.

$$= 2 \int_{0}^{\sqrt{3}} (2x^{2} + 9 - 5x^{2}) dx$$
$$= 2 \int_{0}^{\sqrt{3}} (9 - 3x^{2}) dx$$
$$= 2 | 9x - x^{3} |_{0}^{\sqrt{3}} = 12\sqrt{3}$$

20. Let f(x) be a differentiable function defined on [0,2] such that f'(x) = f'(2-x) for all $x \in (0,2), f(0) = 1$ and $f(2) = e^2$. Then the value of $\int_0^2 f(x) dx$ is: (1) $1 + e^2$ (2) $1 - e^2$ (3) $2(1 - e^2)$ (4) $2(1 + e^2)$

Ans. (1)

Sol. f'(x) = f'(2-x)On integrating both side f(x) = -f(2-x) + cput x = 0 $f(0) + f(2) = c \implies c = 1 + e^2$ $\implies f(x) + f(2-x) = 1 + e^2$ (i) $I = \int_{0}^{2} f(x) dx = \int_{0}^{1} \{f(x) + f(2-x)\} dx = (1 + e^2)$

Section B

1. The number of the real roots of the equation $(x+1)^2 + |x-5| = \frac{27}{4}$ is_____.

Ans. 2

Sol.
$$x \ge 5$$

 $(x+1)^2 + (x-5) = \frac{27}{4}$
 $\Rightarrow x^2 + 3x - 4 = \frac{27}{4}$
 $\Rightarrow x^2 + 3x - \frac{43}{4} = 0$
 $\Rightarrow 4x^2 + 12x - 43 = 0$
 $x = \frac{-12 \pm \sqrt{144 + 688}}{8}$
 $x = \frac{-12 \pm \sqrt{832}}{8} = \frac{-12 \pm 28.8}{8}$
 $= \frac{-3 \pm 7.2}{2}$
 $= \frac{-3 \pm 7.2}{2}$. (Therefore no solution)
For $x \le 5$
 $(x+1)^2 - (x-5) = \frac{27}{4}$
 $x^2 + x + 6 - \frac{27}{4} = 0$
 $4x^2 + 4x - 3 = 0$
 $x = \frac{-4 \pm \sqrt{16 + 48}}{8}$
 $x = -\frac{4 \pm 8}{8} \Rightarrow x = -\frac{12}{8}, \frac{4}{8}$

: 2 Real Root's

The students S_1, S_2, \ldots, S_{10} are to be divided into 3 groups A, B and C such that each group has 2. at least one student and the group C has at most 3 students. Then the total number of possibilities of forming such groups is_____.

Ans. 31650

Sol.

$$C \rightarrow 1 \qquad 9 \begin{bmatrix} A \\ B \end{bmatrix}$$

$$C \rightarrow 2 \qquad 8 \begin{bmatrix} A \\ B \end{bmatrix}$$

$$C \rightarrow 3 \qquad 7 \begin{bmatrix} A \\ B \end{bmatrix}$$

$$= {}^{10}C_1 [2^9 - 2] + {}^{10}C_2 [2^8 - 2] + {}^{10}C_3 [2^7 - 2]$$

$$= 2^7 [{}^{10}C_1 \times 4 + {}^{10}C_2 \times 2 + {}^{10}C_3] - 20 - 90 - 240$$

$$= 128 [40 + 90 + 120] - 350$$

$$= (128 \times 250) - 350$$

$$= 10 [2165] = 21650$$

= 10[3165] = 31650If $a + \alpha = 1, b + \beta = 2$ and $af(x) + \alpha f\left(\frac{1}{x}\right) = bx + \frac{\beta}{x}, x \neq 0$, then the value of the expression $\frac{f(x) + f\left(\frac{1}{x}\right)}{x + \frac{1}{x}}$ is _____. 3.

Ans. 2

Sol.
$$af(x) + \alpha f\left(\frac{1}{x}\right) = bx + \frac{\beta}{x}$$
(i)

$$\frac{f(x) + f\left(\frac{1}{x}\right)}{x + \frac{1}{x}} = \frac{2}{1} = 2$$

4. If the variance of 10 natural numbers 1, 1, 1, ..., 1, k is less than 10, then the maximum possible value of k is _____.

Sol. $\sigma^{2} = \frac{\Sigma x^{2}}{n} - \left(\frac{\Sigma x}{n}\right)^{2}$ $\sigma^{2} = \frac{\left(9 + k^{2}\right)}{10} - \left(\frac{9 + k}{10}\right)^{2} < 10$ $(90 + k^{2}) \ 10 - (81 + k^{2} + 8k) < 1000$ $90 + 10k^{2} - k^{2} - 18k - 81 < 1000$ $9k^{2} - 18k + 9 < 1000$ $(k - 1)^{2} < \frac{1000}{9} \Rightarrow k - 1 < \frac{10\sqrt{10}}{3}$ $k < \frac{10\sqrt{10}}{3} + 1$

Maximum integral value of k = 11

5. Let λ be an integer. If the shortest distance between the lines $x - \lambda = 2y - 1 = -2z$ and $x = y + 2\lambda = z - \lambda$ is $\frac{\sqrt{7}}{2\sqrt{2}}$, then the value of $|\lambda|$ is

Ans. 1

Sol. $\frac{x-\lambda}{1} = \frac{y-\frac{1}{2}}{\frac{1}{2}} = \frac{z}{-\frac{1}{2}}$ $\frac{x-\lambda}{2} = \frac{y-\frac{1}{2}}{1} = \frac{2}{-1} \qquad \dots (1)$ Point on line = $\left(\lambda, \frac{1}{2}, 0\right)$ $\frac{x}{1} = \frac{y+2\lambda}{1} = \frac{z-\lambda}{1} \qquad \dots (2)$ Point on line = $\left(0, -2\lambda, \lambda\right)$

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

Distance between skew lines =
$$\frac{\begin{bmatrix} \vec{a}_2 - \vec{a}_1 & \vec{b}_1 & \vec{b}_2 \end{bmatrix}}{\begin{vmatrix} \vec{b}_1 \times \vec{b}_2 \end{vmatrix}}$$
$$\frac{\begin{vmatrix} \lambda & \frac{1}{2} + 2\lambda & -\lambda \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix}}$$
$$= \frac{\begin{vmatrix} -5\lambda - \frac{3}{2} \\ \sqrt{14} \end{vmatrix} = \frac{\sqrt{7}}{2\sqrt{2}} \text{ (given)}$$
$$= |10\lambda + 3| = 7 \Rightarrow \lambda = -1$$
$$\Rightarrow |\lambda| = 1$$
Let $i = \sqrt{-1}$. If $\frac{(-1+i\sqrt{3})^{21}}{(1-i)^{24}} + \frac{(1+i\sqrt{3})^{21}}{(1+i)^{24}} = k$, and $n = [|k|]$ be the greatest integral part of |k|.

Then
$$\sum_{j=0}^{n+5} (j+5)^2 - \sum_{j=0}^{n+5} (j+5)$$
 is equal to_____.

Ans. 310

Sol.

6.

$$\frac{\left(2e^{i\frac{2\pi}{3}}\right)^{21}}{\left(\sqrt{2}e^{-i\frac{\pi}{4}}\right)^{24}} + \frac{\left(2e^{i\frac{\pi}{3}}\right)^{21}}{\left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^{24}}$$
$$\Rightarrow \frac{2^{21} \cdot e^{-i6\pi}}{2^{12} \cdot e^{-i6\pi}} + \frac{2^{21}\left(e^{i7\pi}\right)}{2^{12}\left(e^{i6\pi}\right)}$$
$$\Rightarrow 2^{9} e^{i(20\pi)} + 2^{9} e^{i\pi}$$
$$\Rightarrow 2^{9} + 2^{9} \left(-1\right) = 0$$
$$n = 0$$

$$\sum_{j=0}^{5} (j+5)^{2} - \sum_{j=0}^{5} (j+5)$$

$$\Rightarrow \left[5^{2} + 6^{2} + 7^{2} + 8^{2} + 9^{2} + 10^{2} \right] - \left[5 + 6 + 7 + 8 + 9 + 10 \right]$$

$$\Rightarrow \left[\left(1^{2} + 2^{2} + \dots + 10^{2} \right) - \left(1^{2} + 2^{2} + 3^{2} + 4^{2} \right) \right] - \left[\left(1 + 2 + 3 + \dots + 10 \right) - \left(1 + 2 + 3 + 4 \right) \right]$$

$$\Rightarrow (385 - 30) - \left[55 - 10 \right]$$

$$\Rightarrow 355 - 45 \Rightarrow 310 \text{ ans.}$$

7. Let a point P be such that its distance from the point (5,0) is thrice the distance of P from the point (-5,0). If the locus of the point P is a circle of radius r, then $4r^2$ is equal to

Ans. 56

Sol. Let P(h,k)
Given
PA = 3PB
PA² = 9PB²

$$\Rightarrow (h-5)^2 + k^2 = 9[(h+5)^2 + k^2]$$

 $\Rightarrow 8h^2 + 8k^2 + 100h + 200 = 0$
 $\therefore \text{ Locus}$
 $x^2 + y^2 + \left(\frac{25}{2}\right)x + 25 = 0$
 $\therefore c = \left(\frac{-25}{4}, 0\right)$
 $\therefore r^2 = \left(\frac{-25}{4}\right)^2 - 25$
 $= \frac{625}{16} - 25$
 $= \frac{225}{16}$
 $\therefore 4r^2 = 4x \frac{225}{16} = \frac{225}{4} = 56.25$
After Round of $4r^2 = 56$

8. For integers n and r, let
$$\binom{n}{r} = \begin{cases} {}^{n}C_{r}, & \text{if } n \ge r \ge 0\\ 0, & \text{otherwise} \end{cases}$$

The maximum value of k for which the sum

$$\sum_{i=0}^{k} \binom{10}{i} \binom{15}{k-i} + \sum_{i=0}^{k+1} \binom{12}{i} \binom{13}{k+1-i}$$
 exists, is equal to_____

Ans. Bonus

Sol. $(1+x)^{10} = {}^{10}C_0 + {}^{10}C_1x + {}^{10}C_2x^2 + \dots + {}^{10}C_{10}x^{10}$

$$(1+x)^{15} = {}^{15}C_0 + {}^{15}C_1x + \dots {}^{15}C_{k-1} x^{k-1} + {}^{15}C_kx^k + {}^{15}C_{k+1}x^{k+1} + \dots {}^{15}C_{15}x^{15}$$
$$\sum_{i=0}^k (10C_i)(15C_{k-i}) = {}^{10}C_0. {}^{15}C_k + {}^{10}C_1. {}^{15}C_{k-1} + \dots + {}^{10}C_k. {}^{15}C_0$$

Coefficient of x_k in $(1+x)^{25}$

$$= {}^{25}C_{k}$$

$$\sum_{i=0}^{k+1} {\binom{12}{i} \binom{13}{i}} = {}^{12}C_{0} \cdot {}^{13}C_{k+1} + {}^{12}C_{1} \cdot {}^{13}C_{k} + \dots + {}^{12}C_{k+1} \cdot {}^{13}C_{0}$$

Coefficient of x^{k+1} in $(1+x)^{25}$

$$= {}^{25}C_{k+1}$$

 ${}^{25}C_k + {}^{25}C_{k+1} = {}^{26}C_{k+1}$

As ${}^{n}C_{r}$ is defined for all values of n as will as r. so ${}^{26}C_{k+1}$ always exist Now k is unbounded so maximum values is not defined.

9. The sum of first four terms of a geometric progression (G.P.) is $\frac{65}{12}$ and the sum of their

respective reciprocals is $\frac{65}{18}$. If the product of first three terms of the G.P. is 1, and the third term is α , then 2α is_____.

Ans. 3

Sol. a, ar, ar², ar³

a + ar + ar² + ar³ = $\frac{65}{12}$ (1) $\frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} + \frac{1}{ar^3} = \frac{65}{18}$ $\frac{1}{a} \left(\frac{r^3 + r^2 + r + 1}{r^3} \right) = \frac{65}{18}$ (2)

$$\frac{(i)}{(ii)}, a^{2}r^{3} = \frac{18}{12} = \frac{3}{2}$$

$$a^{3}r^{3} = 1 \Rightarrow a\left(\frac{3}{2}\right) = 1 \Rightarrow a = \frac{2}{3}$$

$$\frac{4}{9}r^{3} = \frac{3}{2} \Rightarrow r^{3} = \frac{3^{3}}{2^{3}} \Rightarrow r = \frac{3}{2}$$

$$\alpha = ar^{2} = \frac{2}{3} \cdot \left(\frac{3}{2}\right)^{2} = \frac{3}{2}$$

$$2\alpha = 3$$

- **10.** If the area of the triangle formed by the positive x-axis, the normal and the tangent to the circle $(x-2)^2 + (y-3)^2 = 25$ at the point (5,7) is A, then 24A is equal to_____.
- Ans. Bonus

Sol.

Equation of normal at P

$$(y-7) = \left(\frac{7-3}{5-2}\right)(x-5)$$

$$3y - 21 = 4x - 20$$

$$\Rightarrow 4x - 3y + 1 = 0$$
(i)

$$\Rightarrow M\left(-\frac{1}{4}, 0\right)$$

Equation of tangent at P

$$(y-7) = -\frac{3}{4}(x-5)$$

$$4y - 28 = -3x + 15$$

 $\Rightarrow 3x + 4y = 43$ (ii)

$$\Rightarrow N\left(\frac{43}{3},0\right)$$

Hence ar (\triangle PMN) = $\frac{1}{2} \times$ MN \times 7

$$A = \frac{1}{2} \times \frac{175}{12} \times 7$$

⇒ 24A = 1225

As positive x- axis is given in the question so question should be bonus.

