MATHEMATICS
 JEE-MAIN (February-Attempt) 24
 February (Shift-2) Paper

SECTION - A

1. Let $a, b \in R$. If the mirror image of the point $P(a, 6,9)$ with respect to the line $\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is $(20, \mathrm{~b},-a-9)$, then $|a+\mathrm{b}|$ is equal to :
(1) 86
(2) 88
(3) 84
(4)90

Ans. (2)
Sol. $\quad P(a, 6,9), Q(20, b,-a-9)$
mid point of $\mathrm{PQ}=\left(\frac{\mathrm{a}+20}{2}, \frac{\mathrm{~b}+6}{2},-\frac{\mathrm{a}}{2}\right)$
lie on line
$\frac{\frac{a+20}{2}-3}{7}=\frac{\frac{b+6}{2}-2}{5}=\frac{-\frac{a}{2}-1}{-9}$
$\frac{a+20-6}{14}=\frac{b+6-4}{10}=\frac{-a-2}{-18}$
$\frac{a+14}{14}=\frac{a+2}{18}$
$18 a+252=14 a+28$
$4 \mathrm{a}=-224$
$a=-56$
$\frac{b+2}{10}=\frac{a+2}{18}$
$\frac{b+2}{10}=\frac{-54}{18}$
$\frac{b+2}{10}=-3 \Rightarrow b=-32$
$|a+b|=|-56-32|=88$
2. Let f be a twice differentiable function defined on R such that $f(0)=1, f^{\prime}(0)=2$ and $f^{\prime}(x) \neq 0$ for all $x \in \mathrm{R}$. If $\left|\begin{array}{ll}f(x) & f^{\prime}(x) \\ f^{\prime}(x) & f^{\prime \prime}(x)\end{array}\right|=0$, for all $\mathrm{x} \in \mathrm{R}$ then the value of $f(1)$ lies in the interval:
$(1)(9,12)$
$(2)(6,9)$
$(3)(3,6)$
$(4)(0,3)$

Ans. (2)
Sol. Given $f(x) f^{\prime \prime}(X)-\left(f^{\prime}(x)\right)^{2}=0$

Let $h(x)=\frac{f(x)}{f^{\prime}(x)}$
$\Rightarrow h^{\prime}(x)=0 \quad \Rightarrow h(x)=k$
$\Rightarrow \frac{f(x)}{f^{\prime}(x)}=\mathrm{k} \quad \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{k} \mathrm{f}^{\prime}(\mathrm{x})$
$\Rightarrow f(0)=k f^{\prime}(0) \quad \Rightarrow 1=k(2) \Rightarrow k=\frac{1}{2}$
Now $f(x)=\frac{1}{2} f^{\prime}(x) \Rightarrow \int 2 d x=\int \frac{f^{\prime}(x)}{f(x)} d x$
$\Rightarrow 2 \mathrm{x}=\ln |\mathrm{f}(\mathrm{x})|+\mathrm{C}$
As $f(0)=1 \Rightarrow C=0$
$\Rightarrow 2 x=\ln |f(X)| \Rightarrow f(x)= \pm e^{2 x}$
As $f(0)=1 \Rightarrow f(x)=e^{2 x} \Rightarrow f(1)=e^{2}$
3. A possible value of $\tan \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)$ is:
(1) $\frac{1}{2 \sqrt{2}}$
(2) $\frac{1}{\sqrt{7}}$
(3) $\sqrt{7}-1$
(4) $2 \sqrt{2}-1$

Ans. (2)
Sol. $\tan \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)$
Let $\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)=\theta \quad \sin \theta=\frac{\sqrt{63}}{8}$

$\cos \theta=\frac{1}{8}$
$2 \cos ^{2} \frac{\theta}{2}-1=\frac{1}{8}$
$\cos ^{2} \frac{\theta}{2}=\frac{9}{16}$
$\cos \frac{\theta}{2}=\frac{3}{4}$
$\frac{1-\tan ^{2} \frac{\theta}{4}}{1+\tan ^{2} \frac{\theta}{4}}=\frac{3}{4}$
$\tan \frac{\theta}{4}=\frac{1}{\sqrt{7}}$
4. The probability that two randomly selected subsets of the set $\{1,2,3,4,5\}$ have exactly two elements in their intersection, is:
(1) $\frac{65}{2^{7}}$
(2) $\frac{135}{2^{9}}$
(3) $\frac{65}{2^{8}}$
(4) $\frac{35}{2^{7}}$

Ans. (2)
Sol. Required probability
$=\frac{{ }^{5} C_{2} \times 3^{3}}{4^{5}}$
$=\frac{10 \times 27}{2^{10}}=\frac{135}{2^{9}}$
5. The vector equation of the plane passing through the intersection of the planes $\overrightarrow{\mathrm{r}} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\overrightarrow{\mathrm{r}} \cdot(\hat{i}-2 \hat{j})=-2$, and the point $(1,0,2)$ is :
(1) $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}-7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=\frac{7}{3}$
(2) $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=7$
(3) $\vec{r} \cdot(3 \hat{i}+7 \hat{j}+3 \hat{k})=7$
(4) $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=\frac{7}{3}$

Ans. (2)
Sol. Plane passing through intersection of plane is
$\{\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1\}+\lambda\{\vec{r} \cdot(\hat{i}-2 \hat{j})+2\}=0$
Passes through $\hat{i}+2 \hat{k}$, we get
$(3-1)+\lambda(1+2)=0 \Rightarrow \lambda=-\frac{2}{3}$
Hence, equation of plane is $3\{\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1\}-2\{\vec{r} \cdot(\hat{i}-2 \hat{j})+2\}=0$
$\Rightarrow \quad \vec{r} \cdot(\hat{i}+7 \hat{j}+3 \hat{k})=7$
6. If P is a point on the parabola $y=x^{2}+4$ which is closest to the straight line $y=4 x-1$, then the co-ordinates of P are :
(1) $(-2,8)$
(2) $(1,5)$
$(3)(3,13)$
$(4)(2,8)$

Ans. (4)
Sol. $\frac{d y}{d x} I_{p}=4$
$\therefore 2 \mathrm{x}_{1}=4$

$\Rightarrow \mathrm{x}_{1}=2$
\therefore Point will be $(2,8)$
7. Let $a, \mathrm{~b}, \mathrm{c}$ be in arithmetic progression. Let the centroid of the triangle with vertices $(a, c),(2, b)$ and (a, b) be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If α, β are the roots of the equation $a x^{2}+b x+1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is:
(1) $\frac{71}{256}$
(2) $-\frac{69}{256}$
(3) $\frac{69}{256}$
(4) $-\frac{71}{256}$

Ans. (4)
Sol. $2 b=a+c$
$\frac{2 a+2}{3}=\frac{10}{3}$ and $\frac{2 b+c}{3}=\frac{7}{3}$
$\left.a=4, \begin{array}{l}2 b+c=7 \\ 2 b-c=4\end{array}\right\}$, solving
$b=\frac{11}{4}$
$\mathrm{c}=\frac{3}{2}$
\therefore Quadratic Equation is $4 x^{2}+\frac{11}{4} x+1=0$
\therefore The value of $(\alpha+\beta)^{2}-3 \alpha \beta=\frac{121}{256}-\frac{3}{4}=-\frac{71}{256}$
8. The value of the integral, $\int_{1}^{3}\left[x^{2}-2 x-2\right] \mathrm{d} x$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x, is:
(1) -4
(2) -5
(3) $-\sqrt{2}-\sqrt{3}-1$
(4) $-\sqrt{2}-\sqrt{3}+1$

Ans. (3)
Sol. $\mathrm{I}=\int_{1}^{3}-3 d x+\int_{1}^{3}\left[(x-1)^{2}\right] d x$
Put $x-1=t ; d x=d t$
$\mathrm{I}=(-6)+\int_{0}^{2}\left[t^{2}\right] d t$
$\mathrm{I}=-6+\int_{0}^{1} 0 d t+\int_{1}^{\sqrt{2}} 1 d t+\int_{\sqrt{2}}^{\sqrt{3}} 2 d t+\int_{\sqrt{3}}^{2} 3 d t$
$I=-6+(\sqrt{2}-1)+2 \sqrt{3}-2 \sqrt{2}+6-3 \sqrt{3}$
$\mathrm{I}=-1-\sqrt{2}-\sqrt{3}$
9. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as
$f(x)= \begin{cases}-55 x, & \text { if } x<-5 \\ 2 x^{3}-3 x^{2}-120 x, & \text { if }-5 \leq x \leq 4 \\ 2 x^{3}-3 x^{2}-36 x-336, & \text { if } x>4\end{cases}$
Let $A=\{x \in R: f$ is increasing $\}$. Then A is equal to :
(1) $(-5,-4) \cup(4, \infty)$
(2) $(-5, \infty)$
(3) $(-\infty,-5) \cup(4, \infty)$
(4) $(-\infty,-5) \cup(-4, \infty)$

Ans. (1)

Sol. $f(x)=\left\{\begin{array}{ccc}-55 ; & x<-5 \\ 6\left(x^{2}-x-20\right) & ; & -5<x<4 \\ 6\left(x^{2}-x-6\right) & ; & x>4\end{array}\right.$
$f(x)=\left\{\begin{array}{ccc}-55 & ; & x<-5 \\ 6(x-5)(x+4) & ; & -5<x<4 \\ 6(x-3)(x+2) & ; & x>4\end{array}\right.$
Hence, $f(x)$ is monotonically increasing in interval $(-5,-4) \cup(4, \infty)$
10. If the curve $y=a x^{2}+b x+c, x \in R$, passes through the point (1,2) and the tangent line to this curve at origin is $y=x$, then the possible values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are :
(1) $a=1, b=1, c=0$
(2) $a=-1, b=1, c=1$
(3) $a=1, b=0, c=1$
(4) $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{1}{2}, \mathrm{c}=1$

Ans. (1)
Sol. $2=a+b+c$
$\frac{d y}{d x}=2 a x+\left.b \Rightarrow \frac{d y}{d x}\right|_{(0,0)}=1$
$\Rightarrow \mathrm{b}=1 \Rightarrow \mathrm{a}+\mathrm{c}=1$
$(0,0)$ lie on curve
$\therefore \mathrm{c}=0, \mathrm{a}=1$
11. The negation of the statement
$\sim p \wedge(p \vee q)$ is :
(1) $\sim p \wedge q$
(2) $p \wedge \sim q$
(3) $\sim p \vee q$
(4) $p \vee \sim q$

Ans. (4)
Sol.

p	q	$\sim \mathrm{p}$	$\mathrm{p} \vee \mathrm{q}$	$(\sim \mathrm{p}) \wedge(\mathrm{p} \vee \mathrm{q})$	$\sim \mathrm{q}$	$\mathrm{p} \vee \sim \mathrm{q}$
T	T	F	T	F	F	T
T	F	F	T	F	T	T
F	T	T	T	T	F	F
F	F	T	F	F	T	T

$\therefore \sim p \wedge(p \vee q) \equiv \mathrm{p} \vee \sim \mathrm{q}$
12. For the system of linear equations:
$x-2 y=1, x-y+k z=-2, k y+4 z=6, k \in \mathbf{R}$
consider the following statements:
(A) The system has unique solution if $k \neq 2, k \neq-2$.
(B) The system has unique solution if $k=-2$.
(C) The system has unique solution if $k=2$.
(D) The system has no-solution if $k=2$.
(E) The system has infinite number of solutions if $k \neq-2$.

Which of the following statements are correct?
(1) (B) and (E) only
(2)(C) and (D) only
(3) (A) and (D) only
(4) (A) and (E) only

Ans. (3)
Sol. $x-2 y+0 . z=1$
$x-y+k z=-2$
$0 . x+k y+4 z=6$
$\Delta=\left|\begin{array}{ccc}1 & -2 & 0 \\ 1 & -1 & k \\ 0 & k & 4\end{array}\right|=4-\mathrm{k}^{2}$
For unique solution

$$
\begin{gathered}
4-k^{2} \neq 0 \\
\mathrm{k} \neq \pm 2
\end{gathered}
$$

For $\mathrm{k}=2$
$x-2 y+0 . z=1$
$x-y+2 z=-2$
$0 . x+2 y+4 z=6$
$\Delta x=\left|\begin{array}{ccc}1 & -2 & 0 \\ -2 & -1 & 2 \\ 6 & 2 & 4\end{array}\right|=(-8)+2[-20]$
$\Delta x=-48 \neq 0$
For $\mathrm{k}=2 \quad \Delta \mathrm{x} \neq 0$
For $\mathrm{K}=2$; The system has no solution
13. For which of the following curves, the line $x+\sqrt{3} y=2 \sqrt{3}$ is the tangent at the point $\left(\frac{3 \sqrt{3}}{2}, \frac{1}{2}\right)$?
(1) $x^{2}+9 y^{2}=9$
(2) $2 x^{2}-18 y^{2}=9$
(3) $y^{2}=\frac{1}{6 \sqrt{3}} x$
(4) $x^{2}+y^{2}=7$

Ans. (1)
Sol. Tangent to $x^{2}+9 y^{2}=9$ at point $\left(\frac{3 \sqrt{3}}{2}, \frac{1}{2}\right)$ is $x\left|\frac{3 \sqrt{3}}{2}\right|+9 y\left(\frac{1}{2}\right)=9$
$3 \sqrt{3} x+9 y=18 \Rightarrow x+\sqrt{3} y=2 \sqrt{3}$
\Rightarrow option (1) is true
14. The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 20 seconds at the speed of $432 \mathrm{~km} /$ hour, the angle of elevation changes to 30°. If the jet plane is flying at a constant height, then its height is:
(1) $1200 \sqrt{3} \mathrm{~m}$
(2) $1800 \sqrt{3} \mathrm{~m}$
(3) $3600 \sqrt{3} \mathrm{~m}$
(4) $2400 \sqrt{3} \mathrm{~m}$

Ans. (1)
Sol.

$v=432 \times \frac{1000}{60 \times 60} \mathrm{~m} / \mathrm{sec}=120 \mathrm{~m} / \mathrm{sec}$
Distance $A B=v \times 20=2400$ meter
In $\triangle \mathrm{PAC}$
$\tan 60^{\circ}=\frac{h}{P C} \Rightarrow P C=\frac{h}{\sqrt{3}}$
In $\triangle \mathrm{PBD}$
$\tan 30^{\circ}=\frac{h}{P D} \Rightarrow \mathrm{PD}=\sqrt{3} h$
$P D=P C+C D$
$\sqrt{3} h=\frac{h}{\sqrt{3}}+2400 \Rightarrow \frac{2 h}{\sqrt{3}}=2400$
$h=1200 \sqrt{3}$ meter
15. For the statements p and q , consider the following compound statements:
(a) $(\sim q \wedge(p \rightarrow q)) \rightarrow \sim p$
(b) $((\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{p}) \rightarrow \mathrm{q}$

Then which of the following statements is correct?
(1) (a) is a tautology but not (b)
(2) (a) and (b) both are not tautologies.
(3) (a) and (b) both are tautologies.
(4) (b) is a tautology but not (a).

Ans. (3)

Sol. (a)

p	q	$\sim \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{q} \wedge(\mathrm{p} \rightarrow \mathrm{q})$	$\sim \mathrm{p}$	$(\sim \mathrm{q}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \sim \mathrm{p}$
T	T	F	T	F	F	T
T	F	T	F	F	F	T
F	T	F	T	F	T	T
F	F	T	T	T	T	T

(a) is tautologies
(b)

p	q	$\mathrm{p} \vee \mathrm{q}$	$\sim \mathrm{p}$	$(\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{p}$	$((\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{p}) \rightarrow \mathrm{q}$
T	T	T	F	F	T
T	F	T	F	F	T
F	T	T	T	T	T
F	F	F	T	F	T

(b) is tautologies
$\therefore \mathrm{a} \& \mathrm{~b}$ are both tautologies.
16. Let A and B be 3×3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $\left(A^{2} B^{2}-B^{2} A^{2}\right) X=O$, where X is a 3×1 column matrix of unknown variables and O is a 3×1 null matrix, has :
(1) a unique solution
(2) exactly two solutions
(3) infinitely many solutions
(4) no solution

Ans. (3)
Sol. $A^{\top}=A, B^{\top}=-B$
Let $A^{2} B^{2}-B^{2} A^{2}=P$
$P^{\top}=\left(A^{2} B^{2}-B^{2} A^{2}\right)^{\top}=\left(A^{2} B^{2}\right)^{\top}-\left(B^{2} A^{2}\right)^{\top}$
$=\left(B^{2}\right)^{\top}\left(A^{2}\right)^{\top}-\left(A^{2}\right)^{\top}\left(B^{2}\right)^{\top}$
$=B^{2} A^{2}-A^{2} B^{2}$
$\Rightarrow P$ is skew-symmetric matrix

$$
\begin{align*}
& {\left[\begin{array}{ccc}
0 & \mathrm{a} & \mathrm{~b} \\
-\mathrm{a} & 0 & \mathrm{c} \\
-\mathrm{b} & -\mathrm{c} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \therefore \quad \begin{array}{l}
\mathrm{ay}+\mathrm{bz}
\end{array}=0 \tag{1}\\
& -\mathrm{ax}+\mathrm{cz}=0 \tag{2}\\
& -\mathrm{bx}-\mathrm{cy} \tag{3}
\end{align*}=0
$$

From equation 1,2,3
$\Delta=0 \& \Delta_{1}=\Delta_{2}=\Delta_{3}=0$
\therefore equation have infinite number of solution
17. If $n \geq 2$ is a positive integer, then the sum of the series ${ }^{\mathrm{n}+1} \mathrm{C}_{2}+2\left({ }^{2} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{2}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{2}\right)$ is :
(1) $\frac{\mathrm{n}(\mathrm{n}+1)^{2}(\mathrm{n}+2)}{12}$
(2) $\frac{n(n-1)(2 n+1)}{6}$
(3) $\frac{n(n+1)(2 n+1)}{6}$
(4) $\frac{n(2 n+1)(3 n+1)}{6}$

Ans. (3)
Sol. ${ }^{2} \mathrm{C}_{2}={ }^{3} \mathrm{C}_{3}$
$S={ }^{3} C_{3}+{ }^{3} C_{2}+\ldots \ldots .+{ }^{n} C_{2}={ }^{n+1} C_{3}$
$\because{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
$\therefore{ }^{n+1} C_{2}+{ }^{n+1} C_{3}+{ }^{n+1} C_{3}={ }^{n+2} C_{3}+{ }^{n+1} C_{3}$
$=\frac{(n+1)!}{3!(n-1)!}+\frac{(n+1)!}{3!(n-2)!}$
$=\frac{(n+2)(n+1) n}{6}+\frac{(n+1)(n)(n-1)}{6}=\frac{n(n+1)(2 n+1)}{6}$
18. If a curve $y=f(x)$ passes through the point $(1,2)$ and satisfies $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\mathrm{b} x^{4}$, then for what value of $\mathrm{b}, \int_{1}^{2} f(x) \mathrm{d} x=\frac{62}{5}$?
(1)5
(2) $\frac{62}{5}$
(3) $\frac{31}{5}$
(4) 10

Ans. (4)
Sol. $\frac{d y}{d x}+\frac{y}{x}=b x^{3}$, I.F. $=e^{\int \frac{d x}{x}}=x$
$\therefore y x=\int b x^{4} d x=\frac{b x^{5}}{5}+C$
Passes through $(1,2)$, we get
$2=\frac{b}{5}+C$
Also, $\int_{1}^{2}\left(\frac{b x^{4}}{5}+\frac{c}{x}\right) d x=\frac{62}{5}$
$\Rightarrow \frac{b}{25} \times 32+\operatorname{Cln} 2-\frac{b}{25}=\frac{62}{5} \Rightarrow C=0 \& b=10$
19. The area of the region : $R=\left\{(x, y): 5 x^{2} \leq y \leq 2 x^{2}+9\right\}$ is:
(1) $9 \sqrt{3}$ square units
(2) $12 \sqrt{3}$ square units
(3) $11 \sqrt{3}$
square units (4) $6 \sqrt{3}$ square units

Ans. (2)

Sol.

Required area
$=2 \int_{0}^{\sqrt{3}}\left(2 x^{2}+9-5 x^{2}\right) d x$
$=2 \int_{0}^{\sqrt{3}}\left(9-3 x^{2}\right) d x$
$=2\left|9 x-x^{3}\right|_{0}^{\sqrt{3}}=12 \sqrt{3}$
20. Let $f(x)$ be a differentiable function defined on $[0,2]$ such that $f^{\prime}(x)=f^{\prime}(2-x)$ for all $x \in(0,2), f(0)=1$ and $f(2)=\mathrm{e}^{2}$. Then the value of $\int_{0}^{2} f(x) \mathrm{d} x$ is:
(1) $1+\mathrm{e}^{2}$
(2) $1-\mathrm{e}^{2}$
(3) $2\left(1-e^{2}\right)$
(4) $2\left(1+e^{2}\right)$

Ans. (1)
Sol. $f^{\prime}(x)=f^{\prime}(2-x)$
On integrating both side $f(x)=-f(2-x)+c$
put $x=0$
$f(0)+f(2)=c \quad \Rightarrow c=1+e^{2}$
$\Rightarrow f(x)+f(2-x)=1+e^{2}$
$I=\int_{0}^{2} f(x) d x=\int_{0}^{1}\{f(x)+f(2-x)\} d x=\left(1+e^{2}\right)$

Section B

1. The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is \qquad .

Ans. 2
Sol. $\mathrm{x} \geq 5$
$(\mathrm{x}+1)^{2}+(\mathrm{x}-5)=\frac{27}{4}$
$\Rightarrow x^{2}+3 \mathrm{x}-4=\frac{27}{4}$
$\Rightarrow \mathrm{x}^{2}+3 \mathrm{x}-\frac{43}{4}=0$
$\Rightarrow 4 \mathrm{x}^{2}+12 \mathrm{x}-43=0$
$x=\frac{-12 \pm \sqrt{144+688}}{8}$
$\mathrm{x}=\frac{-12 \pm \sqrt{832}}{8}=\frac{-12 \pm 28.8}{8}$
$=\frac{-3 \pm 7.2}{2}$
$=\frac{-3+7.2}{2}, \frac{-3-7.2}{2}$ (Therefore no solution)
For $\mathrm{x} \leq 5$
$(\mathrm{x}+1)^{2}-(\mathrm{x}-5)=\frac{27}{4}$
$\mathrm{x}^{2}+\mathrm{x}+6-\frac{27}{4}=0$
$4 x^{2}+4 \mathrm{x}-3=0$
$x=\frac{-4 \pm \sqrt{16+48}}{8}$
$x=\frac{-4 \pm 8}{8} \Rightarrow x=-\frac{12}{8}, \frac{4}{8}$
$\therefore 2$ Real Root's
2. The students $S_{1}, S_{2}, \ldots, S_{10}$ are to be divided into 3 groups A, B and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities of forming such groups is \qquad .

Ans. 31650

Sol.
$C \rightarrow 1 \quad 9\left[_{B}^{A}\right.$
$C \rightarrow 2$
$8\left[\begin{array}{l}A \\ B\end{array}\right.$
$C \rightarrow 3 \quad 7\left[\begin{array}{l}A \\ B\end{array}\right.$
$={ }^{10} \mathrm{C}_{1}\left[2^{9}-2\right]+{ }^{10} \mathrm{C}_{2}\left[2^{8}-2\right]+{ }^{10} \mathrm{C}_{3}\left[2^{7}-2\right]$
$=2^{7}\left[{ }^{10} \mathrm{C}_{1} \times 4+{ }^{10} \mathrm{C}_{2} \times 2+{ }^{10} \mathrm{C}_{3}\right]-20-90-240$
$=128[40+90+120]-350$
$=(128 \times 250)-350$
$=10[3165]=31650$
3. If $a+\alpha=1, b+\beta=2$ and $a f(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0$, then the value of the expression $\frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}$ is \qquad -.

Ans. 2
Sol. $a f(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}$
$x \rightarrow \frac{1}{x}$
af $\left(\frac{1}{x}\right)+a f(x)=\frac{b}{x}+\beta x$
(i) + (ii)
$(a+\alpha)\left[f(x)+f\left(\frac{1}{x}\right)\right]=\left(x+\frac{1}{x}\right)(b+\beta)$
$\frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}=\frac{2}{1}=2$
4. If the variance of 10 natural numbers $1,1,1, \ldots, 1, k$ is less than 10 , then the maximum possible value of k is \qquad .
Ans. 11
Sol. $\sigma^{2}=\frac{\Sigma x^{2}}{n}-\left(\frac{\Sigma \mathrm{x}}{n}\right)^{2}$
$\sigma^{2}=\frac{\left(9+k^{2}\right)}{10}-\left(\frac{9+\mathrm{k}}{10}\right)^{2}<10$
$\left(90+k^{2}\right) 10-\left(81+k^{2}+8 k\right)<1000$
$90+10 k^{2}-k^{2}-18 k-81<1000$
$9 k^{2}-18 k+9<1000$
$(\mathrm{k}-1)^{2}<\frac{1000}{9} \Rightarrow k-1<\frac{10 \sqrt{10}}{3}$
$k<\frac{10 \sqrt{10}}{3}+1$
Maximum integral value of $k=11$
5. Let λ be an integer. If the shortest distance between the lines $x-\lambda=2 y-1=-2 z$ and $x=y+2 \lambda=z-\lambda$ is $\frac{\sqrt{7}}{2 \sqrt{2}}$, then the value of $|\lambda|$ is

Ans. 1
Sol. $\frac{x-\lambda}{1}=\frac{y-\frac{1}{2}}{\frac{1}{2}}=\frac{z}{-\frac{1}{2}}$
$\frac{x-\lambda}{2}=\frac{y-\frac{1}{2}}{1}=\frac{2}{-1}$
Point on line $=\left(\lambda, \frac{1}{2}, 0\right)$
$\frac{\mathrm{x}}{1}=\frac{\mathrm{y}+2 \lambda}{1}=\frac{\mathrm{z}-\lambda}{1}$

Distance between skew lines $=\frac{\left[\begin{array}{lll}\vec{a}_{2}-\vec{a}_{1} & \vec{b}_{1} & \vec{b}_{2}\end{array}\right]}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}$
$\frac{\left|\begin{array}{ccc}\lambda & \frac{1}{2}+2 \lambda & -\lambda \\ 2 & 1 & -1 \\ 1 & 1 & 1 \\ \left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 1 & 1\end{array}\right|\end{array}\right|}{l}$
$=\frac{\left|-5 \lambda-\frac{3}{2}\right|}{\sqrt{14}}=\frac{\sqrt{7}}{2 \sqrt{2}}$ (given)
$=|10 \lambda+3|=7 \Rightarrow \lambda=-1$
$\Rightarrow|\lambda|=1$
6. Let $i=\sqrt{-1}$. If $\frac{(-1+i \sqrt{3})^{21}}{(1-i)^{24}}+\frac{(1+i \sqrt{3})^{21}}{(1+i)^{24}}=k$, and $\mathrm{n}=[|k|]$ be the greatest integral part of $|\mathrm{k}|$. Then $\sum_{j=0}^{n+5}(j+5)^{2}-\sum_{j=0}^{n+5}(j+5)$ is equal to \qquad .
Ans. 310
Sol. $\frac{\left(2 e^{i \frac{2 \pi}{3}}\right)^{21}}{\left(\sqrt{2} \mathrm{e}^{-\mathrm{i} \frac{\pi}{4}}\right)^{24}}+\frac{\left(2 \mathrm{e}^{\mathrm{i} \frac{\pi}{3}}\right)^{21}}{\left(\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{4}}\right)^{24}}$
$\Rightarrow \frac{2^{21} \cdot e^{i 14 \pi}}{2^{12} \cdot e^{-\mathrm{i} 6 \pi}}+\frac{2^{21}\left(\mathrm{e}^{\mathrm{i} 7 \pi}\right)}{2^{12}\left(\mathrm{e}^{\mathrm{i} 6 \pi}\right)}$
$\Rightarrow 2^{9} \mathrm{e}^{\mathrm{i}(20 \pi)}+2^{9} \mathrm{e}^{\mathrm{i} \pi}$
$\Rightarrow 2^{9}+2^{9}(-1)=0$
$\mathrm{n}=0$
$\sum_{\mathrm{j}=0}^{5}(\mathrm{j}+5)^{2}-\sum_{\mathrm{j}=0}^{5}(\mathrm{j}+5)$
$\Rightarrow\left[5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2}\right]-[5+6+7+8+9+10]$
$\Rightarrow\left[\left(1^{2}+2^{2}+\ldots .+10^{2}\right)-\left(1^{2}+2^{2}+3^{2}+4^{2}\right)\right]-[(1+2+3+\ldots . .+10)-(1+2+3+4)]$
$\Rightarrow(385-30)-[55-10]$
$\Rightarrow 355-45 \Rightarrow 310$ ans.
7. Let a point P be such that its distance from the point $(5,0)$ is thrice the distance of P from the point $(-5,0)$. If the locus of the point P is a circle of radius r, then $4 r^{2}$ is equal to

Ans. 56
Sol. Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$
Given
$\mathrm{PA}=3 \mathrm{~PB}$
$P A^{2}=9 P^{2}$
$\Rightarrow(\mathrm{h}-5)^{2}+\mathrm{k}^{2}=9\left[(\mathrm{~h}+5)^{2}+\mathrm{k}^{2}\right]$
$\Rightarrow 8 \mathrm{~h}^{2}+8 \mathrm{k}^{2}+100 \mathrm{~h}+200=0$
\therefore Locus
$x^{2}+y^{2}+\left(\frac{25}{2}\right) x+25=0$
$\therefore \mathrm{c} \equiv\left(\frac{-25}{4}, 0\right)$
$\therefore r^{2}=\left(\frac{-25}{4}\right)^{2}-25$
$=\frac{625}{16}-25$
$=\frac{225}{16}$
$\therefore 4 \mathrm{r}^{2}=4 \times \frac{225}{16}=\frac{225}{4}=56.25$
After Round of $4 r^{2}=56$
8. For integers n and r , let $\binom{n}{r}= \begin{cases}{ }^{n} C_{r}, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{cases}$

The maximum value of k for which the sum
$\sum_{i=0}^{k}\binom{10}{i}\binom{15}{k-i}+\sum_{i=0}^{k+1}\binom{12}{i}\binom{13}{k+1-i}$ exists, is equal to \qquad .

Ans. Bonus

Sol. $\quad(1+x)^{10}={ }^{10} \mathrm{C}_{0}+{ }^{10} \mathrm{C}_{1} \mathrm{x}+{ }^{10} \mathrm{C}_{2} \mathrm{x}+\ldots \ldots .+{ }^{2} \mathrm{C}_{10} \mathrm{x}{ }^{10}$
$(1+x)^{15}={ }^{15} C_{0}+{ }^{15} C_{1} x+\ldots . .{ }^{15} C_{k-1} x^{k-1}+{ }^{15} C_{k} x^{k}+{ }^{15} C_{k+1} x^{k+1}+\ldots . . .{ }^{15} C_{15} x^{15}$
$\sum_{\mathrm{i}=0}^{\mathrm{k}}\left(10 \mathrm{C}_{\mathrm{i}}\right)\left(15 \mathrm{C}_{\mathrm{k}-\mathrm{i}}\right)={ }^{10} \mathrm{C}_{0} \cdot{ }^{15} \mathrm{C}_{\mathrm{k}}+{ }^{10} \mathrm{C}_{1} \cdot{ }^{15} \mathrm{C}_{\mathrm{k}-1}+\ldots . .+{ }^{10} \mathrm{C}_{\mathrm{k}} \cdot{ }^{15} \mathrm{C}_{0}$
Coefficient of x_{k} in $(1+x)^{25}$
$={ }^{25} \mathrm{C}_{\mathrm{k}}$
$\sum_{i=0}^{k+1}\left({ }^{12} C_{i}\right)\left({ }^{13} \mathrm{C}_{\mathrm{k}+1-\mathrm{i}}\right)={ }^{12} \mathrm{C}_{0} \cdot{ }^{13} \mathrm{C}_{\mathrm{k}+1}+{ }^{12} \mathrm{C}_{1} \cdot{ }^{13} \mathrm{C}_{\mathrm{k}}+\ldots \ldots .+{ }^{12} \mathrm{C}_{\mathrm{k}+1} \cdot{ }^{13} \mathrm{C}_{0}$
Coefficient of x^{k+1} in $(1+x)^{25}$
$={ }^{25} \mathrm{C}_{\mathrm{k}+1}$
${ }^{25} C_{k}+{ }^{25} C_{k+1}={ }^{26} C_{k+1}$
As ${ }^{n} C_{r}$ is defined for all values of n as will as r. so ${ }^{26} C_{k+1}$ always exist
Now k is unbounded so maximum values is not defined.
9. The sum of first four terms of a geometric progression (G.P.) is $\frac{65}{12}$ and the sum of their respective reciprocals is $\frac{65}{18}$. If the product of first three terms of the G.P. is 1 , and the third term is α, then 2α is \qquad .

Ans. 3
Sol. $a, a r, a r^{2}, a r^{3}$
$a+a r+a r^{2}+a r^{3}=\frac{65}{12}$
$\frac{1}{a}+\frac{1}{a r}+\frac{1}{a r^{2}}+\frac{1}{a r^{3}}=\frac{65}{18}$
$\frac{1}{a}\left(\frac{r^{3}+r^{2}+r+1}{r^{3}}\right)=\frac{65}{18}$
$\frac{(i)}{(i i)}, a^{2} r^{3}=\frac{18}{12}=\frac{3}{2}$
$a^{3} r^{3}=1 \Rightarrow a\left(\frac{3}{2}\right)=1 \Rightarrow a=\frac{2}{3}$
$\frac{4}{9} r^{3}=\frac{3}{2} \Rightarrow r^{3}=\frac{3^{3}}{2^{3}} \Rightarrow r=\frac{3}{2}$
$\alpha=a r^{2}=\frac{2}{3} \cdot\left(\frac{3}{2}\right)^{2}=\frac{3}{2}$
$2 \alpha=3$
10. If the area of the triangle formed by the positive x-axis, the normal and the tangent to the circle $(x-2)^{2}+(y-3)^{2}=25$ at the point $(5,7)$ is A, then 24 A is equal to \qquad -.

Ans. Bonus

Sol.

Equation of normal at P
$(y-7)=\left(\frac{7-3}{5-2}\right)(x-5)$
$3 y-21=4 x-20$
$\Rightarrow 4 x-3 y+1=0$
$\Rightarrow \quad M\left(-\frac{1}{4}, 0\right)$
Equation of tangent at P
$(y-7)=-\frac{3}{4}(x-5)$
$4 y-28=-3 x+15$
$\Rightarrow 3 x+4 y=43$
$\Rightarrow \quad \mathrm{N}\left(\frac{43}{3}, 0\right)$
Hence $\operatorname{ar}(\triangle \mathrm{PMN})=\frac{1}{2} \times \mathrm{MN} \times 7$
$A=\frac{1}{2} \times \frac{175}{12} \times 7$
$\Rightarrow 24 \mathrm{~A}=1225$
As positive x - axis is given in the question so question should be bonus.

