MATHEMATICS JEE-MAIN (February-Attempt) 26 February (Shift-2) Paper

Section - A

1.	Let L be a line obtained from the intersection of two planes
	x + 2y + z = 6 and y + 2z = 4. If point P(α , β , γ) is the foot of
	perpendicular from (3, 2, 1) on L, then the value of $21(\alpha + \beta + \gamma)$
	equals :
	(1) 142
	(2) 68
	(3) 136
	(4) 102
Ans.	(4)
Sol.	Dr's of line $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 3\hat{i} - 2\hat{j} + \hat{k}$ Dr/s :- (3,-2, 1)
	Points on the line (-2,4,0)
	Equation of the line $\frac{x+2}{3} = \frac{y-4}{-2} = \frac{z}{1} = \lambda$
	Dr's of PQ ; $3\lambda-5, -2\lambda + 2. \lambda - 1$ Dr's of y lines are $(3, -2, 1)$ Since PQ \perp line $3(3\lambda - 5) - 2(-2\lambda + 2) + 1(\lambda - 1) = 0$ $\lambda = \frac{10}{7}$ P $\left(\frac{16}{7}, \frac{8}{7}, \frac{10}{7}\right)$ $21(\alpha + \beta + \gamma) = 21\left(\frac{34}{7}\right) = 102$

2. The sum of the series
$$\sum_{n=1}^{\infty} \frac{n^2 + 6n + 10}{(2n+1)!}$$
 is equal to :

(1)
$$\frac{41}{8} e + \frac{19}{8} e^{-1} - 10$$

(2) $-\frac{41}{8} e + \frac{19}{8} e^{-1} - 10$
(3) $\frac{41}{8} e - \frac{19}{8} e^{-1} - 10$
(4) $\frac{41}{8} e + \frac{19}{8} e^{-1} + 10$

Sol.
$$\sum_{n=1}^{\infty} \frac{n^{4} + 6n + 10}{(2n+1)!}$$

Put 2n + 1 = r, where r = 3,5,7,...

$$\Rightarrow n = \frac{r-1}{2}$$

$$\frac{n^{2} - 6n + 10}{(2n+1)!} = \frac{\left(\frac{r-1}{2}\right)^{2} + 3r - 3 + 10}{r!} = \frac{r^{2} + 10r + 29}{4r!}$$
Now
$$\sum_{r=35,7} \frac{r(r-1) + 11r + 29}{4r!} = \frac{1}{4} \sum_{r=3,5,7,...} \left(\frac{1}{(r-2)!} + \frac{11}{(r-1)!} + \frac{29}{r!}\right)$$

$$= \frac{1}{4} \left\{ \left(\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \dots\right) + 11\left(\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots\right) + 29\left(\frac{1}{3!} + \frac{1}{5!} + \frac{1}{7!} + \dots\right) \right\}$$

$$= \frac{1}{4} \left\{ \frac{e - \frac{1}{e}}{2} + 11\left(\frac{e + \frac{1}{e} - 2}{2}\right) + 29\left(\frac{e - \frac{1}{2} - 2}{2}\right) \right\}$$

$$= \frac{1}{8} \left\{ e - \frac{1}{e} + 11e + \frac{11}{e} - 22 + 29e - \frac{29}{e} - 58 \right\}$$

$$= \frac{1}{8} \left\{ 41e - \frac{19}{e} - 80 \right\}$$

3. Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. Then $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ equals : (1) 2a + 4(2) 2a - 4

(3) 4 - 2a (4) a + 4 (3) Ans. Sol. By L-H rule $L = \lim_{x \to a} \frac{f(a) - af'(x)}{1}$ ∴ L = 4 – 2a

- 4. Let A (1, 4) and B(1, -5) be two points. Let P be a point on the circle $(x - 1)^2 + (y - 1)^2 = 1$ such that $(PA)^2 + (PB)^2$ have maximum value, then the points, P, A and B lie on :
 - (1) a parabola
 - (2) a straight line
 - (3) a hyperbola
 - (4) an ellipse

5. If the locus of the mid-point of the line segment from the point (3, 2) to a point on the circle, $x^2 + y^2 = 1$ is a circle of the radius r, then r is equal to :

6. Let slope of the tangent line to a curve at any point P(x, y) be given by $\frac{xy^2 + y}{x}$. If the curve intersects the line x + 2y = 4 at x = -2, then the value of y, for which the point (3, y) lies on the curve, is :

$$(1) - \frac{18}{11}$$
$$(2) - \frac{18}{19}$$

$$(3) - \frac{4}{3}$$

$$(4) \frac{18}{35}$$

Ans. (2)
Sol.
$$\frac{dy}{dx} = \frac{xy^2 + y}{x}$$

$$\Rightarrow \frac{xdy - ydx}{y^2} = xdx$$

$$\Rightarrow -d\left(\frac{x}{y}\right) = d\left(\frac{x^2}{2}\right)$$

$$\Rightarrow \frac{-x}{y} = \frac{x^2}{2} + C$$
Curve intersect the line x + 2y = 4 at x = -2
So, -2 + 2y = 4 \Rightarrow y = 3
So the curve passes through (-2, 3)

$$\Rightarrow \frac{2}{3} = 2 + C$$

$$\Rightarrow C = -\frac{4}{3}$$
It also passes through (3, y)

$$-\frac{3}{y} = \frac{9}{2} - \frac{4}{3}$$

$$\Rightarrow -\frac{3}{y} = \frac{19}{6}$$

$$\Rightarrow y = -\frac{18}{19}$$

- 7. Let A_1 be the area of the region bounded by the curves $y = \sin x$, $y = \cos x$ and y-axis in the first quadrant. Also, let A_2 be the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x-axis and $x = \frac{\pi}{2}$ in the first quadrant. Then, (1) $A_1 = A_2$ and $A_1 + A_2 = \sqrt{2}$ (2) $A_1 : A_2 = 1 : 2$ and $A_1 + A_2 = 1$
 - (3) $2A_1 = A_2$ and $A_1 + A_2 = 1 + \sqrt{2}$
 - (4) $A_1 : A_2 = 1 : \sqrt{2}$ and $A_1 + A_2 = 1$

8. If 0 < a, b < 1, and tan⁻¹ a + tan⁻¹ b = $\frac{\pi}{4}$, then the value of $(a^2 + b^2) = (a^3 + b^3) = (a^4 + b^4)$

$$(a + b) - \left(\frac{a^{2} + b^{2}}{2}\right) + \left(\frac{a^{3} + b^{3}}{3}\right) - \left(\frac{a^{3} + b^{4}}{4}\right) + \dots \text{ is :}$$
(1) $\log_{e} 2$
(2) $\log_{e} \left(\frac{e}{2}\right)$
(3) e
(4) $e^{2} - 1$
Ans. (1)
Sol. $\tan^{-1}\left(\frac{a + b}{1 - ab}\right) = \frac{\pi}{4} \Rightarrow a + b = 1 - ab \Rightarrow (1 + a) (1 + b) = 2$
Now, $(a + b) - \left(\frac{a^{2} + b^{2}}{2}\right) + \left(\frac{a^{3} + b^{3}}{3}\right) \dots \infty$
 $= \left(a - \frac{a^{2}}{2} + \frac{a^{3}}{3} \dots\right) + \left(b - \frac{b^{2}}{2} + \frac{b^{3}}{3} \dots\right)$

 $\log_{e} (1 + a) + \log_{e} (1 + b) = \log_{e} (1 + a) (1 + b) = \log_{e} 2$

```
9. Let F_1(A, B, C) = (A \land \sim B) \lor [\sim C \land (A \lor B)] \lor \sim A and F_2(A, B) = (A \lor B) \lor (B \to \sim A) be two logical expressions. Then :
(1) F_1 is not a tautology but F_2 is a tautology
```

- (2) F_1 is a tautology but F_2 is not a tautology
- (3) F_1 and F_2 both area tautologies
- (4) Both F_1 and F_2 are not tautologies

Ans. (1)

```
Sol. Truth table for F<sub>1</sub>
```

Α	В	С	~A	~B	~C	$A \lor \sim B$	A∨B	~C∨ (A∨B)	$[\sim C \land (A \lor B)] \lor \sim A$	$(A \land \sim B) \lor [\sim C \land (A \lor B)] \lor \sim A$	
Т	Т	Т	F	F	F	F	Т	F	F	F	
Т	Т	F	F	F	Т	F	Т	Т	Т	Т	
Т	F	Т	F	Т	F	Т	Т	F	F	Т	
Т	F	F	F	Т	Т	Т	Т	Т	Т	Т	
F	Т	Т	Т	F	F	F	Т	F	Т	Т	
F	Т	F	Т	F	Т	F	Т	Т	Т	Т	
F	F	Т	Т	Т	F	F	F	F	Т	Т	
F	F	F	Т	Т	Т	F	F	F	Т	Т	

Not a tautology

Truth table for F₂

А	В	A∨B	~ A	$B \rightarrow \sim A$	$(A \lor B) \lor (B \to \sim A)$	
Т	Т	Т	F	F	Т	
Т	F	Т	F	Т	Т	
F	Т	Т	Т	Т	Т	
F	F	F	Т	Т	Т	

 F_1 not shows tautology and F_2 shows tautology

10. Consider the following system of equations :

x + 2y - 3z = a

2x + 6y - 11z = b

x - 2y + 7z = c,

Where a, b and c are real constants. Then the system of equations :

- (1) has a unique solution when 5a = 2b + c
- (2) has infinite number of solutions when 5a = 2b + c
- (3) has no solution for all a, b and c
- (4) has a unique solution for all a, b and c

Ans. (2)

Sol. $D = \begin{vmatrix} 1 & 2 \\ 2 & 6 \end{vmatrix}$

$$= 20 - 2(25) - 3(-10)$$

-3

$$= 20 - 50 + 30 = 0$$

 $\begin{vmatrix} a & 2 & -3 \end{vmatrix}$

 $D_{1} = \begin{vmatrix} b & 6 & -11 \\ c & -2 & 7 \end{vmatrix}$

$$= 20a - 2(7b + 11c) - 3(-2b - 6c)$$

$$= 20a - 14b - 22c + 6b + 18c$$

$$= 20a - 8b - 4c$$

$$= 4(5a - 2b - c)$$

$$D_{2} = \begin{vmatrix} 1 & a & -3 \\ 2 & b & -11 \\ 1 & c & 7 \end{vmatrix}$$

$$= 7b + 11c - a(25) - 3(2c - b)$$

$$= 7b + 11c - 25a - 6c + 3b$$

$$= -25a + 10b + 5c$$

$$= -5(5a - 2b - c)$$

$$D_{3} = \begin{vmatrix} 1 & 2 & a \\ 1 & -2 & c \end{vmatrix}$$

$$= 6c + 2b - 2(2c - b) - 10a$$

$$= -10a + 4b + 2c$$

$$= -2(5a - 2b - c)$$

for infinite solution

$$D = D_{1} = D_{2} = D_{3} = 0$$

$$\Rightarrow 5a = 2b + c$$

- **11.** A seven digit number is formed using digit 3, 3, 4, 4, 4, 5, 5. The probability, that number so formed is divisible by 2, is :
 - (1) $\frac{6}{7}$
 - (2) $\frac{4}{7}$
 - (3) $\frac{3}{7}$ (4) $\frac{1}{7}$

Ans. (3)

Sol.
$$n(s) = \frac{7!}{2!3!2!}$$

 $n(E) = \frac{6!}{2!2!2!}$
 $P(E) = \frac{n(E)}{n(S)} = \frac{6!}{7!} \times \frac{2!3!2!}{2!2!2!}$
 $\frac{1}{7} \times 3 = \frac{3}{7}$

12. If vectors $\vec{a_1} = x\hat{i} - \hat{j} + \hat{k}$ and $\vec{a_2} = \hat{i} + y\hat{j} + z\hat{k}$ are collinear, then a possible unit vector parallel to the vector $x\hat{i} + y\hat{j} + z\hat{k}$ is :

(1)
$$\frac{1}{\sqrt{2}} (-\hat{j} + \hat{k})$$

(2) $\frac{1}{\sqrt{2}} (\hat{i} - \hat{j})$
(3) $\frac{1}{\sqrt{3}} (\hat{i} - \hat{j} + \hat{k})$
(4) $\frac{1}{\sqrt{3}} (\hat{i} + \hat{j} - \hat{k})$

Ans. (3)

Sol. $\frac{x}{1} = -\frac{1}{y} = \frac{1}{z} = \lambda$ (let)

Unit vector parallel to
$$x\hat{i} + y\hat{j} + z\hat{k} = \pm \frac{\left(\lambda\hat{i} - \frac{1}{\lambda}\hat{j} + \frac{1}{\lambda}\hat{k}\right)}{\sqrt{\lambda^2 + \frac{2}{\lambda^2}}}$$

For $\lambda = 1$, it is $\pm \frac{\left(\hat{i} - \hat{j} + \hat{k}\right)}{\sqrt{3}}$

13. For x>0, if
$$f(x) = \int_{1}^{x} \frac{\log_{e} t}{(1+t)} dt$$
, then $f(e) + f\left(\frac{1}{e}\right)$ is equal to :

(1) $\frac{1}{2}$ (2) -1

(3) 1

(4) 0

Ans. (1)

Sol.
$$f(e) + f\left(\frac{1}{e}\right) = \int_{1}^{e} \frac{\ell n t}{1+t} dt + \int_{1}^{1/e} \frac{\ell n t}{1+t} dt = I_{1} + I_{2}$$

 $I_{2} = \int_{1}^{1/e} \frac{\ell n t}{1+t} dt$ put $t = \frac{1}{z}$, $dt = -\frac{dz}{z^{2}}$
 $= \int_{1}^{e} -\frac{\ell n z}{1+\frac{1}{z}} \times \left(-\frac{dz}{z^{2}}\right) = \int_{1}^{e} \frac{\ell n z}{z(z+1)} dz$

$$f(e) + f\left(\frac{1}{e}\right) = \int_{1}^{e} \frac{\ell n t}{1+t} dt + \int_{1}^{e} \frac{\ell n t}{t(t+1)} dt = \int_{1}^{e} \frac{\ell n t}{1+t} + \frac{\ell n t}{t(t+1)} dt$$
$$= \int_{1}^{e} \frac{\ell n t}{t} dt \{ \ln t = u, \frac{1}{t} dt \}$$
$$= du = \int_{0}^{1} u \ du = \frac{u^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$$

14. Let
$$f: R \to R$$
 be defined as $f(x) = \begin{cases} 2\sin\left(-\frac{\pi x}{2}\right), & \text{if } x < -1 \\ |ax^2 + x + b|, \text{if } -1 \le x \le 1 \\ \sin(\pi x) & \text{if } x > 1 \end{cases}$

If f(x) is continuous on R, then a + b equals :

- (1) 3
- (2) -1
- (3) -3

(4) 1

Ans. (2)

- Sol. If f is continuous at x = -1, then $f(-1^-) = f(-1)$ $\Rightarrow 2 = |a - 1 + b|$ $\Rightarrow |a + b - 1| = 2$ (i) similarly $f(1^-) = f(1)$ $\Rightarrow |a + b + 1| = 0$
 - \Rightarrow a + b = -1

15. {1,2,3.....,10}and Let A = f: А be defined $A \rightarrow$ as k+1 if k is odd f(k) =Then the number of possible functions if k is even k $g : A \rightarrow A$ such that gof = f is : (1) 10⁵ $(2)^{10}C_5$ (3)5⁵ (4) 5!

kers

Ans. (1) Sol. g(f(x)) = f(x) $\Rightarrow g(x) = x$, when x is even. 5 elements in A can be mapped to any 10 So, $10^5 \times 1 = 10^5$

16. A natural number has prime factorization given by $n = 2^{x}3^{y}5^{z}$, where y and z are such that y + z=5 and $y^{-1}+z^{-1} = \frac{5}{6}$, y > z. Then the number of odd divisors of n, including 1, is : (1) 11(2) 6x (3)12 (4) 6 Ans. (3) v + z = 5Sol. ...(1) $\frac{1}{v} + \frac{1}{z} = \frac{5}{6}$ nkers $\Rightarrow \frac{y+z}{yz} = \frac{5}{6}$ $\Rightarrow \frac{5}{vz} = \frac{5}{6}$ \Rightarrow yz = 6 Also $(y - z)^2 = (y + z)^2 - 4yz$ $\Rightarrow (y - z)^2 = (y + z)^2 - 4yz$ \Rightarrow (y - z)² = 25 - 4(6) = 1 \Rightarrow y - z = 1 ...(2) from (1) and (2), y = 3 and z = 2for calculating odd divisor of $p = 2^{x} \cdot 3^{y} \cdot 5^{z}$ x must be zero $P = 2^0.3^3.5^2$

 \therefore total odd divisors must be (3 + 1) (2 + 1) = 12

17. Let $f(x) = \sin^{-1} x$ and $g(x) = \frac{x^2 - x - 2}{2x^2 - x - 6}$. If $g(2) = \lim_{x \to 2} g(x)$, then the domain of the function fog is :

$$(1) (-\infty, -2] \cup \left[-\frac{4}{3}, \infty \right)$$
$$(2) (-\infty, -1] \cup [2, \infty)$$
$$(3) (-\infty, -2] \cup [-1, \infty)$$
$$(4) (-\infty, -2] \cup \left[-\frac{3}{2}, \infty \right)$$

Ans. (1)

Sol.
$$g(2) = \lim_{x \to 2} \frac{(x-2)(x+1)}{(2x+3)(x-2)} = \frac{3}{7}$$

For domain of fog (x)
 $\left| \frac{x^2 - x - 2}{2x^2 - x - 6} \right| \le 1 \Rightarrow (x+1)^2 \le (2x+3)^2 \Rightarrow 3x^2 + 10x + 8 \ge 0$
 $\Rightarrow (3x+4) (x+2) \ge 0$
 $x \in (-\infty, -2] \cup \left(-\frac{4}{3}, \infty\right]$

18. If the mirror image of the point (1,3,5) with respect to the plane $4x-5y+2z = 8 \text{ is } (\alpha, \beta, \gamma), \text{ then } 5(\alpha + \beta + \gamma) \text{ equals:}$ (1) 47 (2) 39 (3) 43 (4) 41 **Ans. (1)** Sol. Image of (1, 3, 5) in the plane $4x - 5y + 2z = 8 \text{ is } (\alpha, \beta, \gamma)$ $\Rightarrow \frac{\alpha - 1}{4} = \frac{\beta - 3}{-5} = \frac{\gamma - 5}{2} = -2 \frac{(4(1) - 5(3) + 2(5) - 8)}{4^2 + 5^2 + 2^2} = \frac{2}{5}$ $\therefore \alpha = 1 + 4 \left(\frac{2}{5}\right) = \frac{13}{5}$ $\beta = 3 - 5 \left(\frac{2}{5}\right) = 1 - 5^{5}$

$$\beta = 3 - 5 \left(\frac{5}{5}\right) = 1 = \frac{5}{5}$$

$$\gamma = 5 + 2 \left(\frac{2}{5}\right) = \frac{29}{5}$$
Thus, $5(\alpha + \beta + \gamma) = 5 \left(\frac{13}{5} + \frac{5}{5} + \frac{29}{5}\right) = 47$

Let $f(x) = \int_{1}^{x} e^{t} f(t) dt + e^{x}$ be a differentiable function for all $x \in \mathbb{R}$. Then 19. f(x)equals. $(1)2e^{(e^{X}-1)}-1$ (2) $e^{(e^{X}-1)}$ (3) 2e^{e^x} -1 (4) $e^{e^{x}} - 1$ (1) Ans. Given, $f(x) = \int_{0}^{x} e^{t} f(t) dt + e^{x}$ Sol. ...(1) Differentiating both sides w.r.t x $f'(x) = e^x \cdot f(x) + e^x$ (Using Newton Leibnitz Theorem) $\Rightarrow \frac{f'(x)}{f(x)+1} = e^x$ Integrating w.r.t x $\int \frac{f'(x)}{f(x)+1} dx = \int e^{x} dx$ $\Rightarrow ln (f(x) + 1) = e^{x} + c$ Put x = 0kers ln 2 = 1 + c (:: f(0) = 1, from equation (1)) $\therefore \ln(f(x) + 1) = e^x + \ln 2 - 1$ \Rightarrow f(x) + 1 = 2. e^{ex-1} $\Rightarrow f(x) = 2e^{e^{x}-1}-1$

20. The triangle of maximum area that can be inscribed in a given circle of radius 'r' is:

(1) A right angle triangle having two of its sides of length 2r and r.

(2) An equilateral triangle of height $\frac{2r}{2}$.

- (3) An isosceles triangle with base equal to 2r.
- (4) An equilateral triangle having each of its side of length $\sqrt{3}$ r.

Ans. (4)

Sol. Triangle of maximum area that can be inscribed in a circle is an equilateral triangle.

Let ${\scriptstyle \Delta} ABC$ be inscribed in circle,

1. The total number of 4-digit numbers whose greatest common divisor with 18 is 3, is

Ans. 1000

- Sol. Since, required number has G.C.D with 18 as 3. It must be odd multiple of '3' but not a multiple of '9'.
- **2.** Let α and β be two real numbers such that $\alpha + \beta = 1$ and $\alpha\beta = -1$. Let $P_n = (\alpha)^n + (\beta)^n$, $P_{n-1} = 11$ and $P_{n+1} = 29$ for some integer $n \ge 1$. Then, the value of P_n^2 is _____.

Ans. 324

Sol. Given, $\alpha + \beta = 1$, $\alpha\beta = -1$ \therefore Quadratic equation with roots α,β is $x^2-x-1 = 0$ $\Rightarrow \alpha^2 = \alpha + 1$ Multiplying both sides by α^{n-1} $\alpha^{n+1} = \alpha^n + \alpha^{n-1}$ (1) Similarly, $\beta^{n+1} = \beta^n + \beta^{n-1}$ (2) Adding (1) & (2) $\alpha^{n+1} + \beta^{n+1} = (\alpha^n + \beta^n) + (\alpha^{n-1} + \beta^{n-1})$ $\Rightarrow P_{n+1} = P_n + P_{n-1}$ $\Rightarrow 29 = P_n + 11 \text{ (Given, } P_{n+1} = 29, P_{n-1} = 11)$ $\Rightarrow P_n = 18$ $\therefore P_n^2 = 18^2 = 324$

3. Let X₁, X₂,..., X₁₈ be eighteen observation such that $\sum_{i=1}^{18} (X_i - \alpha) = 36 \text{ and } \sum_{i=1}^{18} (X_i - \beta)^2 = 90, \text{ where } \alpha \text{ and } \beta \text{ are distinct real numbers. If the standard deviation of these observations is 1, then the value of <math>|\alpha - \beta|$ is _____.

Given, $\sum_{i=1}^{18} (X_i - \alpha) = 36$ Sol. $\Rightarrow \sum x_i - 18\alpha = 36$ $\Rightarrow \sum x_i - 18(\alpha + 2)$...(1) Also, $\sum_{i=1}^{18} (X_i - \beta)^2 = 90$ $\Rightarrow \ \sum x_i^2 + 18\beta^2 - 2\beta \sum x_i = 90$ $\Rightarrow \sum x_i^2 + 18\beta^2 + 2\beta \times 18(\alpha + 2) = 90$ (using equation (1)) $\Rightarrow \sum x_i^2 = 90 - 18\beta^2 + 36\beta(\alpha + 2)$ $\sigma^{2} = 1 \Longrightarrow \frac{1}{18} \sum x_{i}^{2} - \left(\frac{\sum x_{i}}{18}\right)^{2} = 1$ ($:: \sigma = 1$, given) $\Rightarrow \frac{1}{18} (90 - 18\beta^2 + 36\alpha\beta + 72\beta) - \left(\frac{18(\alpha + 2)}{18}\right)^2 = 1$ \Rightarrow 90 - 18 β^2 + 36 $\alpha\beta$ + 72 β - 18(α + 2)² = 18 \Rightarrow 5 - β^2 + 2 $\alpha\beta$ + 4 β - (α + 2)² = 1 \Rightarrow 5 - β^2 + 2 $\alpha\beta$ + 4 β - α^2 - 4 - 4 α = 1 $\Rightarrow \alpha^2 - \beta^2 + 2\alpha\beta + 4\beta - 4\alpha = 0$ \Rightarrow ($\alpha - \beta$)($\alpha - \beta + 4$) = 0 $\Rightarrow \alpha - \beta = -4$ $\therefore |\alpha - \beta| = 4$ (α ≠ β)

5. Let L be a common tangent line to the curves $4x^2 + 9y^2 = 36$ and $(2x)^2 + (2y)^2 = 31$. Then the square of the slope of the line L is

Ans. 3 Sol. $E: \frac{x^2}{9} + \frac{y^2}{4} = 1$ $C: x^2 + y^2 = \frac{31}{4}$ equation of tangent to ellipse is $y = mx \pm \sqrt{9m^2 + 4}$...(i) equation of tangent to circle is

$$y = mx \pm \sqrt{\frac{31}{4}m^{2} + \frac{31}{4}} \qquad ...(ii)$$

Comparing equation (i) & (ii)
 $9m^{2} + 4 = \frac{31}{4}m^{2} + \frac{31}{4}$
 $\Rightarrow 36m^{2} + 16 = 31m^{2} + 31$
 $\Rightarrow 5m^{2} = 15$
 $\Rightarrow m^{2} = 3$

6. If the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix}$ satisfies the equation

L.H.S =
$$A^{20} + \alpha A^{19} + \beta A = \begin{bmatrix} 1 + \alpha + \beta & 0 & 0 \\ 0 & 2^{20} + \alpha 2^{19} + 2\beta & 0 \\ 3\alpha + 3\beta & 0 & 1 - \alpha - \beta \end{bmatrix}$$

R.H.S = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \alpha + \beta = 0 \text{ and } 2^{20} + \alpha 2^{19} + 2\beta = 4$
 $\Rightarrow 2^{20} + \alpha (2^{19} - 2) = 4$
 $\Rightarrow \alpha = \frac{4 - 2^{20}}{2^{19} - 2} = -2$
 $\Rightarrow \beta = 2$
 $\therefore \beta - \alpha = 4$

7. If the arithmetic mean and geometric mean of the p^{th} and q^{th} terms of the sequence -16, 8, -4, 2, satisfy the equation $4x^2 - 9x + 5 = 0$, then p+q is equal to ______.

Ans. 10

Sol. Given, $4x^2 - 9x + 5 = 0$ $\Rightarrow (x - 1) (4x - 5) = 0$ $\Rightarrow A.M = \frac{5}{4}$, G.M = 1 (Q A.M > G.M) Again, for the series -16, 8, -4, 2 pth term $t_p = -16 \left(\frac{-1}{2}\right)^{p-1}$ qth term $t_p = -16 \left(\frac{-1}{2}\right)^{q-1}$ Now, A.M = $\frac{t_p + t_q}{2} = \frac{5}{4} \& G.M = \sqrt{t_p t_q} = 1$ $\Rightarrow 16^2 \left(-\frac{1}{2}\right)^{p+q-2} = 1$ $\Rightarrow (-2)^8 = (-2)^{(p+q-2)}$ $\Rightarrow p + q = 10$

8. Let the normals at all the points on a given curve pass through a fixed point (a, b). If the curve passes through (3, -3) and $(4, -2\sqrt{2})$, and given that $a - 2\sqrt{2}$ b = 3, then (a^2+b^2+ab) is equal to_____.

Ans. 9

Let the equation of normal is $Y - y = -\frac{1}{m}(X - x)$, where, $m = \frac{dy}{dx}$ Sol. As it passes through (a, b) $b - y = -\frac{1}{m}(a - x) = -\frac{dx}{dy}(a - x)$ \Rightarrow (b - y)dy = (x - a)dx $by - \frac{y^2}{2} = \frac{x^2}{2} - ax + c$...(i) It passes through $(3,-3) \& (4,-2\sqrt{2})$ $\therefore -3b - \frac{9}{2} = \frac{9}{2} - 3a + c$ $\Rightarrow -6b - 9 = 9 - 6a + 2c$ \Rightarrow 6a - 6b - 2c = 18 \Rightarrow 3a - 3b - c = 9 ...(ii) Also $-2\sqrt{2}b - 4 = 8 - 4a + c$ $4a - 2\sqrt{2}b - c = 12$...(iii) Also a - $2\sqrt{2}$ b = 3 ...(iv) (given) **(er** (ii) - (iii) \Rightarrow - a + $(2\sqrt{2} - 3)b = -3$(V) $(iv) + (v) \Rightarrow b = 0, a = 3$ $\therefore a^2 + b^2 + ab = 9$ Let z be those complex number which satisfy 9. $|z+5| \le 4$ and $z(1+i) + \overline{z}(1-i) \ge -10, i = \sqrt{-1}$. If the maximum value of $|z+1|^2$ is $\alpha + \beta \sqrt{2}$, then the value of $(\alpha + \beta)$ is

Ans. 48

Sol. Given, $|z + 5| \le 4$ $\Rightarrow (x + 5)^2 + y^2 \le 16$...(1) Also, $z(1+i) + \overline{z}(1-i) \ge -10$. $\Rightarrow x - y \ge -5$...(2) From (1) and (2) Locus of z is the shaded region in the diagram.

|z + 1| represents distance of `z' from Q(-1, 0) Clearly `p' is the required position of `z' when |z + 1| is maximum. ∴ P = $(-5 - 2\sqrt{2}, -2\sqrt{2})$ ∴ (PQ)²|_{max} = 32 + 16 $\sqrt{2}$ ⇒ α = 32 ⇒ β = 16 Thus, α + β = 48

- **10.** Let a be an integer such that all the real roots of the polynomial $2x^5+5x^4+10x^3+10x^2+10x+10$ lie in the interval (a, a + 1). Then, |a| is equal to _____.
- Ans. 2

Sol. Let,
$$f(x) = 2x^5 + 5x^4 + 10x^3 + 10x^2 + 10x + 10$$

$$\Rightarrow f'(x) = 10 (x^{4} + 2x^{3} + 3x^{2} + 2x + 1)$$
$$= 10 \left(x^{2} + \frac{1}{x^{2}} + 2 \left(x + \frac{1}{x} \right) + 3 \right)$$
$$= 10 \left(\left(x + \frac{1}{x} \right)^{2} + 2 \left(x + \frac{1}{x} \right) + 1 \right)$$
$$= 10 \left(\left(x + \frac{1}{x} \right) + 1 \right)^{2} > 0; \forall x \in \mathbb{R}$$

 \therefore f(x) is strictly increasing function. Since it is an odd degree polynomial it will have exactly one real root.

Now, by observation f(-1) = 3 > 0 f(-2) = -64 + 80 - 80 + 40 - 20 + 10 = -34 < 0 $\Rightarrow f(x)$ has at least one root in $(-2,-1) \equiv (a, a + 1)$ $\Rightarrow a = -2$ $\Rightarrow |a| = 2$

