# MATHEMATICS <br> JEE-MAIN (February-Attempt) 26 February (Shift-2) Paper 

## Section - A

1. Let $L$ be a line obtained from the intersection of two planes $x+2 y+z=6$ and $y+2 z=4$. If point $P(\alpha, \beta, \gamma)$ is the foot of perpendicular from $(3,2,1)$ on $L$, then the value of $21(\alpha+\beta+\gamma)$ equals :
(1) 142
(2) 68
(3) 136
(4) 102

Ans. (4)
Sol. Dr's of line $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right|=3 \hat{i}-2 \hat{j}+\hat{k}$
Dr/s :- $(3,-2,1)$
Points on the line $(-2,4,0)$
Equation of the line $\frac{x+2}{3}=\frac{y-4}{-2}=\frac{z}{1}=\lambda$


Dr's of PQ ; 3 $3-5,-2 \lambda+2 . \lambda-1$
Dr's of $y$ lines are $(3,-2,1)$
Since PQ $\perp$ line
$3(3 \lambda-5)-2(-2 \lambda+2)+1(\lambda-1)=0$
$\lambda=\frac{10}{7}$
$P\left(\frac{16}{7}, \frac{8}{7}, \frac{10}{7}\right)$
$21(\alpha+\beta+\gamma)=21\left(\frac{34}{7}\right)=102$
2. The sum of the series $\sum_{n=1}^{\infty} \frac{n^{2}+6 n+10}{(2 n+1)!}$ is equal to :
(1) $\frac{41}{8} e+\frac{19}{8} e^{-1}-10$
(2) $-\frac{41}{8} e+\frac{19}{8} e^{-1}-10$
(3) $\frac{41}{8} e-\frac{19}{8} e^{-1}-10$
(4) $\frac{41}{8} e+\frac{19}{8} e^{-1}+10$

Ans.
(3)

Sol. $\sum_{n=1}^{\infty} \frac{n^{2}+6 n+10}{(2 n+1)!}$
Put $2 n+1=r$, where $r=3,5,7, \ldots$
$\Rightarrow \mathrm{n}=\frac{\mathrm{r}-1}{2}$
$\frac{n^{2}-6 n+10}{(2 n+1)!}=\frac{\left(\frac{r-1}{2}\right)^{2}+3 r-3+10}{r!}=\frac{r^{2}+10 r+29}{4 r!}$
Now $\sum_{r=3,5,7} \frac{r(r-1)+11 r+29}{4 r!}=\frac{1}{4} \sum_{r=3,5,7, \ldots \ldots}\left(\frac{1}{(r-2)!}+\frac{11}{(r-1)!}+\frac{29}{r!}\right)$
$=\frac{1}{4}\left\{\left(\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\ldots ..\right)+11\left(\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots.\right)+29\left(\frac{1}{3!}+\frac{1}{5!}+\frac{1}{7!}+\ldots ..\right)\right\}$
$=\frac{1}{4}\left\{\frac{e-\frac{1}{e}}{2}+11\left(\frac{e+\frac{1}{e}-2}{2}\right)+29\left(\frac{e-\frac{1}{e}-2}{2}\right)\right\}$
$=\frac{1}{8}\left\{e-\frac{1}{e}+11 e+\frac{11}{e}-22+29 e-\frac{29}{e}-58\right\}$
$=\frac{1}{8}\left\{41 \mathrm{e}-\frac{19}{\mathrm{e}}-80\right\}$
3. Let $f(x)$ be a differentiable function at $x=a$ with $f^{\prime}(a)=2$ and $f(a)=4$. Then $\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$ equals :
(1) $2 a+4$
(2) $2 a-4$
(3) $4-2 a$
(4) $a+4$

Ans. (3)
Sol. By L-H rule
$L=\lim _{x \rightarrow a} \frac{f(a)-a f^{\prime}(x)}{1}$
$\therefore L=4-2 a$
4. Let $A(1,4)$ and $B(1,-5)$ be two points. Let $P$ be a point on the circle $(x-1)^{2}+(y-1)^{2}=1$ such that $(P A)^{2}+(P B)^{2}$ have maximum value, then the points, $P, A$ and $B$ lie on :
(1) a parabola
(2) a straight line
(3) a hyperbola
(4) an ellipse

Ans. (2)
Sol.

$\therefore P A^{2}=\cos ^{2} \theta+(\sin \theta-3)^{2}=10-6 \sin \theta$
$P B^{2}=\cos ^{2} \theta+(\sin \theta-6)^{2}=37-12 \sin \theta$
$P A^{2}+\left.P B^{2}\right|_{\text {max. }}=47-\left.18 \sin \theta\right|_{\text {min. }} \Rightarrow \theta=\frac{3 \pi}{2}$
$\therefore \mathrm{P}, \mathrm{A}, \mathrm{B}$ lie on a line $\mathrm{x}=1$
5. If the locus of the mid-point of the line segment from the point $(3,2)$ to a point on the circle, $x^{2}+y^{2}=1$ is a circle of the radius $r$, then $r$ is equal to :
(1) $\frac{1}{4}$
(2) $\frac{1}{2}$
(3) 1
(4) $\frac{1}{3}$

Ans. (2)
Sol.

$\therefore P \equiv(2 h-3,2 k-2) \rightarrow$ on circle
$\therefore\left(h-\frac{3}{2}\right)^{2}+(k-1)^{2}=\frac{1}{4}$
$\Rightarrow$ radius $=\frac{1}{2}$
6. Let slope of the tangent line to a curve at any point $P(x, y)$ be given by $\frac{x y^{2}+y}{x}$. If the curve intersects the line $x+2 y=4$ at $x=-2$, then the value of $y$, for which the point $(3, y)$ lies on the curve, is :
(1) $-\frac{18}{11}$
(2) $-\frac{18}{19}$
(3) $-\frac{4}{3}$
(4) $\frac{18}{35}$

Ans. (2)
Sol. $\frac{d y}{d x}=\frac{x y^{2}+y}{x}$
$\Rightarrow \frac{x d y-y d x}{y^{2}}=x d x$
$\Rightarrow-d\left(\frac{x}{y}\right)=d\left(\frac{x^{2}}{2}\right)$
$\Rightarrow \frac{-x}{y}=\frac{x^{2}}{2}+C$
Curve intersect the line $x+2 y=4$ at $x=-2$
So, $-2+2 y=4 \Rightarrow y=3$
So the curve passes through $(-2,3)$
$\Rightarrow \frac{2}{3}=2+C$
$\Rightarrow \mathrm{C}=\frac{-4}{3}$
$\therefore$ curve is $\frac{-x}{y}=\frac{x^{2}}{2}-\frac{4}{3}$
It also passes through $(3, y)$
$\frac{-3}{y}=\frac{9}{2}-\frac{4}{3}$
$\Rightarrow \frac{-3}{y}=\frac{19}{6}$
$\Rightarrow \mathrm{y}=-\frac{18}{19}$
7. Let $A_{1}$ be the area of the region bounded by the curves $y=\sin x$, $y=\cos x$ and $y$-axis in the first quadrant. Also, let $A_{2}$ be the area of the region bounded by the curves $y=\sin x, y=\cos x, x$-axis and $x=$ $\frac{\pi}{2}$ in the first quadrant. Then,
(1) $A_{1}=A_{2}$ and $A_{1}+A_{2}=\sqrt{2}$
(2) $A_{1}: A_{2}=1: 2$ and $A_{1}+A_{2}=1$
(3) $2 \mathrm{~A}_{1}=\mathrm{A}_{2}$ and $\mathrm{A}_{1}+\mathrm{A}_{2}=1+\sqrt{2}$
(4) $A_{1}: A_{2}=1: \sqrt{2}$ and $A_{1}+A_{2}=1$

## Ans. (4)

Sol. $\quad A_{1}+A_{2}=\int_{0}^{\pi / 2} \cos x \cdot d x=\left.\sin x\right|_{0} ^{\pi / 2}=1$

$A_{1}=\int_{0}^{\pi / 4}(\cos x-\sin x) d x=\left.(\sin x+\cos x)\right|_{0} ^{\pi / 4}=\sqrt{2}-1$
$\therefore A_{2}=1-(\sqrt{2}-1)=2-\sqrt{2}$
$\therefore \frac{A_{1}}{A_{2}}=\frac{\sqrt{2}-1}{\sqrt{2}(\sqrt{2}-1)}=\frac{1}{\sqrt{2}}$
8. If $0<a, b<1$, and $\tan ^{-1} a+\tan ^{-1} b=\frac{\pi}{4}$, then the value of $(a+b)-\left(\frac{a^{2}+b^{2}}{2}\right)+\left(\frac{a^{3}+b^{3}}{3}\right)-\left(\frac{a^{4}+b^{4}}{4}\right)+.$. is :
(1) $\log _{e} 2$
(2) $\log _{e}\left(\frac{e}{2}\right)$
(3) e
(4) $e^{2}-1$

Ans. (1)
Sol. $\quad \tan ^{-1}\left(\frac{a+b}{1-a b}\right)=\frac{\pi}{4} \Rightarrow a+b=1-a b \Rightarrow(1+a)(1+b)=2$
Now, $(a+b)-\left(\frac{a^{2}+b^{2}}{2}\right)+\left(\frac{a^{3}+b^{3}}{3}\right) \ldots \infty$
$=\left(a-\frac{a^{2}}{2}+\frac{a^{3}}{3} \cdots ..\right)+\left(b-\frac{b^{2}}{2}+\frac{b^{3}}{3} \cdots.\right)$

$$
\log _{e}(1+a)+\log _{e}(1+b)=\log _{e}(1+a)(1+b)=\log _{e} 2
$$

9. Let $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ and $F_{2}(A, B)=$
$(A \vee B) \vee(B \rightarrow \sim A)$ be two logical expressions. Then :
(1) $F_{1}$ is not a tautology but $F_{2}$ is a tautology
(2) $F_{1}$ is a tautology but $F_{2}$ is not a tautology
(3) $F_{1}$ and $F_{2}$ both area tautologies
(4) Both $F_{1}$ and $F_{2}$ are not tautologies

Ans. (1)
Sol. Truth table for $F_{1}$

| A | B | C | $\sim \mathrm{A}$ | $\sim \mathrm{B}$ | $\sim \mathrm{C}$ | $\mathrm{A} \vee \sim \mathrm{B}$ | $\mathrm{A} \vee \mathrm{B}$ | $\sim \mathrm{C} \vee(\mathrm{A} \vee \mathrm{B})$ | $[\sim \mathrm{C} \wedge(\mathrm{A} \vee \mathrm{B})] \vee \sim \mathrm{A}$ | $(\mathrm{A} \wedge \sim \mathrm{B}) \vee[\sim \mathrm{C} \wedge(\mathrm{A} \vee \mathrm{B})] \vee \sim \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | F | F | T | F | F | F |
| T | T | F | F | F | T | F | T | T | T | T |
| T | F | T | F | T | F | T | T | F | F | T |
| T | F | F | F | T | T | T | T | T | T | T |
| F | T | T | T | F | F | F | T | F | T | T |
| F | T | F | T | F | T | F | T | T | T | T |
| F | F | T | T | T | F | F | F | F | T | T |
| F | F | F | T | T | T | F | F | F | T | T |

Not a tautology
Truth table for $F_{2}$

| A | B | $\mathrm{A} \vee \mathrm{B}$ | $\sim \mathrm{A}$ | $\mathrm{B} \rightarrow \sim \mathrm{A}$ | $(\mathrm{A} \vee \mathrm{B}) \vee$ | $(\mathrm{B} \rightarrow \sim \mathrm{A})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T |  |
| T | F | T | F | T | T |  |
| F | T | T | T | T | T |  |
| F | F | F | T | T | T |  |

$F_{1}$ not shows tautology and $F_{2}$ shows tautology
10. Consider the following system of equations :
$x+2 y-3 z=a$
$2 x+6 y-11 z=b$
$x-2 y+7 z=c$,
Where $a, b$ and $c$ are real constants. Then the system of equations :
(1) has a unique solution when $5 a=2 b+c$
(2) has infinite number of solutions when $5 a=2 b+c$
(3) has no solution for all a, b and c
(4) has a unique solution for all $a, b$ and $c$

Ans. (2)
Sol. $\quad D=\left|\begin{array}{ccc}1 & 2 & -3 \\ 2 & 6 & -11 \\ 1 & -2 & 7\end{array}\right|$
$=20-2(25)-3(-10)$
$=20-50+30=0$
$D_{1}=\left|\begin{array}{ccc}a & 2 & -3 \\ b & 6 & -11 \\ c & -2 & 7\end{array}\right|$
$=20 a-2(7 b+11 c)-3(-2 b-6 c)$
$=20 a-14 b-22 c+6 b+18 c$
$=20 a-8 b-4 c$
$=4(5 a-2 b-c)$
$D_{2}=\left|\begin{array}{ccc}1 & a & -3 \\ 2 & b & -11 \\ 1 & c & 7\end{array}\right|$
$=7 b+11 c-a(25)-3(2 c-b)$
$=7 b+11 c-25 a-6 c+3 b$
$=-25 a+10 b+5 c$
$=-5(5 a-2 b-c)$
$D_{3}=\left|\begin{array}{ccc}1 & 2 & a \\ 2 & 6 & b \\ 1 & -2 & c\end{array}\right|$
$=6 c+2 b-2(2 c-b)-10 a$
$=-10 a+4 b+2 c$
$=-2(5 a-2 b-c)$
for infinite solution
$D=D_{1}=D_{2}=D_{3}=0$
$\Rightarrow 5 \mathrm{a}=2 \mathrm{~b}+\mathrm{c}$
11. A seven digit number is formed using digit $3,3,4,4,4,5,5$. The probability, that number so formed is divisible by 2 , is :
(1) $\frac{6}{7}$
(2) $\frac{4}{7}$
(3) $\frac{3}{7}$
(4) $\frac{1}{7}$

Ans. (3)
Sol. $n(s)=\frac{7!}{2!3!2!}$
$n(E)=\frac{6!}{2!2!2!}$
$P(E)=\frac{n(E)}{n(S)}=\frac{6!}{7!} \times \frac{2!3!2!}{2!2!2!}$
$\frac{1}{7} \times 3=\frac{3}{7}$
12. If vectors $\vec{a}_{1}=x \hat{i}-\hat{j}+\hat{k}$ and $\vec{a}_{2}=\hat{i}+y \hat{j}+z \hat{k}$ are collinear, then $a$ possible unit vector parallel to the vector $x \hat{i}+y \hat{j}+z \hat{k}$ is :
(1) $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$
(2) $\frac{1}{\sqrt{2}}(\hat{i}-\hat{j})$
(3) $\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}+\hat{k})$
(4) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$

Ans. (3)
Sol. $\frac{x}{1}=-\frac{1}{y}=\frac{1}{z}=\lambda$ (let)
Unit vector parallel to $x \hat{i}+y \hat{j}+z \hat{k}= \pm \frac{\left(\lambda \hat{i}-\frac{1}{\lambda} \hat{j}+\frac{1}{\lambda} \hat{k}\right)}{\sqrt{\lambda^{2}+\frac{2}{\lambda^{2}}}}$
For $\lambda=1$, it is $\pm \frac{(\hat{i}-\hat{j}+\hat{k})}{\sqrt{3}}$
13. For $x>0$, if $f(x)=\int_{1}^{x} \frac{\log _{e} t}{(1+t)} d t$, then $f(e)+f\left(\frac{1}{e}\right)$ is equal to :
(1) $\frac{1}{2}$
(2) -1
(3) 1
(4) 0

Ans. (1)
Sol. $\mathrm{f}(\mathrm{e})+\mathrm{f}\left(\frac{1}{\mathrm{e}}\right)=\int_{1}^{\mathrm{e}} \frac{\ell \mathrm{nt}}{1+\mathrm{t}} \mathrm{dt}+\int_{1}^{1 / \mathrm{e}} \frac{\ell \mathrm{nt}}{1+\mathrm{t}} \mathrm{dt}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$\mathrm{I}_{2}=\int_{1}^{1 / \mathrm{e}} \frac{\mathrm{nt}}{1+\mathrm{t}} \mathrm{dt} \quad$ put $\mathrm{t}=\frac{1}{\mathrm{z}}, \mathrm{dt}=-\frac{\mathrm{dz}}{\mathrm{z}^{2}}$
$=\int_{1}^{e}-\frac{\ell n z}{1+\frac{1}{z}} \times\left(-\frac{d z}{z^{2}}\right)=\int_{1}^{e} \frac{\ell n z}{z(z+1)} d z$
$\mathrm{f}(\mathrm{e})+\mathrm{f}\left(\frac{1}{\mathrm{e}}\right)=\int_{1}^{\mathrm{e}} \frac{\ell n \mathrm{nt}}{1+\mathrm{t}} \mathrm{dt}+\int_{1}^{\mathrm{e}} \frac{\ell \mathrm{nt}}{\mathrm{t}(\mathrm{t}+1)} \mathrm{dt}=\int_{1}^{\mathrm{e}} \frac{\ell n \mathrm{n}}{1+\mathrm{t}}+\frac{\ell n \mathrm{nt}}{\mathrm{t}(\mathrm{t}+1)} \mathrm{dt}$
$=\int_{1}^{\mathrm{e}} \frac{\ell \mathrm{nt}}{\mathrm{t}} \mathrm{dt}\left\{\ln \mathrm{t}=\mathrm{u}, \frac{1}{\mathrm{t}} \mathrm{dt}\right\}$
$=d u=\int_{0}^{1} u d u=\left.\frac{u^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}$
14. Let $f: R \rightarrow R$ be defined as $f(x)=\left\{\begin{array}{cc}2 \sin \left(-\frac{\pi x}{2}\right), & \text { if } x<-1 \\ \left|a x^{2}+x+b\right|, & \text { if }-1 \leq x \leq 1 \\ \sin (\pi x) & \text { if } x>1\end{array}\right.$

If $f(x)$ is continuous on $R$, then $a+b$ equals :
(1) 3
(2) -1
(3) -3
(4) 1

Ans. (2)
Sol. If f is continuous at $\mathrm{x}=-1$, then
$f\left(-1^{-}\right)=f(-1)$
$\Rightarrow 2=|\mathrm{a}-1+\mathrm{b}|$
$\Rightarrow|a+b-1|=2$
similarly
$f\left(1^{-}\right)=f(1)$
$\Rightarrow|a+b+1|=0$
$\Rightarrow \mathrm{a}+\mathrm{b}=-1$
15. Let $A=\{1,2,3 \ldots \ldots, 10\}$ and $f: A \rightarrow A$ be defined as $f(k)=\left\{\begin{array}{cc}k+1 & \text { if } k \text { is odd } \\ k & \text { if } k \text { is even }\end{array} \quad\right.$ Then the number of possible functions
$g: A \rightarrow A$ such that gof $=f$ is :
(1) $10^{5}$
(2) ${ }^{10} \mathrm{C}_{5}$
(3) $5^{5}$
(4) 5 !

Ans. (1)
Sol. $\quad g(f(x))=f(x)$
$\Rightarrow g(x)=x$, when $x$ is even.
5 elements in A can be mapped to any 10
So, $10^{5} \times 1=10^{5}$
16. A natural number has prime factorization given by $n=2^{x} 3^{y} 5^{z}$, where $y$ and $z$ are such that $y+z=5$ and $y^{-1}+z^{-1}=\frac{5}{6}, y>z$. Then the number of odd divisors of $n$, including 1 , is :
(1) 11
(2) $6 x$
(3) 12
(4) 6

Ans. (3)
Sol. $y+z=5$
$\frac{1}{y}+\frac{1}{z}=\frac{5}{6}$
$\Rightarrow \frac{y+z}{y z}=\frac{5}{6}$
$\Rightarrow \frac{5}{y z}=\frac{5}{6}$
$\Rightarrow y z=6$
Also $(y-z)^{2}=(y+z)^{2}-4 y z$
$\Rightarrow(y-z)^{2}=(y+z)^{2}-4 y z$
$\Rightarrow(y-z)^{2}=25-4(6)=1$
$\Rightarrow \mathrm{y}-\mathrm{z}=1$
from (1) and (2), $y=3$ and $z=2$
for calculating odd divisor of $p=2^{x} \cdot 3^{y} .5^{z}$
$x$ must be zero
$P=2^{0} .3^{3} .5^{2}$
$\therefore$ total odd divisors must be $(3+1)(2+1)=12$
17. Let $f(x)=\sin ^{-1} x$ and $g(x)=\frac{x^{2}-x-2}{2 x^{2}-x-6}$. If $g(2)=\lim _{x \rightarrow 2} g(x)$, then the domain of the function fog is :
(1) $(-\infty,-2] \cup\left[-\frac{4}{3}, \infty\right)$
(2) $(-\infty,-1] \cup[2, \infty)$
(3) $(-\infty,-2] \cup[-1, \infty)$
(4) $(-\infty,-2] \cup\left[-\frac{3}{2}, \infty\right)$

Ans. (1)
Sol. $g(2)=\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{(2 x+3)(x-2)}=\frac{3}{7}$
For domain of fog ( $x$ )
$\left|\frac{x^{2}-x-2}{2 x^{2}-x-6}\right| \leq 1 \Rightarrow(x+1)^{2} \leq(2 x+3)^{2} \Rightarrow 3 x^{2}+10 x+8 \geq 0$
$\Rightarrow(3 x+4)(x+2) \geq 0$
$x \in(-\infty,-2] \cup\left(-\frac{4}{3}, \infty\right]$
18. If the mirror image of the point $(1,3,5)$ with respect to the plane $4 x-5 y+2 z=8$ is $(\alpha, \beta, \gamma)$, then $5(\alpha+\beta+\gamma)$ equals:
(1) 47
(2) 39
(3) 43
(4) 41

## Ans. (1)

Sol. Image of $(1,3,5)$ in the plane $4 x-5 y+2 z=8$ is $(\alpha, \beta, \gamma)$
$\Rightarrow \frac{\alpha-1}{4}=\frac{\beta-3}{-5}=\frac{\gamma-5}{2}=-2 \frac{(4(1)-5(3)+2(5)-8)}{4^{2}+5^{2}+2^{2}}=\frac{2}{5}$
$\therefore \alpha=1+4\left(\frac{2}{5}\right)=\frac{13}{5}$
$\beta=3-5\left(\frac{2}{5}\right)=1=\frac{5}{5}$
$\gamma=5+2\left(\frac{2}{5}\right)=\frac{29}{5}$
Thus, $5(\alpha+\beta+\gamma)=5\left(\frac{13}{5}+\frac{5}{5}+\frac{29}{5}\right)=47$
19. Let $f(x)=\int_{0}^{x} e^{t} f(t) d t+e^{x}$ be a differentiable function for all $x \in R$. Then $f(x)$ equals.
(1) $2 e^{\left(\mathrm{e}^{\mathrm{x}}-1\right)}-1$
(2) $e^{\left(e^{x}-1\right)}$
(3) $2 e^{e^{x}}-1$
(4) $e^{e^{x}}-1$

## Ans. (1)

Sol. Given, $f(x)=\int_{0}^{x} e^{t} f(t) d t+e^{x}$
Differentiating both sides w.r.t x
$f^{\prime}(x)=e^{x} \cdot f(x)+e^{x} \quad$ (Using Newton Leibnitz Theorem)
$\Rightarrow \frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})+1}=\mathrm{e}^{\mathrm{x}}$
Integrating w.r.t $x$
$\int \frac{f^{\prime}(x)}{f(x)+1} d x=\int e^{x} d x$
$\Rightarrow \ell n(f(x)+1)=e^{x}+c$
Put $x=0$
ln $2=1+c \quad(\because f(0)=1$, from equation (1))
$\therefore \ln (f(x)+1)=\mathrm{e}^{\mathrm{x}}+\ln 2-1$
$\Rightarrow f(x)+1=2 . \mathrm{e}^{\mathrm{e}_{\mathrm{x}-1}}$
$\Rightarrow f(x)=2 e^{e^{x}-1}-1$
20. The triangle of maximum area that can be inscribed in a given circle of radius ' $r$ ' is:
(1) A right angle triangle having two of its sides of length $2 r$ and $r$.
(2) An equilateral triangle of height $\frac{2 r}{3}$.
(3) An isosceles triangle with base equal to $2 r$.
(4) An equilateral triangle having each of its side of length $\sqrt{3} r$.

## Ans. (4)

Sol. Triangle of maximum area that can be inscribed in a circle is an equilateral triangle.
Let $\triangle A B C$ be inscribed in circle,


Height $=A D=\frac{3 r}{2}$
Again in $\triangle A B D$
Now $\sin 60^{\circ}=\frac{3 \frac{r}{2}}{A B}$
$\Rightarrow A B=\sqrt{3} r$

## Section - B

1. The total number of 4-digit numbers whose greatest common divisor with 18 is 3 , is
Ans. 1000
Sol. Since, required number has G.C.D with 18 as 3 . It must be odd multiple of ' 3 ' but not a multiple of ' 9 '.
(i) Now, 4 -digit number which are odd multiple of ' 3 ' are, 1005,1011,1017, $\qquad$ $9999 \rightarrow 1499$
(ii) 4-digit number which are odd multiple of 9 are, 1017, 1035, $\qquad$ $9999 \rightarrow 499$
$\because$ Required numbers $=1499-499=1000$
2. Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1$.

Let $\mathrm{P}_{\mathrm{n}}=(\alpha)^{\mathrm{n}}+(\beta)^{\mathrm{n}}, \mathrm{P}_{\mathrm{n}-1}=11$ and $\mathrm{P}_{\mathrm{n}+1}=29$ for some integer $\mathrm{n} \geq 1$.
Then, the value of $P_{n}^{2}$ is $\qquad$ .
Ans. 324
Sol. Given, $\alpha+\beta=1, \alpha \beta=-1$
$\therefore$ Quadratic equation with roots $\alpha, \beta$ is $x^{2}-x-1=0$
$\Rightarrow \alpha^{2}=\alpha+1$
Multiplying both sides by $\alpha^{\mathrm{n}-1}$
$\alpha^{n+1}=\alpha^{n}+\alpha^{n-1}$

Similarly,
$\beta^{n+1}=\beta^{n}+\beta^{n-1}$
Adding (1) \& (2)
$\alpha^{\mathrm{n}+1}+\beta^{\mathrm{n}+1}=\left(\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}\right)+\left(\alpha^{\mathrm{n}-1}+\beta^{\mathrm{n}-1}\right)$
$\Rightarrow \mathrm{P}_{\mathrm{n}+1}=\mathrm{P}_{\mathrm{n}}+\mathrm{P}_{\mathrm{n}-1}$
$\Rightarrow 29=P_{n}+11$ (Given, $P_{n+1}=29, P_{n-1}=11$ )
$\Rightarrow P_{n}=18$
$\therefore \mathrm{P}_{\mathrm{n}}^{2}=18^{2}=324$
3. Let $X_{1}, X_{2}, \ldots \ldots . . . X_{18}$ be eighteen observation such that $\sum_{i=1}^{18}\left(X_{i}-\alpha\right)=36$ and $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90$, where $\alpha$ and $\beta$ are distinct real numbers. If the standard deviation of these observations is 1 , then the value of $|\alpha-\beta|$ is $\qquad$ _.
Ans. 4
Sol. Given, $\sum_{i=1}^{18}\left(X_{i}-\alpha\right)=36$
$\Rightarrow \sum \mathrm{x}_{\mathrm{i}}-18 \alpha=36$
$\Rightarrow \sum \mathrm{x}_{\mathrm{i}}-18(\alpha+2)$
Also, $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90$
$\Rightarrow \sum \mathrm{x}_{\mathrm{i}}^{2}+18 \beta^{2}-2 \beta \sum \mathrm{x}_{\mathrm{i}}=90$
$\Rightarrow \sum x_{i}^{2}+18 \beta^{2}+2 \beta \times 18(\alpha+2)=90$
(using equation (1))
$\Rightarrow \sum x_{i}^{2}=90-18 \beta^{2}+36 \beta(\alpha+2)$
$\sigma^{2}=1 \Rightarrow \frac{1}{18} \sum \mathrm{x}_{\mathrm{i}}^{2}-\left(\frac{\sum \mathrm{x}_{\mathrm{i}}}{18}\right)^{2}=1 \quad(\because \sigma=1$, given $)$
$\Rightarrow \frac{1}{18}\left(90-18 \beta^{2}+36 \alpha \beta+72 \beta\right)-\left(\frac{18(\alpha+2)}{18}\right)^{2}=1$
$\Rightarrow 90-18 \beta^{2}+36 \alpha \beta+72 \beta-18(\alpha+2)^{2}=18$
$\Rightarrow 5-\beta^{2}+2 \alpha \beta+4 \beta-(\alpha+2)^{2}=1$
$\Rightarrow 5-\beta^{2}+2 \alpha \beta+4 \beta-\alpha^{2}-4-4 \alpha=1$
$\Rightarrow \alpha^{2}-\beta^{2}+2 \alpha \beta+4 \beta-4 \alpha=0$
$\Rightarrow(\alpha-\beta)(\alpha-\beta+4)=0$
$\Rightarrow \alpha-\beta=-4$
$\therefore|\alpha-\beta|=4 \quad(\alpha \neq \beta)$
4. In $I_{m, n}=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$, for $m, n \geq 1$ and $\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} \mathrm{dx}=\alpha \mathrm{I}_{m, n}$, $\alpha \in \mathrm{R}$, then $\alpha$ equals $\qquad$ .

## Ans. 1

Sol. $I_{m, n}=\int_{0}^{1} x^{m-1} \cdot(1-x)^{n-1} d x$
Put $x=\frac{1}{y+1} \Rightarrow d x=\frac{-1}{(y+1)^{2}} d y$
$1-x=\frac{y}{y+1}$
$\therefore I_{m, n}=\int_{\infty}^{0} \frac{y^{n-1}}{(y+1)^{m+n}}(-1) d y=\int_{0}^{\infty} \frac{y^{n-1}}{(y+1)^{m+n}} d y$
Similarly $I_{m, n}=\int_{0}^{1} x^{n-1} \cdot(1-x)^{m-1} d x$
$\Rightarrow I_{m, n}=\int_{0}^{\infty} \frac{y^{m-1}}{(y+1)^{m+n}} d y$
From (i) \& (ii)
$2 I_{m, n}=\int_{0}^{\infty} \frac{y^{m-1}+y^{n-1}}{(y+1)^{m+n}} d y$
$\Rightarrow 2 I_{m, n}=\int_{0}^{1} \frac{y^{m-1}+y^{n-1}}{(y+1)^{m+n}} d y+\int_{1}^{\infty} \frac{y^{m-1}+y^{n-1}}{(y+1)^{m+n}} d y$
Put $y=\frac{1}{z}$ in $I_{2}$
$d y=-\frac{1}{z^{2}} d z$
$\Rightarrow 2 I_{m, n}=\int_{0}^{1} \frac{y^{m-1}+y^{n-1}}{(y+1)^{m+n}} d y+\int_{1}^{0} \frac{z^{m-1}+z^{n-1}}{(z+1)^{m+n}}(-d z)$
$\Rightarrow I_{m, n}=\int_{0}^{1} \frac{y^{m-1}+y^{n-1}}{(y+1)^{m+n}} d y \Rightarrow \alpha=1$
5. Let $L$ be a common tangent line to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$. Then the square of the slope of the line $L$ is

Ans. 3
Sol. $E: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \quad C: x^{2}+y^{2}=\frac{31}{4}$
equation of tangent to ellipse is
$y=m x \pm \sqrt{9 m^{2}+4}$
equation of tangent to circle is
$y=m x \pm \sqrt{\frac{31}{4} m^{2}+\frac{31}{4}}$
Comparing equation (i) \& (ii)
$9 m^{2}+4=\frac{31}{4} m^{2}+\frac{31}{4}$
$\Rightarrow 36 \mathrm{~m}^{2}+16=31 \mathrm{~m}^{2}+31$
$\Rightarrow 5 \mathrm{~m}^{2}=15$
$\Rightarrow \mathrm{m}^{2}=3$
6. If the matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1\end{array}\right]$ satisfies the equation
$A^{20}+\alpha A^{19}+\beta A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ for some real numbers $\alpha$ and $\beta$, then $\beta-$ $\alpha$ is equal to $\qquad$ .

Ans. 4
Sol. $\quad A^{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$
$A^{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 8 & 0 \\ 3 & 0 & -1\end{array}\right]$
$A^{4}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 1\end{array}\right]$
.
-
$A^{19}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2^{19} & 0 \\ 3 & 0 & -1\end{array}\right], A^{20}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2^{20} & 0 \\ 0 & 0 & 1\end{array}\right]$
L.H.S $=A^{20}+\alpha A^{19}+\beta A=\left[\begin{array}{ccc}1+\alpha+\beta & 0 & 0 \\ 0 & 2^{20}+\alpha 2^{19}+2 \beta & 0 \\ 3 \alpha+3 \beta & 0 & 1-\alpha-\beta\end{array}\right]$
R.H.S $=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow \alpha+\beta=0$ and $2^{20}+\alpha 2^{19}+2 \beta=4$
$\Rightarrow 2^{20}+\alpha\left(2^{19}-2\right)=4$
$\Rightarrow \alpha=\frac{4-2^{20}}{2^{19}-2}=-2$
$\Rightarrow \beta=2$
$\therefore \beta-\alpha=4$
7. If the arithmetic mean and geometric mean of the $p^{\text {th }}$ and $q^{\text {th }}$ terms of the sequence $-16,8,-4,2$, $\qquad$ satisfy the equation $4 x^{2}-9 x+5=$ 0 , then $p+q$ is equal to $\qquad$ —.

Ans. 10
Sol. Given, $4 x^{2}-9 x+5=0$
$\Rightarrow(x-1)(4 x-5)=0$
$\Rightarrow A \cdot M=\frac{5}{4}, G \cdot M=1$
Again, for the series
$-16,8,-4,2 \ldots .$.
$p^{\text {th }}$ term $t_{p}=-16\left(\frac{-1}{2}\right)^{p-1}$
$q^{\text {th }}$ term $t_{p}=-16\left(\frac{-1}{2}\right)^{q-1}$
Now, A.M $=\frac{t_{p}+t_{q}}{2}=\frac{5}{4} \& G \cdot M=\sqrt{t_{p} t_{q}}=1$
$\Rightarrow 16^{2}\left(-\frac{1}{2}\right)^{\mathrm{p}+\mathrm{q}-2}=1$
$\Rightarrow(-2)^{8}=(-2)^{(\mathrm{p}+\mathrm{q}-2)}$
$\Rightarrow p+q=10$
8. Let the normals at all the points on a given curve pass through a fixed point $(a, b)$. If the curve passes through $(3,-3)$ and $(4,-2 \sqrt{2})$, and given that $a-2 \sqrt{2} b=3$, then $\left(a^{2}+b^{2}+a b\right)$ is equal to $\qquad$ .

## Ans. 9

Sol. Let the equation of normal is $Y-y=-\frac{1}{m}(X-x)$, where, $m=\frac{d y}{d x}$ As it passes through ( $a, b$ )
$b-y=-\frac{1}{m}(a-x)=-\frac{d x}{d y}(a-x)$
$\Rightarrow(b-y) d y=(x-a) d x$
by $-\frac{y^{2}}{2}=\frac{x^{2}}{2}-a x+c$
It passes through $(3,-3) \&(4,-2 \sqrt{2})$
$\therefore \quad-3 b-\frac{9}{2}=\frac{9}{2}-3 a+c$
$\Rightarrow-6 \mathrm{~b}-9=9-6 \mathrm{a}+2 \mathrm{c}$
$\Rightarrow 6 \mathrm{a}-6 \mathrm{~b}-2 \mathrm{c}=18$
$\Rightarrow 3 a-3 b-c=9$
Also
$-2 \sqrt{2} b-4=8-4 a+c$
$4 a-2 \sqrt{2} b-c=12$
Also $a-2 \sqrt{2} b=3$
(ii) - (iii) $\Rightarrow-a+(2 \sqrt{2}-3) b=-3$
(iv) $+(v) \Rightarrow b=0, \quad a=3$
$\therefore \mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{ab}=9$
9. Let z be those complex number which satisfy
$|z+5| \leq 4$ and $z(1+\mathrm{i})+\bar{z}(1-i) \geq-10, i=\sqrt{-1}$.
If the maximum value of $|z+1|^{2}$ is $\alpha+\beta \sqrt{2}$, then the value of $(\alpha+\beta)$
is $\qquad$ .

Ans. 48
Sol. Given, $|z+5| \leq 4$
$\Rightarrow(x+5)^{2}+y^{2} \leq 16$
Also, $\mathrm{z}(1+\mathrm{i})+\bar{z}(1-i) \geq-10$.
$\Rightarrow x-y \geq-5$
From (1) and (2)
Locus of $z$ is the shaded region in the diagram.

$|z+1|$ represents distance of ' $z$ ' from $Q(-1,0)$
Clearly ' $p$ ' is the required position of ' $z$ ' when $|z+1|$ is maximum.
$\therefore \mathrm{P} \equiv(-5-2 \sqrt{2},-2 \sqrt{2})$
$\left.\therefore(P Q)^{2}\right|_{\max }=32+16 \sqrt{2}$
$\Rightarrow \alpha=32$
$\Rightarrow \beta=16$
Thus, $\alpha+\beta=48$
10. Let a be an integer such that all the real roots of the polynomial $2 x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+10 x+10$ lie in the interval $(a, a+1)$. Then, $|a|$ is equal to $\qquad$ -

Ans. 2
Sol. Let, $f(x)=2 x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+10 x+10$

$$
\begin{aligned}
\Rightarrow f^{\prime}(x) & =10\left(x^{4}+2 x^{3}+3 x^{2}+2 x+1\right) \\
& =10\left(x^{2}+\frac{1}{x^{2}}+2\left(x+\frac{1}{x}\right)+3\right) \\
& =10\left(\left(x+\frac{1}{x}\right)^{2}+2\left(x+\frac{1}{x}\right)+1\right) \\
& =10\left(\left(x+\frac{1}{x}\right)+1\right)^{2}>0 ; \forall x \in R
\end{aligned}
$$

$\therefore f(x)$ is strictly increasing function. Since it is an odd degree polynomial it will have exactly one real root.
Now, by observation
$f(-1)=3>0$
$f(-2)=-64+80-80+40-20+10$
$=-34<0$
$\Rightarrow f(x)$ has at least one root in $(-2,-1) \equiv(a, a+1)$
$\Rightarrow a=-2$

$$
\Rightarrow|a|=2
$$

