CHEMISTRY
 JEE-MAIN (February-Attempt) 26 February (Shift-2) Paper

Section - A

1. 2,4 -DNP test can be used to identify:
(1) aldehyde
(2) halogens
(3) ether
(4) amine

Ans. (1)
Sol.

2. Identify A in the following chemical reaction.

iii) HI, Δ

(1)

(2)

(3)

(4)

Ans. (3)
Sol.

3. The nature of charge on resulting colloidal particles when FeCl_{3} is added to excess of hot water is:
(1) positive
(2) neutral

(3) sometimes positive and sometimes negative
(4) negative

Ans. (1)
Sol. If FeCl_{3} is added to excess of hot water, a positively charged sol of hydrated ferric oxide is formed due to adsorption of Fe^{3+} ions.
4. Match List-I with List-II

List-I
(a)

(b)

(c) $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+2 \mathrm{Na} \xrightarrow{\text { Ether }} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{H}_{5}+2 \mathrm{NaCl}$
(d) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+2 \mathrm{Na} \xrightarrow{\text { Ether }} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}+2 \mathrm{NaCl}$

List-II

(i) Wurtz reaction
(ii) Sandmeyer reaction
(iii) Fitting reaction
(iv) Gatterman reaction

Choose the correct answer from the option given below:
(1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
(3) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Ans. (3)

Sol. (a)

(b)

(D) $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+2 \mathrm{Na} \xrightarrow[\text { (Fitting reaction) }]{\text { Ether }} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}+2 \mathrm{NaCl}$
5. In $\stackrel{1}{\mathrm{C}} \mathrm{H}_{2}=\stackrel{2}{\mathrm{C}}=\stackrel{3}{\mathrm{C}} \mathrm{H}-\stackrel{4}{\mathrm{C}} \mathrm{H}_{3}$ molecule, the hybridization of carbon $1,2,3$ and 4 respectively are:
(1) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
(2) $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
(3) $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
(4) $\mathrm{sp}^{3}, \mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$

Ans. (1)
Sol. $\underset{\mathrm{sp}^{2}}{\mathrm{CH}_{2}}=\underset{\mathrm{sp}}{\mathrm{C}}=\underset{\mathrm{sp}^{2}}{\mathrm{CH}}-\underset{\mathrm{sp}^{3}}{\mathrm{CH}_{3}}$
6. Match List-I with List-II.

List-I

(a) Sucrose
(b) Lactose
(i) β-D-Galactose and β-D-Glucose
(ii) α-D-Glucose and β-D-Fructose
(iii) α-D- Glucose and α-D-Glucose
(c) Maltose

List-II

Choose the correct answer from the options given below:
(1) (a)-(iii), (b)-(ii), (c)-(i)
(2) (a)-(iii), (b)-(i), (c)-(ii)
(3) (a)-(i), (b)-(iii), (c)-(ii)
(4) (a)-(ii), (b)-(i), (c)-(iii)

Ans. (4)
Sol. Sucrose $\rightarrow \alpha-D$ - Glucose and β-D- Fructose
Lactose $\rightarrow \beta$-D- Galactose and β-D- Glucose
Maltose $\rightarrow \alpha$-D- Glucose and $\alpha-\mathrm{D}$ - Glucose
7. Which pair of oxides is acidic in nature?
(1) $\mathrm{N}_{2} \mathrm{O}, \mathrm{BaO}$
(2) $\mathrm{CaO}, \mathrm{SiO}_{2}$
(3) $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{CaO}$
(4) $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$

Ans. (4)
Sol. $\quad \mathrm{B}_{2} \mathrm{O}_{3}$ and SiO_{2} both are oxides of non-metal and hence are acidic in nature.
8. Calgon is used for water treatment. Which of the following statement is NOT true about calgon?
(1) Calgon contains the $2^{\text {nd }}$ most abundant element by weight in the earth's crust.
(2) It is also known as Graham's salt.
(3) It is polymeric compound and is water soluble.
(4) It doesnot remove Ca^{2+} ion by precipitation.

Ans. (1)
Sol. $\mathrm{Na}_{6}\left(\mathrm{PO}_{3}\right)_{6}$ or $\mathrm{Na}_{6} \mathrm{P}_{6} \mathrm{O}_{18}$
Order of abundance of element in earth crust is
$\mathrm{O}>\mathrm{Si}>\mathrm{Al}>\mathrm{Fe}>\mathrm{Ca}>\mathrm{Na}>\mathrm{Mg}>\mathrm{K}$
So second most abundant element in earth crust is Si not Ca.
9. Ceric ammonium nitrate and $\mathrm{CHCl}_{3} /$ alc. KOH are used for the identification of functional groups present in \qquad and \qquad respectively.
(1) alcohol, amine
(2) amine, alcohol
(3) alcohol, phenol
(4) amine, phenol

Ans. (1)
Sol. Alcohol give positive test with ceric ammonium nitrate and primary amines gives carbyl amine test with $\mathrm{CHCl}_{3}, \mathrm{KOH}$.
10. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: In TII_{3}, isomorphous to CsI_{3}, the metal is present in +1 oxidation state.
Reason R: Tl metals has fourteen f electrons in its electronic configuration.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both A and R are correct and R is the correct explanation of A
(2) A is not correct but R is correct
(3) Both A and R are correct R is NOT the correct explanation of A
(4) A is correct but R is not correct

Ans. (3)
Sol. $\mathrm{T} \ell \mathrm{I}_{3}$ is $\mathrm{T} \ell^{+} \mathrm{I}_{3}{ }^{-}$
CsI_{3} is $\mathrm{Cs}^{+} \mathrm{I}_{3}^{-}$
Thallium shows $\mathrm{T} \ell^{+}$state due to inert pair effect.
11. The correct order of electron gain enthalpy is:
(1) $\mathrm{S}>\mathrm{Se}>\mathrm{Te}>\mathrm{O}$
(2) $\mathrm{O}>\mathrm{S}>\mathrm{Se}>\mathrm{Te}$
(3) $\mathrm{S}>\mathrm{O}>\mathrm{Se}>\mathrm{Te}$
(4) $\mathrm{Te}>\mathrm{Se}>\mathrm{S}>0$

Ans. (1)
Sol. Electron gain enthalpy of O is very low due to small size.
12. Identify A in the given chemical reaction.

(1)

(2)

(3)

(4)

Ans. (1)

Sol.

(Internal aldol condensation)
13. Match List-I with List-II

List-I

(a) Siderite
(b) Calamine
(c) Malachite
(d) Cryolite

List-II

(i) Cu
(ii) Ca
(iii) Fe
(iv) Al
(v) Zn

Choose the correct answer from the options given below:
(1) (a)-(i), (b)-(ii), (c)-(v), (d)-(iii)
(2) (a)-(iii), (b)-(v), (c)-(i), (d)-(iv)
(3) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
(4) (a)-(iii), (b)-(i), (c)-(v), (d)-(ii)

Ans. (2)

Sol. Siderite $-\mathrm{FeCO}_{3}$
Calamine $\quad-\mathrm{ZnCO}_{3}$
Malachite $-\mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$
Cryolite $\quad-\mathrm{Na}_{3} \mathrm{AlF}_{6}$
14. Identify A in the given reaction

(1)

(2)

(4)

(3)

Ans. (2)

Sol.

15. Match List-I with List-II.

List-I

(a) Sodium Carbonate
(b) Titanium
(c) Chlorine
(d) Sodium hydroxide

List-II

(i) Deacon
(ii) Caster-Kellner
(iii) Van-Arkel
(iv) Solvay

Choose the correct answer from the option given below:
(1) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
(2) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
(3) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
(4) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)

Ans. (2)
Sol. Sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$ \& NaHCO_{3}
Titanium : Van arkel method

Chlorine : Decon's process
$\mathrm{HCl}+\mathrm{O}_{2} \xrightarrow{\mathrm{CuCl}_{2}} \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
Sodium hydroxide :- Caster-Kellner cell
16. Match List-I with List-II.

List-I
(Molecule)
(a) Ne_{2}
(b) N_{2}
(c) F_{2}
(d) O_{2}

List-II

 (Bond order)(i) 1
(ii) 2
(iii) 0
(iv) 3

Choose the correct answer from the options given below:
(1) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
(2) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
(3) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(4) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)

Ans. (1)
Sol. $\mathrm{Ne}_{2} \mathrm{O} \quad \mathrm{BO}=0$
$\mathrm{N}_{2} \quad \mathrm{BO}=3$
$\mathrm{F}_{2} \quad \mathrm{BO}=1$
$\mathrm{O}_{2} \quad \mathrm{BO}=2$
As per molecular orbital theory
17. Which of the following forms of hydrogen emits low energy β^{-}particles?
(1) Proton H^{+}
(2) Deuterium ${ }_{1}^{2} \mathrm{H}$
(3) Protium ${ }_{1}^{1} \mathrm{H}$
(4) Tritium ${ }_{1}^{3} \mathrm{H}$

Ans. (4)
Sol. Tritium isotope of hydrogen is radioactive and emits low energy β^{-}particles. It is because of high n / p ratio of tritium which makes nucleus unstable.
18. A. Phenyl methanamine
B. N, N-Dimethylaniline
C. N-Methyl aniline
D. Benzenamine

Choose the correct order of basic nature of the above amines.
(1) $D>C>B>A$
(2) $D>B>C>A$
(3) $A>C>B>D$
(4) $A>B>C>D$

Ans. (4)

Sol.

19.

Considering the above reaction, the major product among the following is:
(1)

(2)

(3)

(4)

Ans. (3)
Sol.

20. Seliwanoff test and Xanthoproteic test are used for the identification of \qquad and
\qquad respectively
(1) ketoses, proteins
(2) proteins, ketoses
(3) aldoses, ketoses
(4) ketoses, aldoses

Ans. (1)
Sol. Seliwanoff test and Xanthaproteic test are used for identification of 'Ketoses' and proteins respectively.

Section - B

1. The NaNO_{3} weighed out to make 50 mL of an aqueous solution containing 70.0 mg Na per mL is \qquad g. (Rounded off to the nearest integer)
[Given: Atomic weight in $\mathrm{g} \mathrm{mol}^{-1}$. $\left.\mathrm{Na}: ~ 23 ; \mathrm{N}: 14 ; \mathrm{O}: 16\right]$
Ans. 13
Sol. $\mathrm{Na}^{+}=70 \mathrm{mg} / \mathrm{mL}$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{Na}^{+}} \text {in } 50 \mathrm{~mL} \text { solution } & =70 \times 50 \mathrm{mg} \\
& =3500 \mathrm{mg} \\
& =3.5 \mathrm{gm}
\end{aligned}
$$

Moles of Na^{+}in 50 ml solution $=\frac{3.5}{23}$
Moles of $\mathrm{NaNO}_{3}=$ moles of Na^{+}

$$
=\frac{3.5}{23} \mathrm{~mol}
$$

Mass of $\mathrm{NaNO}_{3}=\frac{3.5}{23} \times 85=12.934$

$$
\simeq 13 \mathrm{gm} \mathrm{Ans}
$$

2. The number of stereoisomers possible for $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{Br})\left(\mathrm{NH}_{3}\right)\right]^{2-}$ is \qquad [ox = oxalate]

Ans. 3
Sol. $\left[\mathrm{Co}(\mathrm{ox})_{2} \mathrm{Br}\left(\mathrm{NH}_{3}\right)\right]^{2-}$

Total stereoisomer $=2(\mathrm{OI})+1 \mathrm{POE}($ pair of enantiomers) $=3$
3. The average $S-F$ bond energy in $\mathrm{kJ} \mathrm{mol}^{-1}$ of SF_{6} is \qquad . (Rounded off to the nearest integer)
[Given: The values of standard enthalpy of formation of $\mathrm{SF}_{6}(\mathrm{~g}), \mathrm{S}(\mathrm{g})$ and $\mathrm{F}(\mathrm{g})$ are - 1100, 275 and $80 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.]

Ans. 309
Sol. $\quad \mathrm{SF}_{6}(\mathrm{~g}) \longrightarrow \mathrm{S}(\mathrm{g})+6 \mathrm{~F}(\mathrm{~g})$

$$
\begin{aligned}
& \Delta H_{\text {reaction }}^{\circ}=6 \times \mathrm{E}_{\mathrm{S}-\mathrm{F}}=\Delta \mathrm{H}_{\mathrm{f}}^{\circ}[\mathrm{S}(\mathrm{~g})]+6 \times \Delta \mathrm{H}_{\mathrm{f}}^{\circ}[\mathrm{F}(\mathrm{~g})]-\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{SF}_{6}(\mathrm{~g})\right] \\
& \begin{aligned}
6 \times \mathrm{E}_{\mathrm{SF}}= & =275+6 \times 80-(-1100) \\
& =275+480+1100
\end{aligned}
\end{aligned}
$$

$$
6 \times \mathrm{E}_{\mathrm{S} \cdot \mathrm{~F}}=1855
$$

$$
E_{S-F}=\frac{1855}{6}=309.1667
$$

$\simeq 309 \mathrm{~kJ} / \mathrm{mol}$ Ans.
4. Emf of the following cell at 298 K in V is $\mathrm{x} \times 10^{-2}$.
$\mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.1 \mathrm{M})\right|\left|\mathrm{Ag}^{+}(0.01 \mathrm{M})\right| \mathrm{Ag}$
The value of x is \qquad . (Rounded off to the nearest integer)
[Given: $\mathrm{E}_{\mathrm{Zn}^{+} / / \mathrm{Zn}}^{0}=-0.76 \mathrm{~V} ; \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=+0.80 \mathrm{~V} ; \frac{2.303 R T}{\mathrm{~F}}=0.059$]
Ans. 147
Sol. $\quad \mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}^{+2}(0.1 \mathrm{M})\right|\left|\mathrm{Ag}^{+}(0.01 \mathrm{M})\right| \mathrm{Ag}(\mathrm{s})$
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{Ag}^{+} \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}^{+2}$
$\mathrm{E}^{0}=0.80+0.76=1.56 ; \quad \mathrm{Q}=\left\{\frac{\mathrm{Zn}^{2+}}{\left(\mathrm{Ag}^{+}\right)^{2}}\right\}$
$E=E^{0}-\frac{0.059}{n} \log (Q)$
$E=1.56-\frac{0.059}{2} \log \left[\frac{0.1}{(0.01)^{2}}\right]$
$E=1.56-\frac{0.059}{2} \log \left[(10)^{3}\right]$
$\mathrm{E}=1.4715=147.15 \times 10^{-2}$ volt

$$
=x \times 10^{-2}
$$

$X=147.15 \simeq 147$ Ans.
5. A ball weighing 10 g is moving with a velocity of $90 \mathrm{~ms}^{-1}$. If the uncertainty in its velocity is 5%, then the uncertainty in its position is \qquad $\times 10^{-33} \mathrm{~m}$. (Rounded off to the nearest integer)
[Given : $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$]
Ans. 1
Sol. $m=10 \mathrm{~g}=10^{-2} \mathrm{Kg}$
$\mathrm{v}=90 \mathrm{~m} / \mathrm{sec}$.
$\Delta v=v \times 5 \%=90 \times \frac{5}{100}=4.5 \mathrm{~m} / \mathrm{sec}$
$m . \Delta v . \Delta x \geq \frac{h}{4 \pi}$
$10^{-2} \times 4.5 \times \Delta x \geq \frac{6.63 \times 3 \times 10^{-34}}{4 \times \frac{22}{7}}$
$\Delta x \geq \frac{6.63 \times 7 \times 2 \times 10^{-34}}{9 \times 4 \times 22 \times 10^{-2}}$
$\Delta x \geq 1.17 \times 10^{-33}=x \times 10^{-33}$
$\mathrm{x}=1.17 \simeq 1$
6. In mildly alkaline medium, thiosulphate ion is oxidized by MnO_{4}^{-}to " A ". The oxidation state of sulphur in "A" is \qquad .
Ans. 6
Sol.

$\mathrm{A} \rightarrow \mathrm{SO}_{4}^{-2}$
\therefore Oxidation no. of 'S' = +6 Ans.
7. When 12.2 g of benzoic acid is dissolved in 100 g of water, the freezing point of solution was found to be $-0.93^{\circ} \mathrm{C}\left(\mathrm{K}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$. The number (n) of benzoic acid molecules associated (assuming 100% association) is \qquad .
Ans. 2
Sol. $n \mathrm{PhCOOH} \rightarrow(\mathrm{PhCOOH})_{n}$
$N=\frac{1}{x}=i\{$ As $\quad \alpha=1\}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$0.93=\frac{1}{\mathrm{n}} \times 1.86 \times \frac{12.2 \times 1000}{122 \times 100}$
$n=2$
8. If the activation energy of a reaction is $80.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the fraction of molecules at 700 K , having enough energy to react to form products is $\mathrm{e}^{-\mathrm{x}}$. The value of x is \qquad —.
(Rounded off to the nearest integer)
[Use $\mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$]
Ans. 14
Sol. $\mathrm{E}_{\mathrm{a}}=80.9 \mathrm{~kJ} / \mathrm{mol}$
Fraction of molecules able to cross energy barrier $=e^{-E_{\sigma} / R T}=e^{-x}$
$x=\frac{E_{a}}{R T}=\frac{80.9 \times 1000}{8.31 \times 700}=13.91$
$x \simeq 14$ Ans
9. The pH of ammonium phosphate solution, if pk_{a} of phosphoric acid and pk_{b} of ammonium hydroxide are 5.23 and 4.75 respectively, is \qquad _.

Ans. 7
Sol. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \rightleftharpoons 3 \mathrm{NH}_{4}^{+}+\mathrm{PO}_{4}^{3-}$
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \sqrt{\frac{\mathrm{kw}}{\mathrm{k}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}}}$
$\mathrm{pH}=\mathrm{pk}_{\mathrm{a}}+\frac{1}{2}\left\{\mathrm{pk}_{\mathrm{w}}-\mathrm{pk}_{\mathrm{a}}-\mathrm{pk}_{\mathrm{b}}\right\}$
$\mathrm{pH}=5.23+\frac{1}{2}\{14-5.23-4.75\}$
$\mathrm{pH}=5.23+\frac{1}{2}(4.02)=7.24=7$ (Nearest integer)
10. The number of octahedral voids per lattice site in a lattice is \qquad .
(Rounded off to the nearest integer)
Ans. 1
Sol. Assuming FCC
No of lactice sites $=6$ face centre +8 corner $=14$
No. of octahedral voids $=13$
Ratio $=\frac{13}{14}=0.92857=1$ (Nearest integer)

