CHEMISTRY
 JEE-MAIN (February-Attempt) 25 February (Shift-2) Paper

Section -A

1. Given below are two statements :

Statement I :

The identification of Ni^{2+} is carried out by dimethyl glyoxime in the presence of $\mathrm{NH}_{4} \mathrm{OH}$

Statement II :

The dimethyl glyoxime is a bidentate neutral ligand.
In the light of the above statements, choose the correct answer from the options given below :
(1) Both statement I and statement II are true
(2) Both statement I and statement II are false
(3) Statement I is false but statement II is true
(4) Statement I is true but statement II is false

Ans. 4

Sol.

Dimethyl glyoxime is a negative bidentate legend.
2. Carbylamine test is used to detect the presence of primary amino group in an organic compound. Which of the following compound is formed when this test is performed with aniline ?

(1)

(2)

(3)
NHCH_{3}

(4)

Ans. 2
Sol.

3. The correct order of bond dissociation enthalpy of halogen is :
(1) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
(2) $\mathrm{Cl}_{2}>\mathrm{F}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
(3) $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$
(4) $\mathrm{I}_{2}>\mathrm{Br}_{2}>\mathrm{Cl}_{2}>\mathrm{F}_{2}$

Ans. 3
Sol. Fact based
F_{2} has $F-F, F_{2}$ involves repulsion of non-bonding electrons \& more over its size is small \& hence due to high repulsion its bond dissociation energy in very low.
4. Which one of the following statements is FALSE for hydrophilic sols ?
(1) These sols are reversible in nature
(2) The sols cannot be easily coagulated
(3) They do not require electrolytes for stability.
(4) Their viscosity is of the order of that of $\mathrm{H}_{2} \mathrm{O}$

Ans. 4
Sol. Fact base
5. Water does not produce CO on reacting with :
(1) $\mathrm{C}_{3} \mathrm{H}_{8}$
(2) C
(3) CH_{4}
(4) CO_{2}

Ans. 4
Sol. $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
6. What is ' X ' in the given reaction ?

(1)
(2)
(3)
(4)

Ans. 1
$\mathrm{CH}_{2}-\mathrm{OH}$
$210^{\circ} \mathrm{C}$
Sol. $\quad+$ oxalic acid $\rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}$ $\mathrm{CH}_{2}-\mathrm{OH}$
7. If which of the following order the given complex ions are arranged correctly with respect to their decreasing spin only magnetic moment ?
(i) $\left[\mathrm{FeF}_{6}\right]^{3-}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(iii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(iv) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(1) (ii) $>$ (i) $>$ (iii) $>$ (iv)
(2) (iii) $>$ (iv) $>$ (ii) $>$ (i)
(3) (ii) $>$ (iii) $>$ (i) $>$ (iv)
(4) (i) $>$ (iii) $>$ (iv) $>$ (ii)

Ans. 4
Sol. $\left[\mathrm{FeF}_{6}\right]^{3-} \quad \mathrm{Fe}^{3+} 3 \mathrm{~d}^{5} \rightarrow 5$-unpaired electrons as F^{-}is weal field legend
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \mathrm{Co}^{3+} 3 \mathrm{~d}^{6} \rightarrow$ No-unpaired electron as NH_{3} is strong field light and causes pairing
$[\mathrm{NiCl} 4]^{2-} \quad \mathrm{Ni}^{2+} 3 \mathrm{~d}^{8} \rightarrow 2$-unpaired electrons
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \mathrm{Cu}^{2+} 3 \mathrm{~d}^{9} \rightarrow 1$-unpaired electrons
8. The major product of the following reaction is :

(1)

(2)

(3)

(4)

Ans. 4

Sol.

9. The correct sequence of reagents used in the preparation of 4-bromo-2-nitroethyl benzene from benezene is :
(1) $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}, \mathrm{Br}_{2} / \mathrm{AlBr}_{3}, \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Zn} / \mathrm{HCl}$
(2) $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}, \mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}, \mathrm{Br}_{2} / \mathrm{AlBr}_{3}, \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$
(3) $\mathrm{Br}_{2} / \mathrm{AlBr}_{3}, \mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}, \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Zn} / \mathrm{HCl}$
(4) $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Br}_{2} / \mathrm{AlCl}_{3}, \mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}, \mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$

Ans. 2

Sol.
10. The major components of German Silver are :
(1) Cu, Zn and Ag
(2) Ge, Cu and Ag
(3) Zn, Ni and Ag
(4) Cu, Zn and Ni

Ans. 4
Sol. Fact
German silver is alloy which does not have silver.
Cu-50\%; Ni-30\%; Zn-20\%
11. The method used for the purification of Indium is:
(1) van Arkel method
(2) vapour phase refining
(3) zone refining
(4) Liquation

Ans. 3
Sol. Fact
$\mathrm{Ga}, \mathrm{In}, \mathrm{Si}, \mathrm{Ge}$ are refined by zone refining or vaccume refining.
12. Which of the following is correct structure of α-anomer of maltose :
(1)

(2)

(3)

(4)

Ans. 4

Sol.

13. The major product of the following reaction is :

(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(4)

Ans. 3
Sol. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2} \frac{\mathrm{H}_{2} / \mathrm{CO}}{\text { Rh catalyst }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
14. The correct order of acid character of the following compounds is :

I

II

III

(1) II $>$ III $>$ IV $>$ I
(2) III $>$ II $>$ I $>$ IV
(3) IV $>$ III $>$ II $>$ I
(4) I $>$ II $>$ III $>$ IV

Ans. 1
Sol. Acidity of carboxylic acid $\propto-\mathrm{R}>-\mathrm{H}>-\mathrm{I} \propto \frac{1}{+R>+H>+I}$

(-M)
II

III

(+H) IV

I
15. Which among the following species has unequal bond lengths ?
(1) XeF_{4}
(2) SiF_{4}
(3) $B F_{4}^{-}$
(4) SF_{4}

Ans. 4

Sol.

Sp³d Hybridisation Sea-saw shape \& axial bond length is more than equitorial bond length
16. Given below are two statements :

Statement I :

α and β forms of sulphur can change reversibly between themselves with slow heating or slow cooling.

Statement II :

At room temperature the stable crystalline form of sulphur is monoclinic sulphur.
In the light of the above statements, choose the correct answer from the options given below.
(1) Both statement I and statement II are false
(2) Statement I is true but statement II is false
(3) Both statement I and statement II are true
(4) Statement I is false but statement II is true

Ans. 2
Sol. $\begin{aligned} & S_{\text {Rhambic }} \\ & \alpha-\text { sulphur } 95.6^{\circ} \mathrm{C} \\ & \rightleftharpoons\end{aligned} \underset{\text { Monoclinic }}{ }{ }^{\boldsymbol{S}}$ - sulphur
17.

Correct statement about the given chemical reaction is :
(1) Reaction is possible and compound (A) will be major product.
(2) The reaction will form sulphonated product instead of nitration.
(3) $-\mathrm{NH}_{2}$ group is ortho and para directive, so product (B) is not possible.
(4) Reaction is possible and compound (B) will be the major product.

Ans. 1

Sol.

(A)
(B)
(C)
47\%
2\%

51\%
18. Which of the following compound is added to the sodium extract before addition of silver nitrate for testing of halogens ?
(1) Nitric acid
(2) Sodium hydroxide
(3) Hydrochloric acid
(4) Ammonia

Ans. 1
Sol. $\mathrm{NaCN}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{HCN} \uparrow$
$\mathrm{Na}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \uparrow$
Nilnic acid decomposed $\mathrm{NaCN} \& \mathrm{Na}_{2} \mathrm{~S}$, else they precipitate in test \& misquite the resolve
19. Given below are two statements:

Statement I :

The pH of rain water is normally ~ 5.6.

Statement II :

If the pH of rain water drops below 5.6 , it is called acid rain.
In the light of the above statements, choose the correct answer from the option given below.
(1) Statement I is false but Statement II is true
(2) Both statement I and statement II are true
(3) Both statement I and statement II are false
(4) Statement I is true but statement II is false

Ans. 2
Sol. Both statements are correct
20. The solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ in water is:
[Given : The solubility product of $\mathrm{Ca}(\mathrm{OH})_{2}$ in water $=5.5 \times 10^{-6}$]
(1) 1.11×10^{-6}
(2) 1.77×10^{-6}
(3) 1.77×10^{-2}
(4) 1.11×10^{-2}

Ans. 4
$\mathrm{Ca}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ca}_{s}^{+2}+\underset{\left(2 s+10^{-7}\right)}{2 \mathrm{OH}^{-}}$
$\mathrm{s}\left(2 \mathrm{~s}+10^{-7}\right)^{2}=55 \times 10^{-7}$
$4 \mathrm{~s}^{3}=55 \times 10^{-7}$
$s^{3}=\frac{5500}{4} \times 10^{-9}$
$s=\left(\frac{2250}{2}\right)^{1 / 3} \times 10^{-3}$
$s=(1125)^{1 / 3} \times 10^{-3}$
$s=1.11 \times 10^{-2}$

Section -B

1. If a compound $A B$ dissociates to the extent of 75% in an aqueous solution, the molality of the solution which shows a 2.5 K rise in the boiling point of the solution is \qquad molal.
(Rounded-off to the nearest integer)
$\left[K_{b}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right.$]
Ans. 3
$A B \rightarrow A^{+}+B^{-}$
$1-\alpha \quad \alpha \quad \alpha$
$\alpha=3 / 4$
$\mathrm{N}=2$
$i=[1+(2-1) \alpha]$
$2.5=[1+(2-1) 3 / 4] \times 0.52 \times m$
$m=\frac{2.5}{0.52 \times 7 / 4}=\frac{10}{3.64}=2.747$
$\mathrm{m}=2.747 \simeq 3 \mathrm{~mol} / \mathrm{kg}$
2. The spin only magnetic moment of a divalent ion in aqueous solution (atomic number 29) is
\qquad BM.
Ans. 2
Sol.
${ }_{29} \mathrm{Cu}^{+2} \rightarrow[\mathrm{Ar}]^{18} \underline{3 d^{9}}$

No. of unpaired $e^{-}=1$
Magnetic moment $=\mu=\sqrt{n(n+2)}$
$\mu=\sqrt{(1)(1+2)}=\sqrt{3} B . M$.
= 1.73 Ans.
3. The number of compound/s given below which contain/s -COOH group is \qquad .
(1) Sulphanilic acid
(2) Picric acid
(3) Aspirin
(4) Ascorbic acid

Ans. 1

Sol.

(A)

(B)

(C)

(D)
4. The unit cell of copper corresponds to a face centered cube of edge length $3.596 \AA$ with one copper atom at each lattice point. The calculated density of copper in $\mathrm{kg} / \mathrm{m}^{3}$ is \qquad . [Molar mass of $\mathrm{Cu}: 63.54 \mathrm{~g}$; Avogadro number $=6.022 \times 10^{23}$]
Ans. 9077
Sol. $a=3.596 \AA$
$\mathrm{d}=\frac{Z \times G M M}{N_{A} \times a^{3}}$
$\mathrm{d}=\frac{4 \times 63.54 \times 10^{-3}}{6.022 \times 10^{23} \times\left(3.596 \times 10^{-10}\right)^{3}}$
$d=0.9076 \times 10^{4}=9076.2 \mathrm{~kg} / \mathrm{m}^{3}$
5. Consider titration of NaOH solution versus 1.25 M oxalic acid solution. At the end point following burette readings were obtained.
(i) 4.5 ml .
(ii) 4.5 ml .
(iii) 4.4 ml . (iv) 4.4 ml
(v) 4.4 ml

If the volume of oxalic acid taken was 10.0 ml . then the molarity of the NaOH solution is
\qquad M. (Rounded-off to the nearest integer)

Ans. 6
Eq. of $\mathrm{NaOH}=$ Eq. of oxalic acid
$[\mathrm{NaOH}] \times 1 \times 4.4=\frac{5}{4} \times 2 \times 10$
$[\mathrm{NaOH}]=\frac{100}{4 \times 4.4}=\frac{25}{4.4}=5.68$
Nearest integer $=6 \mathrm{M}$ Ans.
6. Electromagnetic radiation of wavelength 663 nm is just sufficient to ionize the atom of metal A.

The ionization energy of metal A in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad . (Rounded off to the nearest integer)
$\left[\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3.00 \times 10^{8} \mathrm{~ms}^{-1}, \mathrm{~N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right]$
Ans. 180
Sol. Energy req. to ionize an atom of metal ' $\mathrm{A}^{\prime}=\frac{h c}{\lambda}=\frac{h c}{663 \mathrm{~nm}}$ for 1 mole atoms of ' A^{\prime}
Total energy required $=N_{A} \times \frac{h c}{\lambda}$
$=\frac{6.023 \times 10^{23} \times 6.63 \times 10^{-34} \times 3 \times 10^{8}}{663 \times 10^{-9}}$
$=6.023 \times 3 \times 10^{23-34+8+7}$
$=18.04 \times 10^{4} \mathrm{~J} / \mathrm{mol}$
$=180.4 \mathrm{KJ} / \mathrm{mol}$
Nearest Integer $=180 \mathrm{KJ} / \mathrm{Mol}$.
7. The rate constant of a reaction increases by five times on increase in temperature from $27^{\circ} \mathrm{C}$ to $52^{\circ} \mathrm{C}$. The value of activation energy in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad . (Rounded off to the nearest integer) $\left[\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$
Ans. 52
$\frac{K_{52^{\circ} \mathrm{C}}}{K_{27^{\circ} \mathrm{C}}}=5$
$\ln \left\{\frac{k_{T_{2}}}{k_{T_{1}}}\right\}=\frac{E_{a}}{R}\left\{\frac{1}{T_{1}}-\frac{1}{T_{2}}\right\}$
$\ln (5)=\frac{E_{a}}{R}\left\{\frac{1}{300}-\frac{1}{325}\right\}$
$\frac{2.303 \times 0.7 \times 8.314 \times 300 \times 325}{25}=E_{a}$
$\mathrm{E}_{\mathrm{a}}=51524.96 \mathrm{~J} / \mathrm{mol}$
$\mathrm{E}_{\mathrm{a}}=51.524 \mathrm{KJ} / \mathrm{mol}$
52 Ans.
8. Copper reduces NO_{3}^{-}into NO and NO_{2} depending upon the concentration of HNO_{3} in solution. (Assuming fixed $\left[\mathrm{Cu}^{2+}\right]$ and $\mathrm{P}_{\mathrm{NO}}=\mathrm{P}_{\mathrm{NO}_{2}}$), the HNO_{3} concentration at which the thermodynamic tendency for reduction of NO_{3}^{-}into NO and NO_{2} by copper is same is $10^{\times} \mathrm{M}$. The value of 2 x is
\qquad . (Rounded-off to the nearest integer)

$$
\left.E_{\mathrm{Cu}^{2+/ C u}}^{0}=0.34 \mathrm{~V}, E_{\mathrm{NO}_{3}^{-} / \mathrm{NO}}^{0}=0.96 \mathrm{~V}, E_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}}^{0}=0.79 \mathrm{~V} \text { and at } 298 \mathrm{~K}, \frac{R T}{F}(2.303)=0.059 \mathrm{]}\right]
$$

[Given :
Ans. 1
Sol. Anode
$\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{+2}+2 \mathrm{e}^{-}$
Cathode (1)
$\frac{3 e^{-}+4 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}}{8 \mathrm{H}^{-}+2 \mathrm{NO}_{3}^{-}+3 \mathrm{Cu}(s) \rightarrow 3 \mathrm{Cu}^{+2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}}$
$\mathrm{Q}=\frac{\left[\mathrm{Cu}^{+2}\right]^{3} \times\left(p_{\mathrm{NO}}\right)^{2}}{\left[\mathrm{NO}_{3}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]^{8}}$
$\epsilon_{\text {cell }}^{0}=1.3$
$\epsilon_{\text {cell }}=1.3-\frac{0.059}{6} \log \frac{\left(\mathrm{Cu}^{+2}\right)^{3}\left(p_{\mathrm{NO}}\right)^{2}}{\left(\mathrm{NO}_{3}^{-}\right)^{2} \times\left(\mathrm{H}^{+}\right)^{8}}$
Anode $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{+2}+2 \mathrm{e}^{-}$

Cathode $\frac{e^{-}+2 n^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}}{\mathrm{Cu}(\mathrm{s})+4 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}^{+2}}$
$\epsilon_{\text {cell }}^{0}=1.13$
$Q=\frac{\left(\mathrm{Cu}^{+2}\right)\left(p_{\mathrm{NO}_{2}}\right)^{2}}{\left(\mathrm{NO}_{3}^{-}\right)^{2}\left(\mathrm{H}^{+}\right)^{4}}$
$\epsilon_{\text {cell }}=1.13-\frac{0.059}{2} \log \frac{\left(\mathrm{Cu}^{+2}\right)\left(p_{\mathrm{NO}_{2}}\right)^{2}}{\left(\mathrm{NO}_{3}^{-}\right)^{2}\left(\mathrm{H}^{+}\right)^{4}}$
$\epsilon_{\text {cell }_{T}}=\epsilon_{\text {cell }}^{2}$
$1.3-\frac{0.059}{6} \log \left(Q_{1}\right)=1.13-\frac{0.059}{2} \log \left(Q_{2}\right)$
$0.17=\frac{0.059}{6}\left\{\log \left(Q_{1}\right)-3 \log \left(Q_{2}\right)\right\}$
$=\frac{0.059}{6}\left\{\log \frac{\left(\mathrm{Cu}^{+2}\right)^{3} \times\left(p_{\mathrm{NO}}\right)^{2} \times\left(\mathrm{NO}_{3}^{-}\right)^{6}\left(\mathrm{H}^{+}\right)^{12}}{\left(\mathrm{NO}_{3}^{-}\right)^{2}\left(\mathrm{H}^{+}\right)^{8} \times\left(\mathrm{Cu}^{+2}\right)^{3} \times\left(p_{\left.\mathrm{NO}_{2}\right)^{6}}\right.}\right\}$

$0.17=\frac{0.059}{6} \times 8 \log \left(\mathrm{HNO}_{3}\right)$
$\log \left(\mathrm{HNO}_{3}\right)=2.16$
$\left[\mathrm{HNO}_{3}\right]=10^{2.16}=10^{x}$
$x=2.16 \Rightarrow 2 x=4.32 \approx 4$
9. Five moles of an ideal gas at 293 K is expanded isothermally from an initial pressure of 2.1 MPa to 1.3 MPa against at constant external 4.3 MPa . The heat transferred in this process is \qquad kJ mol^{-1}. (Rounded-off of the nearest integer)
[Use $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$]
Ans. 15
Sol. Moles (n) $=5$
$\mathrm{T}=293 \mathrm{k}$
Process $=$ IsoT. \rightarrow Irreversible
$P_{\text {ini }}=2.1 \mathrm{M} \mathrm{Pa}$
$\mathrm{P}_{\mathrm{t}}=1.3 \mathrm{M} \mathrm{Pa}$
$P_{\text {ext }}=4.3 \mathrm{mPa}$
Work $=-\mathrm{P}_{\text {ext }} \Delta \mathrm{V}$

$$
\begin{aligned}
& =-4.3 \times\left(\frac{5 \times 293 R}{1.3}-\frac{5 \times 293}{2.1}\right) \\
& =-5 \times 293 \times 8.314 \times 43\left(\frac{1}{13}-\frac{1}{21}\right) \\
& =\frac{5 \times 293 \times 8.314 \times 43 \times 8}{21 \times 13} \\
& =-15347.7049 \mathrm{~J} \\
& =-15.34 \mathrm{KJ} \\
& \text { Isothermal process, so } \Delta \mathrm{U}=0 \\
& \mathrm{w}=-\mathrm{Q} \\
& \mathrm{Q}=15.34 \mathrm{KJ} / \mathrm{mol} \\
& \text { So answer is } 15
\end{aligned}
$$

10. Among the following, number of metal/s which can be used as electrodes in the photoelectric cell is \qquad (Integer answer).
(A) Li
(B) Na
(C) Rb
(D) Cs

Ans. 1
Sol. Cs is used in photoelectric cell due to its very low ionization potential.

