# CHEMISTRY JEE-MAIN (July-Attempt) 29 July (Shift-2) Paper Solution

## **SECTION - A**

1. Consider the reaction  $4HNO_3(l) + 3KCl(s) \rightarrow Cl_2(g) + NOCl(g) + 2H_2O(g) + 3KNO_3(s)$ The amount of  $HNO_3$  required to produce 110.0 g of  $KNO_3$  is (Given : Atomic masses of H, O, N and K are 1, 16, 14 and 39, respectively.) (A) 32.2 g (B) 69.4 g (C) 91.5 g (D) 162.5 g Sol. С 4HNO<sub>3</sub>( $\ell$ ) Moles of HNO<sub>3</sub> =  $\frac{4}{3} \times \frac{110}{101}$ +  $3KCl(s) \rightarrow Cl_2(g) + NOCl(g) + 2H_2O(g) + 3KNO_3$ Mass of HNO<sub>3</sub> =  $\frac{4}{3} \times \frac{101}{101} \times 63$ mass = 110Molecular mass =  $39 \times 1 + 14 \times 1 + 16 \times 3$ = 39 + 14 + 48= 39 + 62 = 101 Moles =  $\frac{110}{101}$ 2. Given below are the quantum numbers for 4 electrons. A.  $n = 3, l = 2, m_1 = 1, m_s = +1/2$ B.  $n = 4, l = 1, m_1 = 0, m_s = +1/2$ C. n = 4, l = 2,  $m_1 = -2$ ,  $m_s = -1/2$ D. n = 3, l = 1,  $m_1 = 1, m_s = +1/2$ The correct order of increasing energy is (A) D < B < A < C (B) D < A < B < C(C) B < D < A < C (D) B < D < C < ASol. **(B)** Greater the value of  $(n+\ell)$  grater is energy.  $C(s) + O_2(g) \rightarrow CO_2(g) + 400 \text{ kJ}$ 3.  $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g) + 100 \text{ kJ}$ When coal of purity 60% is allowed to burn in presence of insufficient oxygen, 60% of carbon is converted into 'CO' and the remaining is converted into  $'CO_2'$ . The heat generated when 0.6 kg of coal is burnt is . (B) 3200 kJ (A) 1600 kJ (C) 4400 kJ (D) 6600 kJ Sol. D  $C_{(s)} + \frac{1}{2}O_2(g) \rightarrow CO_{(g)}; \Delta H = -100 \text{KJ/mole}$ C(s) +  $O_2(g) \rightarrow CO_2(g); \Delta H = -400 \text{KJ/mole}$ Mass of carbon =  $(0.6 \times 10^3) \frac{60}{100} = \frac{600 \times 60}{100} = 360 \text{gram}$ 60% of carbon  $\Rightarrow \frac{360 \times 60}{100} = 216$  gram  $C_{(s)} + \frac{1}{2}O_2 \rightarrow CO(g); \Delta H = -100 KJ/mole$ (1)  $\begin{pmatrix} 216\\12 \end{pmatrix} \qquad \Delta H = -100 \times \frac{216}{12} = -1800 \text{ KJ} \\ C_{(s)} + O_2 \to CO_2(g); \Delta H - 400 \text{ KJ/mole} \\ \begin{pmatrix} 144\\12 \end{pmatrix} \qquad \Delta H = -400 \times \frac{144}{12} = -4800 \text{ KJ}$ (2) Total heat released = 1800 + 4800 = 6600 K

4. 200 mL of 0.01 M HCl is mixed with 400 mL of 0.01 M  $H_2SO_4$ . The pH of the mixture is \_\_\_\_. Given : log2 = 0.30, log3 = 0.48. log5 = 70, log 7 = 0.84, log 11 = 1.04 (A) 1.14 (B) 1.78 (C) 2.34 (D) 3.02

Sol. (B)

 $[H^+] = \frac{0.01 \times 200 + 2 \times 0.01 \times 400}{600} \Rightarrow \frac{5}{3} \times 10^{-2}$ pH = -log [H<sup>+</sup>] = -log  $\left(\frac{5}{3} \times 10^{-2}\right)$ = -  $\left[\log \frac{5}{3} + \log 10^{-2}\right]$ = -[log5 - log3 - 2] = -0.7 + 0.48 + 2 = 2.48 - 0.7 = 1.78

**5.** Given below are the critical temperature of some of the gases :

| Gas             | Critical temperature (K) |  |
|-----------------|--------------------------|--|
| Не              | 5.2                      |  |
| CH <sub>4</sub> | 190.0                    |  |
| CO <sub>2</sub> | 304.2                    |  |
| NH <sub>3</sub> | 405.5                    |  |

The gas showing least adsorption on a definite amount of charcoal is (A) He (B)  $CH_4$  (C)  $CO_2$  (D)  $NH_3$ 

Sol. (A)

Greater the value of critical temperature greater is adsorptioin as 'He' has least critical temperature so it is absorb least.

- 6. In liquation process used for tin (Sn), the metal
  - (A) Is reacted with acid.
  - (B) Is dissolved in water.
  - (C) Is brought to molten form which is made to flow on a slop.
  - (D) is fused with NaOH

Sol. C

**Liquation process : -** In this method, a low melting metal tin can be made to flow on a sloping surface. In this way it is Separated from higher melting impurities so correct option is (C)

**7.** Given below are two statements.

Statement I : Stannane is an example of a molecular hydride.

Statement II : Stannane is a planar molecule.

In the light of the above statement, choose the most appropriate answer form the option given below.

(A) Both Statement I and Statement II are true.

(B) Both Statement I and Statement II are false.

(C) Statement I true but Statement II is false.

(D) Statement I is false but Statement II is true.

Sol.

Stannae  $\rightarrow$  it is an inorganic compound

 $\rightarrow$  it is tin hydride or tin tetra hydride



Covalent or molecular hydride

 $\rightarrow$  molecular hydride

 $\rightarrow$  But it not planar so it is tetrahedral

Option (C)

8. Portland cement contains 'X' to enhance the setting time. What is 'X' ?

(A)  $CaSO_4 \cdot \frac{1}{2}H_2O$  (B)  $CaSO_4 \cdot 2H_2O$  (C)  $CaSO_4$  (D)  $CaSO_3$ 

Sol. B

Setting of cement : when mixed water, the setting of cement takes place to give a hand mass the is due to the hydration of the molecules of the constituents and their rearrangements gypsum is added to enhance the setting time gypsum : - CaSO<sub>4</sub>. 2H<sub>2</sub> Option (B)

**9.** When borax is heated with CoO on a platinum loop, blue coloured bead formed is largely due to  $(A) B_2 O_3$  (B)  $Co(BO_2)_2$  (C)  $CoB_4 O_7$  (D)  $Co[B_4 O_5(OH)_4]$ 

Sol. B

Borax Bead Test : - Borax on strongly heating gives transparent glassy bead. When this bead is placed on CoO solution and then it placed in a flame  $\rightarrow$  We will find blue colour  $\rightarrow$  This blue colour is due to the following reaching Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>. 10H<sub>2</sub>O  $\xrightarrow{\Delta}$  Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> + 10H<sub>2</sub>O Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>  $\xrightarrow{\Delta}$  NaBO<sub>2</sub> + B<sub>2</sub>O<sub>3</sub>

 $CoO + B_2O_3 \xrightarrow{\Delta} Co(BO_2)_2$ 

Cobalt II meta borate (blue)

Option (B)

**10.** Which of the following 3d-metal ion will give the lowest enthalpy of hydration  $(\Delta_{hyd}H)$  when dissolved in water ?

(A)  $Cr^{2+}$  (B)

(B)  $Mn^{2+}$  (C)  $Fe^{2+}$  (D)  $Co^{2+}$ 

- Sol. **B** 
  - → Generally hydration energy increases with increase in charge
  - $\rightarrow$  and decreases with increase in radius
  - → d block elements also follow similar trend with some exceptions

Octahedral complexes of copper(II) undergo structural distortion (Jahn-Teller).
 Which one of the given copper (II) complexes will show the maximum structural distortion ? (en-ethylenediamine; H<sub>2</sub>N - CH<sub>2</sub> - CH<sub>2</sub> - NH<sub>2</sub>)

(B)  $[Cu(en)(H_2O)_4]SO_4$ 

(D) trans  $- [Cu(en)_2Cl_2]$ 

```
(A) [Cu(H_2O)_6]SO_4
```

```
(C) cis - [Cu(en)_2 Cl_2]
```

```
Sol. A
```

Jahn-Teller distortion is seen in octahedral complex



→ Now if we see above, in all option we have  $cu^{2+}$  → which means it has d9 → So that compound which contains W.F.L will show more distortion Option (A)

**12.** Dinitrogen is a robust compound, but reacts at high altitudes to form oxides. The oxide of nitrogen that can damage plant leaves and retard photosynthesis is

(A) NO (B)  $NO_3^-$  (C)  $NO_2$  (D)  $NO_2^-$ 

Sol. C

Higher concentration of NO<sub>2</sub> damage the leaves of plant and retard the rate of photosynthesis. Option (C)

**13.** Correct structure of  $\gamma$  – methylcyclohexane carbaldehyde is







Methyle group at  $\gamma$  – position  $\gamma$ - methylcyclohexane carboldehyde

**14.** Compound 'A' undergoes following sequence of reactions to give compound 'B'. The correct structure and chirality of compound 'B' is



Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

Sol. C



Now marked carbon become assymetric (chiral) carbon hence, Molecule become chiral.

**15.** Given below are two statements.



In the light of the above statement, choose the most appropriate answer from the options given below

- (A) Both Statement I and Statement II are correct.
- (B) Both Statement I and Statement II are incorrect.
- (C) Statement I is correct but Statement II are incorrect.
- (D) Statement I is incorrect but Statement II is correct.

Sol.

С

Given below are two statements



Sol. **A** Hinsberg reagent

# 

Benzene sulfonyl chloride is called Hinsberg reagent it is used to detect primary, secondary and teritary amine.

- **18.** Which of the following is NOT a natural polymer ? (A) Protein (B) Starch (C) Rubber (D) Rayon
- Sol. D

Rayon is not a natural polymer.

**19.** Given below are two statements. One is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Amylose is insoluble in water.

Reason R : Amylose is a long linear molecule with more than 200 glucose units.

In the light of the above statements, choose the correct answer from the options given below

(A) Both A and R correct and R is the correct explanation of A.

(B) Both A and R correct but R is NOT the correct explanation of A.

- (C) A is correct but R is not correct.
- (D) A is not correct but R is correct

# Sol. D

Asseration A : Amylose is insoluble in water.

Reason R : Amylose is a long linear molecular.

A is not correct but R is correct. Amylose is soluble in water, and amylose is long linear molecule with more than 200 glucose.

- **20.** A compound 'X' is a weak acid and it exhibits colour change at pH close to the equivalence point during neutralization of NaOH with CH<sub>3</sub>COOH. Compound 'X' exists in ionized form in basic medium. The compound 'X' is
  - (A) Methyl orange (B) Methyl red
  - (C) Phenolphthalein (D) Erichrome Black T
- Sol.

**(C)** 

Weak acid  $\Rightarrow$  pH must be between 8 – 10

# **SECTION - B**

- 'x' g of molecular oxygen  $(O_2)$  is mixed with 200 g of neon (Ne). The total pressure of the non-reactive mixture of  $O_2$  and Ne in the cylinder is 25 bar. The partial pressure of Ne is 20 bar at the same temperature and volume. The value of 'x' is \_\_\_\_. 21. [Given : Molar mass of  $O_2 = 32 \text{ g mol}^{-1}$ . Molar mass of Ne = 20 g mol<sup>-1</sup>]
- (80) Sol.

 $P_{Ne} = P_{total} \times X_{Ne}$   $\Rightarrow 20 = 25 \times X_{Ne}$   $[X_{Ne}] = \frac{20}{25} = \frac{4}{5}$ 200 45 20 32 <del>7</del>8 4 =  $\Rightarrow$  $10 + \frac{x}{10}$ 5  $\Rightarrow 400^{3^2} = 320 + x$  $\Rightarrow x = 80$ 

- Consider,  $PF_5$ ,  $BrF_5$ ,  $PCl_3$ ,  $SF_6$ ,  $[ICl_4]^-$ ,  $ClF_3$  and  $IF_5$ . Amongst the above molecules(s)/ion(s), the number of molecule(s)/ion(s) having  $sp^3d^2$ 22. hybridisation is \_\_\_\_\_ 4
- Sol.



23. 1.80 g of solute A was dissolved in 62.5 cm<sup>3</sup> of ethanol and freezing point of the solution was found to be 155.1 K. The molar mass of solute A is \_\_\_\_ g mol<sup>-1</sup>. [Given : Freezing point of ethanol is 156.0 K. Denstiy of ethanol is 0.80 g cm<sup>-3</sup>. Freezing point depression constant of ethanol is 2.00 K kg mol<sup>-1</sup>]

#### Sol. (80)

Mass of solvent =  $d \times v = 0.8 \times 62.5$ = 50 g  $\Delta T_f = K_f \times m$  $0.9 = 2 \left[ \frac{1.8 \times 1000}{M_{solute} \times 50} \right]$  $M_{solute} = 80 \text{ g/ mole}$ 

24. For a cell,  $Cu(s)|Cu^{2+}(0.001M)||Ag^{+}(0.01M)|Ag(s)$  the cell potential is found to be 0.43 V at 298 K. The magnitude of standard electrode potential for  $Cu^{2+}/Cu \ge 10^{-2}V$ .  $|Given : E_{Ag^{+}/Ag}^{\ominus} = 0.80V$  and  $\frac{2.303RT}{F} = 0.06 V|$ 

Sol.

Anode :  $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$ Cathode :  $[Ag^{+} + e^{-} \rightarrow Ag(s)] \times 2$ 

 $Cu(s) + 2Ag^+(aq.) \rightarrow Cu^{2+}(aq.) + 2Ag(s)$ 

$$E_{cell} = E_{cell}^{0} - \frac{0.06}{2} \log \frac{[cu^{2+}]}{[Ag^{+}]^{2}}$$
  

$$0.43 = E_{cell}^{0} - \frac{0.06}{2} \log \left(\frac{10^{-3}}{10^{-2}}\right)^{2}$$
  

$$0.43 = E_{cell}^{0} - 0.03 \log 10$$
  

$$E_{cell}^{0} = 0.46V$$
  

$$E_{cell}^{0} = E_{Ag^{+}/Ag}^{0} - E_{cu^{2+}/Cu}^{0}$$
  

$$E_{cu^{2+}/Cu}^{0} = (0.80 - 0.46) = 0.34V = 34 \times 10^{-2}$$

**25.** Assuming 1µg of trace radioactive element X with a half life of 30 years is absorbed by a growing tree. The amount of X remaining in the tree after 100 years is  $\_\_X 10^{-1}$ µg. [Given : ln = 2.303; log 2 = 0.30]

Sol. (1)

$$t = \frac{1}{\lambda} \ln\left(\frac{a}{a-x}\right)$$
  

$$100 = \left(\frac{30}{\log 2}\right) \left[\ln\left(\frac{1}{\omega}\right)\right]$$
  

$$\frac{100 \times \log 2}{30} = \log\left(\frac{1}{\omega}\right)$$
  

$$1 = \log\left(\frac{1}{\omega}\right)$$
  

$$\frac{1}{\omega} = 10$$
  

$$\omega = 0.1 \,\mu\text{g}$$

**26.** Sum of oxidation state (magnitude) and coordination number of cobalt in Na[Co(bpy)Cl<sub>4</sub>] is



#### Sol. 9

Coordination no. = 6Oxidation state = 36 + 3 = 9

- **27.** Consider the following Sulphur based oxoacids.  $H_2SO_3, H_2SO_4, H_2S_2O_8$  and  $H_2S_2O_7$ Amongst these oxoacids, the number of those with peroxo (0 – 0) bond is\_\_\_\_\_.
- Sol. 1

$$\begin{array}{c} O \\ H - O - S - O - H (H_2 SO_3) \\ H - O - S - O - H (H_2 SO_4) \\ H O - S - O - S - OH (H_2 S_2 O_8) \\ H - O - S - O - S - OH (H_2 S_2 O_7) \\ H - O - S - O - S - OH (H_2 S_2 O_7) \end{array}$$

- **28.** A 1.84 mg sample of polyhydric alcoholic compound 'X' of molar mass 92.0 g/mol gave 1.344 mL of H<sub>2</sub> gas at STP. The number of alcoholic hydrogens present in compound 'X' is\_\_\_\_\_.
- Sol. 6

Mole of H<sub>2</sub> gas =  $\frac{1.344}{22400} = 6 \times 10^{-5}$ No. of H-atoms per molecule of H<sub>2</sub> = 2 Moles of alcoholic hydrogens =  $6 \times 10^{-5} \times 2$  $n \times \frac{1.84 \times 10^{-3}}{92} = 2 \times 6 \times 10^{-5}$  $n = \frac{12 \times 92}{184} \implies 6$ 

**29.** The number of stereoisomers formed in a reaction of  $(\pm)$ Ph(C = 0)C(OH)(CN)Ph with HCN is\_\_\_\_\_.

[Where Ph is  $-C_6H_5$ ]

## Sol. **3**

The number of stereoisomer formed in a reaction.



No. of stereisomer  $= 2^{n} - 2^{\frac{n}{2}-1}$  $= 2^{2} - 2^{\frac{2}{2}-1}$  $2^{2} - 2^{0}$ No. of stereisomer = 3

- **30.** The number of chlorine atoms in bithionol is \_\_\_\_\_.
- Sol. 4



No. of chlorine atom = 4