CHEMISTRY
 JEE-MAIN (July-Attempt)
 29 July (Shift-1) Paper Solution

SECTION - A

1. Which of the following pair of molecules contain odd electron molecule and an expanded octet molecule?
(A) BCl_{3} and SF_{6}
(B) NO and $\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) SF_{6} and $\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) BCl_{3} and NO

Sol. B
Expanded octet - Central atom has more than $8 \mathrm{e}^{-}$
Odd electron species \Rightarrow Number of total electrons in valence shell is odd.
(i)
 (valence shell) for each chloride $\Rightarrow 8 \mathrm{e}^{-}$
(ii)

$$
\Rightarrow 12 \mathrm{e}^{-}
$$

$$
\begin{aligned}
& \text { For sulphur } \\
& 6 \times 2 \Rightarrow 12
\end{aligned}
$$

for ' ${ }^{\prime}$ ' each $\Rightarrow 8$
(iii)

$$
\begin{aligned}
\mathrm{No} \Rightarrow & \cdot \mathrm{~N}=\mathrm{O} \quad \text { total valence electron in nitrogen is } 5 \mathrm{e}- \\
& \text { Total valence electron in oxygen is } 8 \mathrm{e}- \\
& \text { So total electron is } 13 \mathrm{e}-
\end{aligned}
$$ \Downarrow

\because It is odd electronic species Odd number

Now if we want to identify expanded octet
(i)
BCl_{3}
\Downarrow
(ii) SF_{6}
(ii) NO
(iv) $\mathrm{H}_{2} \mathrm{SO}_{4}$
$6 \mathrm{e}^{-}$
$12 \mathrm{e}^{-}$
$5 e^{-}$
\Downarrow
$2 \mathrm{e}^{-}$
2. $\quad \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$
$20 \mathrm{~g} \quad 5 \mathrm{~g}$
Consider the above reaction, the limiting reagent of the reaction and number of moles of NH_{3} foremed respectively are :
(A) $\mathrm{H}_{2}, 1.42$ moles
(B) $\mathrm{H}_{2}, 0.71$ moles
(C) $\mathrm{N}_{2}, 1.42$ moles
(D) $\mathrm{N}_{2}, 0.71$ moles

Sol. C
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{W}_{2}=20 \mathrm{~g} \quad 5$
$\mathrm{n}=\frac{20}{28} \quad 5 / 2$
Stoichiometric Amount.
$\mathrm{N}_{2} \rightarrow \frac{20 / 28}{1}=\frac{20}{28} \mathrm{H}_{2} \rightarrow \frac{5 / 2}{3}=\frac{5}{6}$
$\therefore \mathrm{N} 2$ is the limiting reagent
$\therefore n\left(\mathrm{NH}_{3}\right)=2 \times n\left(N_{2}\right)=2 \times \frac{20}{28}$
$=1.42$
3. 100 mL of $5 \%(\mathrm{w} / \mathrm{v})$ solution NaCl in water was prepared in 250 mL beaker. Albumin from the egg was poured into NaCl solution and stirred well. This resulted in a/an :
(A) Lyophilic sol
(B) Lyophobic sol
(C) Emulsion
(D) Precipitate

Sol. A
Standard method for the preparation of lyophilic
4. The first ionization enthalpy of Na, Mg and Si, respectively, are : 496,737 and $786 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The first ionization enthalpy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ of Al is :
(A) 487
(B) 768
(C) 577
(D) 856

Sol. C
Order of $1^{\text {st }}$ I.E. \quad I.E. $\uparrow \rightarrow$ along the period
But Mg has more ionization energy because of stable electronic configuration

Na
496

- -

So the value of I.E. of Al must lie in between 496 and 737 i.e. \Rightarrow (C) 577
5. In metallurgy the term "gangue" is used for :
(A) Contamination of undesired earthy materials.
(B) "Contamination of metals, other than desired metal.
(C) Minerals which are naturally occurring in pure form.
(D) Magnetic impurities in an ore.

Sol. A
gangue : Ore usually contaminated with earthly or undesired materials known as gangue.
[direct from n.c.e.r.t.]
6. The reaction of zinc with excess of aqueous alkali, evolves hydrogen gas and gives :
(A) $\mathrm{Zn}(\mathrm{OH})_{2}$
(B) ZnO
(C) $\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$
(D) $\left[\mathrm{ZnO}_{2}\right]^{2-}$

Sol. C, D
NaOH (aq.) $+\mathrm{Zn} \longrightarrow \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]+\mathrm{H}_{2} \uparrow$
\therefore so we can write it in ionic form as $\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]$.
NaOH (aq.) $+\mathrm{Zn} \longrightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2} \uparrow$
so we can write it in ionic form as $\left(\mathrm{ZnO}_{2}\right)^{-2}$
So Correct option is (C, D)
7. Lithium nitrate and sodium nitrate, when heated separately, respectively, give :
(A) LiNO_{2} and NaNO_{2}
(B) LiO_{2} and $\mathrm{Na}_{2} \mathrm{O}$
(C) LiO_{2} and NaNO_{2}
(D) LiNO_{2} and $\mathrm{Na}_{2} \mathrm{O}$

Sol. C
All alkali nitrates on heating breakdown into nitrites and O_{2} except lithium nitrate.
$\mathrm{NaNO}_{3} \xrightarrow{\Delta} \mathrm{NaNO}_{2}+\mathrm{O}_{2}$
$\mathrm{LiNO}_{3} \xrightarrow{\Delta} \mathrm{Li}_{2} \mathrm{O}+\mathrm{NO}_{2}+\mathrm{O}_{2}$
It breaks into its oxide, $\mathrm{NO}_{2}(\mathrm{~g})$ and dioxygen gas.
So correct option is (C) $\mathrm{NaNO}_{2} \& \mathrm{Li}_{2} \mathrm{O}$
8. Number of lone pairs of electrons in the central atom of $\mathrm{SCl}_{2}, \mathrm{O}_{3}, \mathrm{ClF}_{3}$ and SF_{6}, respectively, are :

Sol. B
(A) 0, 1, 2 and 2
(B) 2, 1, 2 and 0
(C) 1, 2, 2 and 0
(D) 2, 1, 0 and 2

no. of I.p = 2

no. of I.p $=0$

Correct option is ' B '.
9. In following pairs, the one in which both transition metal ions are colourless is :
(A) $\mathrm{Sc}^{3+}, \mathrm{Zn}^{2+}$
(B) $\mathrm{Ti}^{4+}, \mathrm{Cu}^{2+}$
(C) $\mathrm{V}^{2+}, \mathrm{Ti}^{3+}$
(D) $\mathrm{Zn}^{2+}, \mathrm{Mn}^{2+}$

Sol. A
The transition metal whose either all d orbitals are completely filled or vacant in either neutral or ionic state is colorless or in other words.
\rightarrow that transition metal will show color which has at least one unpaired electron.

21 Sc	\rightarrow	$[\mathrm{Ar}] 3 \mathrm{~d}^{1} 4 \mathrm{~s}^{2} ;$	$\mathrm{Sc}^{3+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{0} 45^{0}$
30 Zn	\rightarrow	$[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} ;$	$\mathrm{Zn}^{3+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{10} 45^{0}$
22 Ti	\rightarrow	$[\mathrm{Ar}] 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2} ;$	$\mathrm{Ti}^{4+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{0} 45^{0}$
23 V	\rightarrow	$[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2} ;$	$\mathrm{V}^{2+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{3}$
29 Cu	\rightarrow	$[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1} ;$	$\mathrm{Cu}^{2+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{9} 45^{0}$
25 Mn	\rightarrow	$[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2} ;$	$\mathrm{Mn}^{2+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 45^{0}$

The colorless ions are :- $\mathrm{Sc}^{3+}, \mathrm{Zn}^{2+}$
So the correct option is ' A '.
10. In neutral or faintly alkaline medium, KMnO_{4} being a powerful oxidant can oxidize, thiosulphate almost quantitatively, to sulphate. In this reaction overall change in oxidation state of manganese will be :
(A) 5
(B) 1
(C) 0
(D) 3

Sol. D
Reaction of KMnO_{4} in neutral medium;
\rightarrow In neutral medium $\mathrm{MnO}_{4}^{-} \longrightarrow \quad \mathrm{MnO}_{2}$

Change of oxidation state of $\mathrm{Mn}=7-4=3$
\therefore so option (D)
11. Which among the following pairs has only herbicides?
(A) Aldrin and Dieldrin
(B) Sodium chlorate and Aldrin
(C) Sodium arsenate and Dieldrin
(D) Sodium chlorate and sodium arsinite

Sol. D
Sodium chlorate and sodium arsinite are used as herbicides
\Rightarrow DDT, BHC, Aldrin, Dieldrin \Rightarrow insecticides

\therefore Option (D)

12. Which among the following is the strongest Bronsted base ?
(A)

(B)

(C)

(D)

Sol. D

This is bridged alkyl amine. It is also 3°, hence lone pair is more available.
Amine inversion is also not possible.
13. Which among the following pairs of the structures will give different products on ozonolysis ? (Consider the double bonds in the structures are rigid and not delocalized.)
(A)

(B)

(C)

(D)

Sol. C

Considering the above reactions, the compound ' A ' and compound ' B ' respectively are :

(A)

(C)
(B)

(D)

Sol. C

NaCN is ionic in nature, So in CN^{-}anion ' c ' act as nucleophile, and AgCN is covalent in nature, So ' N ' act as nucleophile, as we know CN is ambidentate ligand,
15.

Consider the above reaction sequence, the Product ' C ' is :
(A)

(B)

(C)

(D)

Sol. D

16.

Consider the above reaction, the compound ' A ' is :
(A)

(B)

(C)

(D)

Sol. C

| Hoffman |
| :--- | :--- |
| Bromomide |
| degradotion |\(\downarrow \begin{aligned} \& \mathrm{Br}_{2}

\& \mathrm{NaOH}\end{aligned}\)

CH_{3}
17.

Which among the following represent reagent ' A '
(A)

(B)

(C)

(D)

Sol. (A)

18. Consider the following reaction sequence :

(B) $\mathrm{H}_{2} \mathrm{~N}$

(C) $\mathrm{H}_{2} \mathrm{~N}$

(D)

Sol. B

19. Which of the following compounds is an example of hypnotic drug ?
(A) Seldane
(B) Amytal
(C) Aspartame
(D) Prontosil

Sol. B
Amytol is hypnotic drug
Amytal is derivative of barbiturate is sedative-hypnatic drug.
20. A compound ' X ' is acidic and it is soluble in NaOH solution but insoluble in NaHCO_{3} solution. Compound ' X ' also gives violet colour with neutral FeCl_{3} solution. The compound ' X ' is :
(A)

(B)

(C)

(D)

Sol. B
 phenol

SECTION - B

21. Resistance of a conductivity cell (cell constant $129 \mathrm{~m}^{-1}$) filled with 74.5 ppm solution of KCl is 100Ω (labelled as solution 1). When the same cell is filled with KCl solution of 149 ppm , the resistance is 50Ω (labelled as solution 2). The ratio of molar conductivity of solution 1 and solution 2 is i.e. $\frac{\Lambda_{1}}{\Lambda_{2}}=\mathrm{x} \times 10^{-3}$. The value of x is \qquad . (Nearest integer)
Given, molar mass of KCl is $74.5 \mathrm{~g} \mathrm{~mol}^{-1}$.
Sol. 1,000
Given that : $-\frac{\ell}{\mathrm{A}}=129 \mathrm{~m}^{-1}$

Case (I):-

Concentration of KCl solution $=74.5 \mathrm{ppm}$
Resistance $\left(\mathrm{R}_{1}\right)=100 \Omega$
For solution 1
$\mathrm{k}_{1}=\frac{1}{\mathrm{R}_{1}} \times \frac{\ell}{\mathrm{A}}$
$=\frac{1}{100} \times 129=\frac{129}{100}$
Molar conductivity $\Rightarrow \wedge 1=\mathrm{k}_{1} \times \frac{1000}{\mathrm{M}_{1}}$
$\mathrm{M}_{1}=$ Molarity of $1^{\text {st }}$ solution
Case II :-
Concentration of KCl solution $=149 \mathrm{ppm}$
Resistance $\left(\mathrm{R}_{2}\right)=50 \Omega$
For solution 2 :-
$\mathrm{k}_{2}=\frac{1}{\mathrm{R}_{2}} \times \frac{\ell}{\mathrm{A}}$
$=\frac{1}{50} \times 129=\frac{129}{50}$
Molar conductivity $=\wedge 2=\mathrm{k}_{2} \times \frac{1000}{\mathrm{M}_{2}}$
$\mathrm{M}_{2}=$ Molarity of $2^{\text {nd }}$ solution.
$\frac{\Lambda_{1}}{\Lambda_{2}}=\frac{\mathrm{k}_{1} \times \frac{1000}{\mathrm{M}_{1}}}{\mathrm{k}_{2} \times \frac{1000}{\mathrm{M}_{2}}}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}} \times \frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}$
$=\frac{k_{1}}{k_{2}} \frac{(\mathrm{ppm})_{2}}{(\mathrm{ppm})_{1}}\left(\because \frac{(\mathrm{ppm})_{2}}{(\mathrm{ppm})_{1}}=\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}\right)=\frac{129 / 100}{129 / 50} \times \frac{147}{74.5}=1=1000 \times 10^{-3}$
22. Ionic radii of cation A^{+}and anion B^{-}are 102 and 181 pm respectively. These ions are allowed to crystallize into an ionic solid. This crystal has cubic close packing for B^{-}. A^{+}is present in all octahedral voids. The edge length of the unit cell of the crystal $A B$ is \qquad pm. (Nearest Integer)
Sol. 566
Ionic radii of cation $\left(\mathrm{A}^{+}\right)=\mathrm{r}_{+}=102 \mathrm{pm}$
Ionic radii of anion (B^{-}) $=\mathrm{r}_{-}=181 \mathrm{pm}$
For cubic close packing :-
Edge length (a) $=2 \mathrm{r}_{+}+2 \mathrm{r}_{-}(\because$ cations are present in octahedral voids $)$
$=(2 \times 102)+(2 \times 181)=566 \mathrm{pm}$
23. The minimum uncertainty in the speed of an electron in an one dimensional region of length $2 a_{0}$ (where $\mathrm{a}_{0}=$ Bohr radius 52.9 pm) is \qquad $\mathrm{km} \mathrm{s}^{-1}$.
(Given : Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$, Planck's constant $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$)
Sol. 548
$\Delta \mathrm{x} . \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
$\Delta \mathrm{x}=2 \mathrm{a}_{0} \quad \Delta \mathrm{P}=\mathrm{m} \Delta \mathrm{v}$
$\mathrm{a}_{0}=52.9 \mathrm{pm}=52.9 \times 10^{-12} \mathrm{~m}$.
$\Delta x \cdot m \Delta v=\frac{h}{4 \pi}$
$\Delta \mathrm{x}=\frac{\mathrm{h}}{4 \pi \times \mathrm{m} \times \Delta \mathrm{x}}=\frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 2 \times 52.9 \times 10^{-12}}$
$=548273 \mathrm{~m} / \mathrm{sec}$.
$=548.273 \mathrm{~km} / \mathrm{sec}$.
$\approx 548 \mathrm{~km} / \mathrm{sec}$.
24. When 600 mL of $0.2 \mathrm{M} \mathrm{HNO}_{3}$ is mixed 400 mL of 0.1 M NaOH solution in a flask, the rise in temperature of the flask is \qquad $\times 10^{-2}{ }^{\circ} \mathrm{C}$.
(Enthalpy of neutralization $=57 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and specific heat of water $=4.2 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$)
(Neglect heat capacity of flask)
Sol. 54
$\mathrm{HNO}_{3}+\mathrm{NaOH} \longrightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
600 ml 400 ml
$0.2 \mathrm{M} \quad 0.1 \mathrm{M}$
mili moles of $\mathrm{HNO}_{3}=600 \times 0.2=120 \mathrm{~m} \mathrm{~mol}$
mili moles of $\mathrm{NaOH}=400 \times 0.1=40 \mathrm{~m} \mathrm{~mol}$
$\mathrm{HNO}_{3}+\mathrm{NaOH} \longrightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
12040
$80 \quad 0 \quad 40$
After the reaction
$\because 40 \mathrm{~m}$ moles $=40 \times 10^{-3}$ moles are reacting.
Enthalpy change for reaction
$\Delta_{r} \mathrm{H}=40 \times 10^{-3} \times 57 \times 10^{3} \mathrm{~J}$
$=2280 \mathrm{~J}$
$\mathrm{C}=$ Specific heat of water
$\mathrm{M}=$ mass of solution
$=$ density \times volume
$=1 \mathrm{gm} / \mathrm{ml} \times 1000 \mathrm{ml}$
$=1000 \mathrm{gm}$
$\mathrm{q}=\mathrm{mc} \Delta \mathrm{T} \quad \because \mathrm{q}=\Delta_{\mathrm{r}} \mathrm{H}$
$2280=1000 \times 4.2 \times \Delta \mathrm{T}$
$\Delta \mathrm{T}=54.286 \times 10^{-2} \mathrm{k}=54.286 \times 10^{-2}{ }^{\circ} \mathrm{C} \approx 54 \times 10^{-2}{ }^{\circ} \mathrm{C}$
25. If O_{2} gas is bubbled through water at 303 K , the number of millimoles of O_{2} gas that dissolve in 1 litre of water is \qquad . (Nearest Integer)
(Given : Henry's Law constant for O_{2} at 303 K is 46.82 k bar and partial pressure of $\mathrm{O}_{2}=$ 0.920 bar)
(Assume solubility of O_{2} in water is too small, nearly negligible)
Sol. 1
Given that
$\mathrm{k}_{\mathrm{H}}=46.82 \mathrm{k}$ bar $=46.82 \times 10^{3} \mathrm{bar}$
Partial pressure of $\mathrm{O}_{2}=\mathrm{pO}_{2}=0.920$ bar
$\mathrm{X}=$ mole fraction of dissolved gas
$=\frac{\text { mole of } \mathrm{O}_{2}}{\text { mole of dissolved } \mathrm{O}_{2}+\text { mole of water }} \approx \frac{\text { mole of } \mathrm{O}_{2}}{\text { mole of water }}$
Mole of water $=\frac{1000}{18}(\because$ mass of 1000 ml water $=1000 \mathrm{gm})$
According to Henry's law :-
$\mathrm{P}_{\mathrm{O}_{2}}=\mathrm{k}_{\mathrm{H}} \times \mathrm{X}$
$0.920=46.82 \times 10^{3} \times \frac{\text { mole of } \mathrm{O}_{2}}{1000 / 18}$
Mole of $\mathrm{O}_{2}=\frac{0.920}{46.82 \times 18}=1.09 \times 10^{-3} \approx 1 \times 10^{-3}$
mili moles of $\mathrm{O}_{2}=1$
26. If the solubility product of PbS is 8×10^{-28}, then the solubility of PbS in pure water at 298 K is $x \times 10^{-16} \mathrm{~mol} \mathrm{~L}^{-1}$. The value of x is \qquad (Nearest Integer)
[Given : $\sqrt{2}=1.41$]
Sol. 282
$\mathrm{Pbs} \leftrightharpoons \mathrm{Pb}^{2+}+\mathrm{s}^{2-}$
$\mathrm{k}_{\mathrm{sp}}=\mathrm{s}^{2} \quad \mathrm{~s} \rightarrow$ Solubility

$$
\mathrm{k}_{\mathrm{sp}}=\text { solubility product }
$$

$\mathrm{s}=\sqrt{\mathrm{k}_{\mathrm{sp}}}$
$=\sqrt{8 \times 10^{-28}} \quad \because$ Given $K_{\text {sp }}=8 \times 10^{-28}$
$=\sqrt{8} \times 10^{-14}=2 \sqrt{2} \times 10^{-14}$
$=2.82 \times 10^{-14}=282 \times 10^{-16} \mathrm{~mol} / \mathrm{L}=\mathrm{x} \times 10^{-16}$
$x=282$
27. The reaction between X and Y is first order with respect to X and zero order with respect to Y.

Experiment	$\frac{[\mathrm{X}]}{\mathrm{mol} \mathrm{L}^{-1}}$	$\frac{[\mathrm{Y}]}{\mathrm{mol} \mathrm{L}^{-1}}$	$\frac{\text { Initial rate }}{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}}$
I	0.1	0.1	2×10^{-3}
II	L	0.2	4×10^{-3}
III	0.4	0.4	$\mathrm{M} \times 10^{-3}$
IV	0.1	0.2	2×10^{-3}

Examine the data of table and calculate ratio of numerical values of M and L . (Nearest Integer)

Sol. 40
rate (r) $=\mathrm{k}[\mathrm{x}]^{\mathrm{a}}[\mathrm{y}]^{\mathrm{b}}$
$\mathrm{k}=$ rate constant
Given that $\mathrm{a}=1 \mathrm{~b}=0$
For experiment I:-
$\mathrm{r}_{\mathrm{I}}=\mathrm{k}[0.1]^{\mathrm{a}}[0.1]^{\mathrm{b}}=2 \times 10^{-3}$
$\mathrm{k}[0.1]^{1}[0.1]^{0}=2 \times 10^{-3}$
for experiment II :-
$\mathrm{r}_{\text {II }}=\mathrm{k}[\mathrm{L}]^{1}[0.2]^{0}=4 \times 10^{-3}$
equation (2) \div equation (1)
$\frac{\mathrm{L}}{0.1}=\frac{4 \times 10^{-3}}{2 \times 10^{-3}}$
$\mathrm{L}=0.2$
For experiment III: -
$\mathrm{r}_{\text {III }}=\mathrm{k}[0.4]^{1}[0.4]^{0}=\mathrm{M} \times 10^{-3}$
For experiment IV: -
$\mathrm{r}_{\text {IV }}=\mathrm{k}[0.1]^{1}[0.2]^{0}=2 \times 10^{-3}$
Divide equation (3) by equation (4) :-
$\frac{0.4}{0.1}=\frac{\mathrm{M} \times 10^{-3}}{2 \times 10^{-3}}$
$\mathrm{M}=8$
$\frac{\mathrm{M}}{\mathrm{L}}=\frac{8}{0.2}=\frac{40}{1}$
Ratio of M and $\mathrm{L}=40$
28. In a linear tetrapeptide (Constituted with different amino acids), (number of amino acids)(number of peptide bonds) is \qquad -

Sol. 1

$\Rightarrow 1$
29. In bromination of Propyne, with Bromine 1, 1, 2, 2-tetrabromopropane in 27% yield. The amount of 1, 1, 2, 2-tetravromopropane obtained from 1 g of Bromine in this reaction is
\qquad $\times 10^{-1} \mathrm{~g}$. (Nearest Integer)
(Molar Mass : Bromine $=80 \mathrm{~g} / \mathrm{mol}$)
Sol. 3

Propyne

> 1, 1, 2, 2-tetrabromopropane
> 27% yield
> $\mathrm{MM}=360 \mathrm{~g} / \mathrm{mol}$

2 mol Br 2 produce 1 mol (1, 1, 2,2-tetrabromopropane)
So,
$1 \mathrm{~mol} \mathrm{Br}_{2}$ produce $=(1 / 2)$ mole tetrabromopropane
$1 \mathrm{~g} \mathrm{Br}_{2}$ is given
Mole of $\mathrm{Br}_{2}=(1 / 160) \mathrm{mol}$
Amount of tetrabromopropane formed

$$
\begin{aligned}
& =\left(\frac{1}{160}\right) \times \frac{1}{2} \times 360 \times\left(\frac{27}{100}\right) \\
& =0.3037 \mathrm{~g} \\
& =3.037 \times 10^{-1} \mathrm{~g}
\end{aligned}
$$

30. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ should be an inner orbital complex. Ignoring the pairing energy, the value of crystal field stabilization energy for this complex is (-) ---------- Δ_{0} (Nearest Integer)

Sol. 2

$\left[\mathrm{Fe}(\mathrm{CN})_{3}\right]^{3-}$
$\stackrel{\downarrow}{\mathrm{C} . \mathrm{N} .=6} \rightarrow$ as in question it is mentioned inner d complex
Means Hybridization is $\mathrm{d}^{2} \mathrm{sp}^{3}$ (octahedral)
Splitting of octahedral complex

\rightarrow as ligand approaches long the axis in octahedral complex ; so the orbitals who are along the axis will get repulsion.
\rightarrow Hence along the axis orbitals i.e. $d z^{2} \& d x^{2}-y^{2}$ get more energy.

Now,
O.N of Fe here is

$$
\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \quad \Rightarrow-3-\{-1 \times 6\}
$$

$$
\Rightarrow+3
$$

$\mathrm{Fe} \quad \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
$\mathrm{Fe}^{+3} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$
\Rightarrow as here S.F.L. so hunds rule will not followed here, so $\Delta_{0}>$ P. E.
\Rightarrow Hence $\mathrm{t}_{2} \mathrm{~g}$ will first filled

C.F.S.E $=(-2 / 5) \Delta_{0} \times 5+n p+\left(\frac{3}{5} \Delta_{0}\right) \times 0$
C.F.S.E $=-2 \Delta_{0} \quad$ here paring energy is said to ignore in question.

So, the numerical value is ' 2 '.

