CHEMISTRY JEE-MAIN (July-Attempt) 29 July (Shift-1) Paper Solution

SECTION - A

- 1. Which of the following pair of molecules contain odd electron molecule and an expanded octet molecule?
 - (A) BCl₃ and SF₆
- (B) NO and H_2SO_4 (C) SF_6 and H_2SO_4 (D) BCl_3 and NO

Sol.

Expanded octet - Central atom has more than 8e-

Odd electron species \Rightarrow Number of total electrons in valence shell is odd.

(i)
$$BCl_3 \Rightarrow Cl - B \stackrel{Cl}{<}_{Cl} \Rightarrow total \ electrons \qquad for \ boron \Rightarrow 6e^-$$

(valence shell) for each chloride \Rightarrow 8e⁻

For sulphur

for 'F' each \Rightarrow 8

(iii) No
$$\Rightarrow$$
 · N = O total valence electron in nitrogen is 5e-
Total valence electron in oxygen is 8e-
So total electron is 13e-

: It is odd electronic species

Odd number

(iv)
$$H_2SO_4 \Rightarrow HO \longrightarrow S \longrightarrow OH \longrightarrow Here also it is not odd electronic species
$$\begin{vmatrix} 0 \\ | \\ 0 \end{vmatrix}$$$$

Now if we want to identify expanded octet

2. $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$

20g 5g

Consider the above reaction, the limiting reagent of the reaction and number of moles of NH₃ foremed respectively are:

(A) H_2 , 1.42 moles (B) H_2 , 0.71 moles (C) N_2 , 1.42 moles (D) N_2 , 0.71 moles

Sol.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

 $W_2 = 20g - 5$

$$n = \frac{20}{28} \quad 5/2$$

Stoichiometric Amount.

$$N_2 \rightarrow \frac{20/28}{1} = \frac{20}{28} H_2 \rightarrow \frac{5/2}{3} = \frac{5}{6}$$

∴ N2 is the limiting reagent

3. 100 mL of 5% (w/v) solution NaCl in water was prepared in 250 mL beaker. Albumin from the egg was poured into NaCl solution and stirred well. This resulted in a/an:

(A) Lyophilic sol

(B) Lyophobic sol

(C) Emulsion

(D) Precipitate

Sol.

Standard method for the preparation of lyophilic

The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol⁻¹. The 4. first ionization enthalpy (kJ mol^{-1}) of Al is:

(A) 487

(B) 768

(C)577

(D) 856

Sol. C

Order of 1st I.E. $\uparrow \rightarrow$ along the period

But Mg has more ionization energy because of stable electronic configuration

So the value of I.E. of Al must lie in between 496 and 737 i.e. \Rightarrow (C) 577

In metallurgy the term "gangue" is used for: 5.

(A) Contamination of undesired earthy materials.

(B) "Contamination of metals, other than desired metal.

(C) Minerals which are naturally occurring in pure form.

(D) Magnetic impurities in an ore.

Sol.

gangue: Ore usually contaminated with earthly or undesired materials known as gangue. [direct from n.c.e.r.t.]

6. The reaction of zinc with excess of aqueous alkali, evolves hydrogen gas and gives :

(A) $Zn(OH)_2$

(B) ZnO

(C) $[Zn(OH)_4]^{2-}$

(D) $[ZnO_2]^{2-}$

Sol. C, D

 $NaOH(aq.) + Zn \longrightarrow Na_2[Zn(OH)_4] + H_2 \uparrow$

 \therefore so we can write it in ionic form as [Zn(OH)₄].

 $NaOH(aq.) + Zn \longrightarrow Na_2 ZnO_2 + H_2 \uparrow$

so we can write it in ionic form as $(ZnO_2)^{-2}$

So Correct option is (C, D)

7. Lithium nitrate and sodium nitrate, when heated separately, respectively, give :

(A) $LiNO_2$ and $NaNO_2$

(B) LiO₂ and Na₂O

(C) LiO₂ and NaNO₂

(D) LiNO₂ and Na₂O

Sol. C

All alkali nitrates on heating breakdown into nitrites and O2 except lithium nitrate.

 $NaNO_3 \xrightarrow{\Delta} NaNO_2 + O_2$

 $LiNO_3 \xrightarrow{\Delta} Li_2O + NO_2 + O_2$

It breaks into its oxide, NO₂(g) and dioxygen gas.

So correct option is (C) NaNO₂ & Li₂O

8. Number of lone pairs of electrons in the central atom of SCl_2 , O_3 , ClF_3 and SF_6 , respectively, are

(A) 0, 1, 2 and 2

- (B) 2, 1, 2 and 0
- (C) 1, 2, 2 and 0
- (D) 2, 1, 0 and 2

Sol.

no. of l.p = 2

no. of l.p = 1

no. of l.p = 2

no. of l.p = 0

Correct option is 'B'.

9. In following pairs, the one in which both transition metal ions are colourless is:

(2) $\frac{3}{4}$ $\frac{3$

(A) Sc^{3+} , Zn^{2+}

(B) Ti^{4+} , Cu^{2+}

(C) V^{2+} , Ti^{3+}

(D) Zn^{2+} , Mn^{2+}

Sol. A

The transition metal whose either all d orbitals are completely filled or vacant in either neutral or ionic state is colorless or in other words.

→ that transition metal will show color which has at least one unpaired electron.

 $21Sc \rightarrow [Ar]3d^{1}4s^{2};$

 $Sc^{3+} \rightarrow [Ar] 3d^0 45^0$

30Zn \rightarrow [Ar]3d¹⁰ 4s²;

 $Zn^{3+} \rightarrow [Ar] 3d^{10} 45^{0}$

22Ti \rightarrow [Ar]3d² 4s²; 23V \rightarrow [Ar]3d³ 4s²; $Ti^{4+} \rightarrow [Ar] 3d^0 45^0$

 $_{23}V \rightarrow [Ar]3d^3 4s^2;$ $_{29}Cu \rightarrow [Ar]3d^{10} 4s^1;$ $V^{2+} \rightarrow [Ar] 3d^3$ $Cu^{2+} \rightarrow [Ar] 3d^9 45^0$

25Mn →

[Ar]3d⁵ 4s²:

 $Mn^{2+} \rightarrow [Ar] 3d^5 45^0$

The colorless ions are :– Sc^{3+} , Zn^{2+}

So the correct option is 'A'.

- **10**. In neutral or faintly alkaline medium, KMnO₄ being a powerful oxidant can oxidize, thiosulphate almost quantitatively, to sulphate. In this reaction overall change in oxidation state of manganese will be:
 - (A) 5
- (B) 1
- (C) 0
- (D) 3

Sol. D

Reaction of KMnO₄ in neutral medium;

- \rightarrow In neutral medium MnO₄⁻ \longrightarrow
- MnO_2

$$\stackrel{+7}{MnO_4}^- + S_2O_3^{2-} \longrightarrow \stackrel{+4}{MnO_2} + SO_4^{2-}$$
 Change of oxidation state of Mn = 7 - 4 = 3

- ∴ so option (D)
- 11. Which among the following pairs has only herbicides?
 - (A) Aldrin and Dieldrin

- (B) Sodium chlorate and Aldrin
- (C) Sodium arsenate and Dieldrin
- (D) Sodium chlorate and sodium arsinite

Sol.

Sodium chlorate and sodium arsinite are used as herbicides

- \Rightarrow DDT, BHC, Aldrin, Dieldrin \Rightarrow insecticides
- : Option (D)
- **12.** Which among the following is the strongest Bronsted base?

Sol.

This is bridged alkyl amine. It is also 3°, hence lone pair is more available. Amine inversion is also not possible.

13. Which among the following pairs of the structures will give different products on ozonolysis? (Consider the double bonds in the structures are rigid and not delocalized.)

Sol. (

Н

14.
$$(Major Product)$$
 $(Major Product)$ $(Major Product)$ $(Major Product)$ $(Major Product)$

Considering the above reactions, the compound 'A' and compound 'B' respectively are:

Sol.

$$N \equiv C \xrightarrow{AgCN} Cl \xrightarrow{AgCN} C \equiv N$$
(major)
(major)
(major)

NaCN is ionic in nature , So in CN- anion 'c' act as nucleophile, and AgCN is covalent in nature, So 'N' act as nucleophile, as we know CN is ambidentate ligand,

15. OH
$$\begin{array}{c} OH \\ Br_2 \\ A \end{array} \xrightarrow{NH_2OH} B \xrightarrow{P_2O_5} C$$

$$CHO$$

Consider the above reaction sequence, the Product 'C' is :

Sol. **D**

16.

Consider the above reaction, the compound 'A' is:

NH₃

$$CI$$
 CH_3
 CI
 CH_3
 CI
 CH_3
 CI
 CH_3
 CI
 CH_3
 NH_2
 CI
 CH_3
 NH_2
 CI
 CH_3
 NH_2
 CI
 CH_3
 II
 II

Which among the following represent reagent 'A'

$$(A) \qquad (B) \qquad (B) \qquad NH_2 \qquad NH_2 \qquad (C) \qquad (D) \qquad (D) \qquad (D)$$

Sol. (A)

2 -naphthol-aniline dye (orange-red-dye)

18. Consider the following reaction sequence :

$$\begin{array}{c|c}
NH_2 \\
\hline
(i) AlH (i-Bu)_2 \\
\hline
(ii) H_2O
\end{array}$$
'A'
$$\begin{array}{c}
CH_3CHO \\
\hline
dil NaOH \Delta
\end{array}$$
(Major Product)

The product 'B' is:

(A) OHC
$$\sim$$
 N=CH-CH₃

(B)
$$H_2N$$
 — CH=CH—CHO

(C)
$$H_2N$$
 $CH_2-N=CH-CH_3$

Sol. **B**

$$\begin{array}{c|c} NH_2 & OH & OH \\ \hline & (i) AlH(i-Bu)_2 & H_3C-C-H \\ \hline & (ii) H_2O & C-H \\ \hline & 0 & OH \\ \hline & OH \\$$

- Which of the following compounds is an example of hypnotic drug?

 (A) Seldane

 (B) Amytal

 (C) Aspartame

 (D) Prontosil
- Sol. **B**Amytol is hypnotic drug
 Amytal is derivative of barbiturate is sedative-hypnatic drug.
- **20.** A compound 'X' is acidic and it is soluble in NaOH solution but insoluble in NaHCO₃ solution. Compound 'X' also gives violet colour with neutral FeCl₃ solution. The compound 'X' is:

Sol. B

$$\begin{array}{c}
\text{OH} \\
\text{Phenol} \\
\text{Phenol}
\end{array}$$

$$\begin{array}{c}
\text{Neutral FeCl}_3 \\
\text{Ferric chlorid.} \\
\text{O} \\
\text{O$$

21. Resistance of a conductivity cell (cell constant 129 m⁻¹) filled with 74.5 ppm solution of KCl is 100Ω (labelled as solution 1). When the same cell is filled with KCl solution of 149 ppm, the resistance is 50Ω (labelled as solution 2). The ratio of molar conductivity of solution 1 and solution 2 is i.e. $\frac{\Lambda_1}{\Lambda_2} = x \times 10^{-3}$. The value of x is______. (Nearest integer)

Given, molar mass of KCl is 74.5 g mol^{-1} .

Sol. **1,000**

Given that :
$$-\frac{\ell}{A} = 129 \text{m}^{-1}$$

Case (I):-

Concentration of KCl solution = 74.5 ppm

Resistance (R₁) = 100Ω

For solution 1

$$k_1 = \frac{1}{R_1} \times \frac{\ell}{A}$$
$$= \frac{1}{100} \times 129 = \frac{129}{100}$$

Molar conductivity $\Rightarrow \land_1 = k_1 \times \frac{1000}{M_1}$

 M_1 = Molarity of 1st solution

Case II:-

Concentration of KCl solution = 149 ppm

Resistance (R_2) = 50 Ω

For solution 2:-

$$k_{2} = \frac{1}{R_{2}} \times \frac{\ell}{A}$$

$$= \frac{1}{50} \times 129 = \frac{129}{50}$$

Molar conductivity = $\wedge_2 = k_2 \times \frac{1000}{M_2}$

 M_2 = Molarity of 2^{nd} solution.

$$\frac{\Lambda_1}{\Lambda_2} = \frac{k_1 \times \frac{1000}{M_1}}{k_2 \times \frac{1000}{M_2}} = \frac{k_1}{k_2} \times \frac{M_2}{M_1}$$

$$= \frac{k_1}{k_2} \frac{(\text{ppm})_2}{(\text{ppm})_1} \left(\because \frac{(\text{ppm})_2}{(\text{ppm})_1} = \frac{M_2}{M_1} \right) = \frac{129/100}{129/50} \times \frac{147}{74.5} = 1 = 1000 \times 10^{-3}$$

22. Ionic radii of cation A⁺ and anion B⁻ are 102 and 181 pm respectively. These ions are allowed to crystallize into an ionic solid. This crystal has cubic close packing for B⁻. A⁺ is present in all octahedral voids. The edge length of the unit cell of the crystal AB is_____pm. (Nearest Integer)

kers

Sol. 566

Ionic radii of cation (A⁺) = r_+ = 102 pm

Ionic radii of anion (B⁻) = r_- = 181 pm

For cubic close packing:-

Edge length (a) = $2r_+ + 2r_-$ (: cations are present in octahedral voids)

$$= (2 \times 102) + (2 \times 181) = 566 \text{ pm}$$

23. The minimum uncertainty in the speed of an electron in an one dimensional region of length $2a_0$ (where $a_0 = \text{Bohr radius } 52.9 \text{ pm}$) is _____km s⁻¹.

(Given: Mass of electron = 9.1×10^{-31} kg, Planck's constant h = 6.63×10^{-34} Js)

Sol. **548**

$$\Delta x \cdot \Delta P \ge \frac{h}{4\pi}$$

$$\Delta x = 2a_0$$
 $\Delta P = m\Delta v$

$$a_0 = 52.9 \text{ pm} = 52.9 \times 10^{-12} \text{ m}.$$

$$\Delta x \cdot m\Delta v = \frac{h}{4\pi}$$

$$\Delta x = \frac{h}{4\pi \times m \times \Delta x} = \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 2 \times 52.9 \times 10^{-12}}$$

- = 548273 m/sec.
- = 548.273 km/sec.
- ≈ 548 km/sec.
- **24.** When 600 mL of 0.2 M HNO₃ is mixed 400 mL of 0.1 M NaOH solution in a flask, the rise in temperature of the flask is_____ \times 10⁻² °C.

(Enthalpy of neutralization = $57 \text{ kJ} \text{ mol}^{-1}$ and specific heat of water = $4.2 \text{ JK}^{-1} \text{ g}^{-1}$) (Neglect heat capacity of flask)

Sol. **54**

 $HNO_3 + NaOH \longrightarrow NaNO_3 + H_2O$

600 ml 400ml

mili moles of $HNO_3 = 600 \times 0.2 = 120$ m mol

mili moles of NaOH = $400 \times 0.1 = 40$ m mol

$$HNO_3 + NaOH \longrightarrow NaNO_3 + H_2O$$

After the reaction

 \therefore 40 m moles = 40 × 10⁻³ moles are reacting.

Enthalpy change for reaction

$$\Delta_{\rm r}$$
H = 40 × 10⁻³ × 57 × 10³ J

$$= 2280 J$$

C = Specific heat of water

M = mass of solution

$$= 1 \text{ gm/ml} \times 1000 \text{ ml}$$

= 1000 gm

$$q = mc \Delta T$$

$$\therefore$$
 q = $\Delta_r H$

$$2280 = 1000 \times 4.2 \times \Delta T$$

$$\Delta T = 54.286 \times 10^{-2} \text{ k} = 54.286 \times 10^{-2} \,^{\circ}\text{C} \approx 54 \times 10^{-2} \,^{\circ}\text{C}$$

25. If O₂ gas is bubbled through water at 303 K, the number of millimoles of O₂ gas that dissolve in 1 litre of water is_____. (Nearest Integer)

(Given: Henry's Law constant for O_2 at 303 K is 46.82 k bar and partial pressure of O_2 0.920 bar)

(Assume solubility of O_2 in water is too small, nearly negligible)

Sol.

Given that

 $k_H = 46.82 \text{ k bar} = 46.82 \times 10^3 \text{ bar}$

Partial pressure of $O_2 = pO_2 = 0.920$ bar

$$= \frac{\text{mole of } O_2}{\text{mole of dissolved } O_2 + \text{mole of water}} \approx \frac{\text{mole of } O_2}{\text{mole of water}}$$

X = mole fraction of dissolved gas $= \frac{\text{mole of } O_2}{\text{mole of dissolved } O_2 + \text{mole of water}} \approx \frac{\text{mole of } O_2}{\text{mole of water}}$ Mole of water = $\frac{1000}{18}$ (: mass of 1000 ml water = 1000 gm)

According to Henry's law:-

$$P_{O_2} = k_H \times X$$

$$0.920 = 46.82 \times 10^3 \times \frac{\text{mole of O}_2}{1000/18}$$

Mole of
$$O_2 = \frac{0.920}{46.82 \times 18} = 1.09 \times 10^{-3} \approx 1 \times 10^{-3}$$

mili moles of $O_2 = 1$

If the solubility product of PbS is 8×10^{-28} , then the solubility of PbS in pure water at 298 K is **26.** $x \times 10^{-16}$ mol L⁻¹. The value of x is _____. (Nearest Integer)

[Given: $\sqrt{2} = 1.41$]

282 Sol.

$$Pbs \rightleftharpoons Pb^{2+} + s^{2-}$$

$$k_{sp} = s^2$$

Pbs \rightleftharpoons Pb²⁺ + s²⁻ $k_{sp} = s^2$ $s \rightarrow$ Solubility $k_{sp} =$ solubility product

$$s = \sqrt{k_{sp}}$$

$$=\sqrt{8\times10^{-28}}$$

∴ Given
$$K_{sp} = 8 \times 10^{-28}$$

$$= \sqrt{8} \times 10^{-14} = 2\sqrt{2} \times 10^{-14}$$

$$= 2.82 \times 10^{-14} = 282 \times 10^{-16} \text{ mol/L} = x \times 10^{-16}$$

$$x = 282$$

27. The reaction between X and Y is first order with respect to X and zero order with respect to Y.

Experiment	[X]	[Y]	Initial rate
	mol L ⁻¹	mol L ⁻¹	mol L ⁻¹ min ⁻¹
I	0.1	0.1	2×10^{-3}
II	L	0.2	4×10^{-3}
III	0.4	0.4	$M \times 10^{-3}$
IV	0.1	0.2	2×10^{-3}

Examine the data of table and calculate ratio of numerical values of M and L. (Nearest Integer)

Sol. **40**

rate (r) = $k[x]^a[y]^b$ k = rate constant Given that a = 1 : b = 0For experiment I: $r_I = k [0.1]^a [0.1]^b = 2 \times 10^{-3}$ $k [0.1]^1 [0.1]^0 = 2 \times 10^{-3}$ ----(1) for experiment II: $r_{II} = k [L]^1 [0.2]^0 = 4 \times 10^{-3} ----(2)$ equation (2) ÷ equation (1) $= \frac{4 \times 10^{-3}}{2 \times 10^{-3}}$ L = 0.2For experiment III: $r_{\text{III}} = k[0.4]^1 [0.4]^0 = M \times 10^{-3}$ ----(3) For experiment IV: $r_{IV} = k[0.1]^1 [0.2]^0 = 2 \times 10^{-3} ----(4)$ Divide equation (3) by equation (4):-Ratio of M and L = 40

28. In a linear tetrapeptide (Constituted with different amino acids), (number of amino acids)– (number of peptide bonds) is_____.

Sol. 1

$$H_2N \longrightarrow \begin{array}{c} H \\ NH \\ O \\ OH \\ Peptide bond \\ Peptide bond \\ \end{array}$$

(No of amino acid) – (peptide bond) 4 – 3

 $\Rightarrow 1$

29. In bromination of Propyne, with Bromine 1, 1, 2, 2-tetrabromopropane in 27% yield. The amount of 1, 1, 2, 2-tetravromopropane obtained from 1 g of Bromine in this reaction is $\times 10^{-1}$ g. (Nearest Integer)

(Molar Mass: Bromine = 80 g/mol)

Sol. 3

1, 1, 2, 2-tetrabromopropane

27% yield MM = 360 g/mol

2 mol Br₂ produce 1 mol (1, 1, 2,2-tetrabromopropane)

So,

1 mol Br_2 produce = (1/2) mole tetrabromopropane

1 g Br2 is given

Mole of $Br_2 = (1/160) \text{ mol}$

Amount of tetrabromopropane formed

=
$$\left(\frac{1}{160}\right) \times \frac{1}{2} \times 360 \times \left(\frac{27}{100}\right)$$

= 0.3037 g
= 3.037 × 10⁻¹ g

- **30.** $[Fe(CN)_6]^{3-}$ should be an inner orbital complex. Ignoring the pairing energy, the value of crystal field stabilization energy for this complex is (-) ------ Δ_0 (Nearest Integer)
- Sol. 2

[Fe(CN)₃]³⁻

C.N. = 6 \rightarrow as in question it is mentioned inner d complex

Means Hybridization is d²sp³ (octahedral)

Splitting of octahedral complex

- \rightarrow as ligand approaches long the axis in octahedral complex; so the orbitals who are along the axis will get repulsion.
- \rightarrow Hence along the axis orbitals i.e. dz² & dx² y² get more energy.

Now,

O.N of Fe here is

$$[Fe(CN)_6]^{3-} \Rightarrow -3 - \{-1 \times 6\}$$

$$\Rightarrow +3$$

Fe
$$\rightarrow$$
 [Ar]3d⁶4s²
Fe⁺³ \rightarrow [Ar]3d⁵4s⁰

- \Rightarrow as here S.F.L. so hunds rule will not followed here, so $\Delta_0 > P$. E.
- \Rightarrow Hence t₂g will first filled

C.F.S.E =
$$(-2/5) \Delta_0 \times 5 + np + (\frac{3}{5} \Delta_0) \times 0$$

C.F.S.E = $-2 \Delta_0$ here paring energy is said to ignore in question. So, the numerical value is '2'.