CHEMISTRY

JEE-MAIN (July-Attempt) 6 SEPTEMBER
(Shift-1) Paper

SECTION - A

1. The INCORRECT statement is :
(1) Cast iron is used to manufacture wrought iron.
(2) Brass is an alloy of copper and nickel.
(3) German silver is an alloy of zinc, copper and nickel.
(4) Bronze is an alloy of copper and tin

Sol. 2
Brass - (copper Zinc)
Bronze - (copper tin)
2. The species that has a spin-only magnetic moment of 5.9 BM, is: ($T_{d}=$ tetrahedral)
(1) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{--}$(square planar)
(2) $\mathrm{Ni}(\mathrm{CO})_{4}\left(\mathrm{~T}_{\mathrm{d}}\right)$
(3) $\left[\mathrm{MnBr}_{4}\right]^{2-}\left(\mathrm{T}_{\mathrm{d}}\right)$
(4) $\left[\mathrm{NiCl}_{4}\right]^{2-}\left(\mathrm{T}_{\mathrm{d}}\right)$

Sol. 3
$\left[\mathrm{MnBr}_{4}\right]^{2-}$

$\mu=\sqrt{5(5+2)}=5.9 \mathrm{BM}$
3. For the reaction
$\mathrm{Fe}_{2} \mathrm{~N}(\mathrm{~s})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Fe}(\mathrm{s})+\mathrm{NH}_{3}(\mathrm{~g})$
(1) $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{1 / 2}$
(2) $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{-1 / 2}$
(3) $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{\frac{3}{2}}$
(4) $K_{c}=K_{p}(R T)$

Sol. 1
$\mathrm{Fe}_{2} \mathrm{~N}(\mathrm{~s})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Fe}(\mathrm{s})+\mathrm{NH}_{3}(\mathrm{~g})$
$\Delta n_{g}=1-\frac{3}{2}=\frac{-1}{2}$
$\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}=(\mathrm{RT})^{\Delta n_{g}}=(R T)^{-1 / 2}$
$K_{c}=\frac{K_{p}}{(R T)^{-1 / 2}}=K_{p} \cdot(R T)^{1 / 2}$
4. Consider the following reactions:

'B' $\begin{gathered}\Delta \\ \mathrm{Ag}_{2} \mathrm{O} \\ \Delta\end{gathered}$ yellow ppt

' A ' is :
(1)

(2)

(3)

(4)

Sol. 1

5. Arrange the following solutions in the decreasing order of pOH :
(A) 0.01 M HCl
(B) 0.01 M NaOH
(C) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
(D) 0.01 M NaCl
(1) (A) $>$ (C) $>$ (D) $>$ (B)
(2) (B) $>$ (D) $>$ (C) $>$ (A)
(3) (B) $>$ (C) $>$ (D) $>$ (A)
(4) $($ A $)>$ (D) $>$ (C) $>$ (B)

Sol. 4
(i) $10^{-2} \mathrm{M} \mathrm{HCl} \Rightarrow\left[\mathrm{H}^{+}\right]=10^{-2} \mathrm{M} \rightarrow \mathrm{pH}=2$
(ii) $10^{-2} \mathrm{M} \mathrm{NaOH} \Rightarrow\left[\mathrm{OH}^{-}\right]=10^{-2} \mathrm{M} \rightarrow \mathrm{pOH}=2$
(iii) $10^{-2} \mathrm{M} \mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+} \Rightarrow\left[\mathrm{OH}^{+}\right]>10^{-7} \Rightarrow \mathrm{pOH}<7$
(iv) $10^{-2} \mathrm{M} \mathrm{NaCl} \Rightarrow$ Neutral $\mathrm{pOH}=7$
(i) $>$ (iv) $>$ (iii) $>$ (ii)
6. The variation of equilibrium constant with temperature is given below :

Temperature
$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{2}=100^{\circ} \mathrm{C}$
Equilibrium Constant

The value of $\Delta H^{0}, \Delta G^{0}$ at T_{1} and ΔG^{0} at T_{2} (in Kj mol${ }^{-1}$) respectively, are close to
[use $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$]
(1) $28.4,-7.14$ and -5.71
(2) $0.64,-7.14$ and -5.71
(3) 28.4, - 5.71 and -14.29
(4) $0.64,-5.71$ and -14.29

Sol. 3
In $\left[\frac{\mathrm{K}_{2}}{\mathrm{k}_{1}}\right]=\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{R}}\left\{\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right\}$
$\ln (10)=\frac{\Delta H^{\circ}}{\mathrm{R}}\left\{\begin{array}{ll}\frac{1}{298} & \frac{1}{373}\end{array}\right\}$
$\frac{373 \times 298 \times 8.314 \times 2.303}{75}=\Delta \mathrm{H}^{\circ}=28.37 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{G}_{\mathrm{T}_{1}}^{\circ}=-\mathrm{RT} \mathrm{T}_{1} \ln \left(\mathrm{~K}_{1}\right)=-298 \mathrm{R} \ln (10)=-5.71 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta G_{T_{2}}^{\circ}=-R T_{2} \ln \left(K_{2}\right)=-373 R \ln (100)$
$=-14.283 \mathrm{~kJ} / \mathrm{mol}$
7. Consider the following reactions
$\mathrm{A} \rightarrow \mathrm{P} 1 ; \mathrm{B} \rightarrow \mathrm{P} 2 ; \mathrm{C} \rightarrow \mathrm{P} 3 ; \mathrm{D} \rightarrow \mathrm{P} 4$,
The order of the above reactions are a, b, c and d, respectively. The following graph is obtained when $\log [r a t e]$ vs. $\log [$ conc.] are plotted :

Among the following the correct sequence for the order of the reactions is :
(1) $c>a>b>d$
(2) $d>a>b>c$
(3) $d>b>a>c$
(4) $a>b>c>d$

Sol. 3
A \rightarrow P1
$B \rightarrow P 2$
$\mathrm{C} \rightarrow \mathrm{P} 3$
$\mathrm{D} \rightarrow \mathrm{P} 4$

Rate $=\mathrm{K}$ (conc.) order
$\log ($ rate $)=\log (K)+$ order $\log ($ case $)$
$\underbrace{y+m . x}_{\text {Straight }}$
Straight line
Slope = order
According graph
$d>b>a>c$ order of slope
8. The major product obtained from the following reactions is :

(1)

(2)

(3)

(4)

Sol. 3

9. Which of the following compounds shows geometrical isomerism ?
(1) 2-methylpent-1-ene
(2) 4-methylpent-2-ene
(3) 2-methylpent-2-ene
(4) 4-methylpent-1-ene

Sol. 2

4-Methylpent-2-ene
Can show G.I.
10. The lanthanoid that does NOT shows +4 oxidation state is :
(1) Dy
(2) Ce
(3) Tb
(4) Eu

Sol. 4
Fact
11. The major products of the following reactions are :

(1)

(2)

(3)

(4)

Sol. 1

12. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Sol. 2

13. The increasing order of pK_{b} values of the following compounds is :

(I)

(II)

(III)

(IV)
(1) I $<$ II $<$ III $<$ IV
(3) I $<$ II $<$ IV $<$ III
(2) II $<$ IV $<$ III $<$ I
(4) II $<$ I $<$ III $<$ IV

Sol. 3
Order of pK_{b}

14. kraft temperature is the temperature :
(1) Above which the aqueous solution of detergents starts boiling
(2) Below which the formation of micelles takes place.
(3) Above which the formation of micelles takes place.
(4) Below which the aqueous solution of detergents starts freezing.

Sol. 3
$\mathrm{T}_{\mathrm{K}}+$ temp. above which formation of micelles takes place.
15. The set that contains atomic numbers of only transition elements, is ?
(1) $9,17,34,38$
(2) $21,25,42,72$
(3) $37,42,50,64$
(4) $21,32,53,64$

Sol. 2
Tranition elements $=21$ to 30
37 to 48
57 \& 72 to 80
Ans. 21, 25, 42 \& 72
16. Consider the Assertion and Reason given below.

Assertion (A) : Ethene polymerized in the presence of Ziegler Natta Catalyst at high temperature and pressure is used to make buckets and dustbins.
Reason (R) : High density polymers are closely packed and are chemically inert.
Choose the correct answer from the following :
(1) (A) and (R) both are wrong.
(2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
(3) (A) is correct but (R) is wrong
(4) Both (A) and (R) are correct but (R) is not the correct explanation of (A).

Sol. 2
From ziegler - Natta catalyst HDPE is produced, HDPE is closely packed and are chemically inert, so used to make backet and dustbin.
17. A solution of two components containing n_{1} moles of the $1^{\text {st }}$ component and n_{2} moles of the $2^{\text {nd }}$ component is prepared. M_{1} and M_{2} are the molecular weights of component 1 and 2 respectively. If d is the density of the solution in $\mathrm{g} \mathrm{mL}^{-1}, \mathrm{C}_{2}$ is the molarity and x_{2} is the mole fraction of the $2^{\text {nd }}$ component, then C_{2} can be expressed as :
(1) $\mathrm{C}_{2}=\frac{\mathrm{dx}}{\mathrm{M}_{2}+\mathrm{x}_{2}\left(\mathrm{M}_{2}-\mathrm{M}_{1}\right)}$
(2) $C_{2}=\frac{1000 x_{2}}{M_{1}+x_{2}\left(M_{2}-M_{1}\right)}$
(3) $\mathrm{C}_{2}=\frac{\mathrm{dx}}{\mathrm{M}_{2}+\mathrm{x}_{2}\left(\mathrm{M}_{2}-\mathrm{M}_{1}\right)}$
(4) $\mathrm{C}_{2}=\frac{1000 d x_{2}}{\mathrm{M}_{1}+\mathrm{x}_{2}\left(\mathrm{M}_{2}-\mathrm{M}_{1}\right)}$

Sol. 4
$C_{2}=\frac{x_{2}}{\left[x_{2} M_{1}+\left(1-x_{2}\right) M_{2}\right] / d} \times 1000$
$C_{2}=\frac{1000 d x_{2}}{M_{1}+\left(M_{2}-M_{1}\right) x_{2}}$
18. The correct statement with respect to dinitrogen is ?
(1) Liquid dinitrogen is not used in cryosurgery.
(2) N_{2} is paramagnetic in nature
(3) It can combine with dioxygen at $25^{\circ} \mathrm{C}$
(4) It can be used as an inert diluent for reactive chemicals.

Sol. 4

(1) Liquid nitrogen is used as a refrigerant to preserve biological material food items and in cryosurgery.
(2) N_{2} is diamagnetic, with no unpaired elctrons.
(3) N_{2} does not combine with oxygen, hydrogen or most other elements. Nitrogen will combine with oxygen, however ; in the presence of lightining or a spark.
(4) In iron and chemical Industry inert diluent for reactive chemicals.
19. Among the sulphates of alkaline earth metals, the solubilities of BeSO_{4} and MgSO_{4} in water, respectively, are:
(1) Poor and high
(2) High and high
(3) Poor and poor
(4) High and poor

Sol. 2

Order of solubility of sulphate of Alkaline earth metals
$\mathrm{BeSO}_{4}>\mathrm{MgSO}_{4}>\mathrm{CaSO}_{4}>\mathrm{SrSO}_{4}>\mathrm{BaSO}_{4}$
20. The presence of soluble fluoride ion upto 1 ppm concentration in drinking water, is :
(1) Harmful to skin
(2) Harmful to bones
(3) Safe for teeth
(4) Harmful for teeth

Sol. 3
Environmental chemistry - safe for teeth
21. A spherical balloon of radius 3 cm containing helium gas has a pressure of 48×10^{-3} bar. At the same temperature, the pressure, of a spherical balloon of radius 12 cm containing the same amount of gas will be........................... $\times 10^{-6}$ bar.
Sol. 750
moles $=\frac{48 \times 10^{-3} \times \frac{4}{3 \pi}(3 \mathrm{~cm})^{3}}{\mathrm{R} \times \mathrm{T}}$
moles $=\frac{P \times \frac{4}{3 \pi}(12 \mathrm{~cm})^{3}}{R T}$
$P \times 144 \times 12=48 \times 9 \times 3 \times 10^{-3}$
$\mathrm{P}=\frac{27}{36} \times 10^{-3}$
$P=\frac{27000}{36} \times 10^{-6}$
$P=\frac{3000}{4} \times 10^{-6}$
$\mathrm{P}=750 \times 10^{-6}$ bar
22. The elevation of boiling point of 0.10 m aqueous $\mathrm{CrCl}_{3} x \mathrm{NH}_{3}$ solution is two times that of 0.05 m aqueous CaCl_{2} solution. The value of x is
[Assume 100\% ionisation of the complex and CaCl_{2}, coordination number of Cr as 6, and that all NH_{3} molecules are present inside the coordination sphere]
Sol. 5
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$\mathrm{i} \times 0.1 \times \mathrm{K}_{\mathrm{b}}=3 \times 0.05 \times \mathrm{K}_{\mathrm{b}} \times 2$
$i=3$
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \cdot \mathrm{Cl}^{2} \mathrm{Cl}_{2} \rightarrow\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{+2}+2 \mathrm{Cl}^{-}\right.$
$\mathrm{x}=5$
23. Potassium chlorate is prepared by the electrolysis of KCl in basic solution
$6 \mathrm{OH}^{-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-}$
If only 60% of the current is utilized in the reaction, the time (rounded to the nearest hour) required to produce 10 g of KClO_{3} using a current of 2 A is \qquad
(Given : $\mathrm{F}=96,500 \mathrm{C} \mathrm{mol}^{-1}$; molar mass of $\mathrm{KClO}_{3}=122 \mathrm{~g} \mathrm{~mol}^{-1}$)

Sol. 11

$$
\begin{aligned}
& \frac{10}{122} \times 6=\frac{2 \times \mathrm{t}(\mathrm{hr}) \times 3600 \times 60 \%}{96500} \\
& \mathrm{t}(\mathrm{hr})=\frac{96500}{122 \times 72}=10.98 \mathrm{hr} \\
& =11 \text { hours }
\end{aligned}
$$

24. In an estimation of bromine by Carius method, 1.6 g of an organic compound gave 1.88 g of AgBr . The mass percentage of bromine in the compound is. \qquad .(Atomic mass, $\mathrm{Ag}=108, \mathrm{Br}=80 \mathrm{~g} \mathrm{~mol}^{-1}$)

Sol. 50 \%

Carius method
$\%$ of $\mathrm{Br}=\frac{\text { wt of } \mathrm{AgBr}}{\text { wt. of organic compound }} \times 100 \times \frac{\text { molar mass of } \mathrm{Br}}{\mathrm{AgBr}}$
$=\frac{1.88}{1.6} \times \frac{80}{188} \times 100=\frac{15040}{300.8}=50 \%$
25. The number of $\mathrm{Cl}=\mathrm{O}$ bonds in perchloric acid is, ". \qquad ."

Sol. 3

