# MATHEMATICS JEE-MAIN (July-Attempt) 6 SEPTEMBER (Shift-2) Paper

#### **SECTION - A**

**Q.1** If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity e of the ellipse satisfies:

(1)  $e^4 + 2e^2 - 1 = 0$  (2)  $e^2 + 2e - 1 = 0$  (3)  $e^4 + e^2 - 1 = 0$  (4)  $e^2 + e - 1 = 0$ Sol. (3)

Equation of normal at  $\left(ae, \frac{b^2}{a}\right)$ 

$$\frac{a^2x}{ae} - \frac{b^2y}{\frac{b^2}{a}} = a^2 - b^2$$
  
It passes through (0,-b)  
 $ab = a^2 e^2$   
 $a^2 b^2 = a^4 e^4$  (b<sup>2</sup> = a<sup>2</sup>(1-e<sup>2</sup>))  
 $1 - e^2 = e^4$ 

**Q.2** The set of all real values of  $\lambda$  for which the function  $f(x) = (1 - \cos^2 x) \cdot (\lambda + \sin x)$ ,  $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ , has exactly one maxima and exactly one minima, is:

(1) 
$$\left(-\frac{3}{2},\frac{3}{2}\right) - \{0\}$$
 (2)  $\left(-\frac{1}{2},\frac{1}{2}\right) - \{0\}$  (3)  $\left(-\frac{3}{2},\frac{3}{2}\right)$  (4)  $\left(-\frac{1}{2},\frac{1}{2}\right)$   
Sol. (1)  
 $f(x) = (1 - \cos^2 x) (\lambda + \sin x)$   
 $f(x) = \sin^2 x (\lambda + \sin x)$   
 $f'(x) = 2\sin x \cos x (\lambda + \sin x) + \sin^2 x (\cos x)$   
 $= \sin^2 x \left(\lambda + \sin x + \frac{\sin x}{2}\right)$   
 $= \sin^2 x \left(2\lambda + 3\sin x\right)$   
Sin $2x = 0 \Rightarrow \sin x = 0 \rightarrow \text{One point}$   
 $2\lambda + 3\sin x \Rightarrow \sin x = \frac{-2\lambda}{3}$   
 $\sin x \in (-1,1) - \{0\}$   
 $-1 < \frac{-2\lambda}{3} < 1 \Rightarrow \frac{-3}{2} < \lambda < \frac{3}{2}$   
 $\lambda \in \left(-\frac{3}{2},\frac{3}{2}\right) - \{0\}$ 

Q.3 The probabilities of three events A, B and C are given by P(A)=0.6, P(B)=0.4 and P(C)=0.5. If  $P(A \cup B) = 0.8$ ,  $P(A \cap C) = 0.3$ ,  $P(A \cap B \cap C) = 0.2$ ,  $P(B \cap C) = \beta$  and  $P(A \cup B \cup C) = \alpha$ , where  $0.85 \le \alpha \le 0.95$ , then  $\beta$  lies in the interval: (1)[0.36,0.40](2)[0.25,0.35](3) [0.35,0.36] (4)[0.20, 0.25]Sol. (2)  $P(A \cup BUC) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$  $\alpha = 0.6 + 0.4 + 0.5 - P(A \cap B) - \beta - 0.3 + 0.2$  $\alpha = 1.4 - P(A \cap B) - \beta \Rightarrow \alpha + \beta = 1.4 - P(A \cap B)$ .....(1) again  $P(A \cup B) = P(A) + P(B) - p(A \cap B)$  $0.8 = 0.6 + 0.4 - P(A \cap B)$  $P(A \cap B) = 0.2$ .....(2) Put the value  $P(A \cap B)$  in equation (1)  $\alpha + \beta = 1.2$  $\alpha = 1.2 - \beta$  $0.85 \leq \alpha \leq 0.95 \ \Rightarrow 0.85 \leq 1.2 \text{ - } \beta \leq 0.95$ P∈ [0.25, 0.35] The common difference of the A.P.  $b_1$ ,  $b_2$ ,....,  $b_m$  is 2 more than the common difference of A.P.  $a_1$ , Q.4  $a_{2}, \dots a_{n}$ . If  $a_{40} = -159$ ,  $a_{100} = -399$  and  $b_{100} = a_{70}$ , then  $b_{1}$  is equal to: (2) 81  $(\bar{1}) - 127$ (3) 127 (4) - 81Sol. (4) Common diff of A.P = 2 + common difference $(b_1, b_2, b_3)$  $D_{b} = D_{a} + 2$  $a_{40} = -159$  $a_1^{+}$  + 39 D<sub>a</sub> = -159 ----(1)  $a_{100} = -39^{\circ}9$  $a_1^{100} + 99 D_a = -399 ----(2)$ Eqn(1) - (2) $-60 D_a = 240 \implies D_a = -4$  $D_{b} = -4 + 2 = -2$  $a_1 + 39(-4) = -159 \implies a_1 = -3$  $b_{100} = a_{70}$  $b_1^{10} + 99D_b = a_1 + 69D_c$  $b_1 + 99(-2) = (-3) + 69(-4)$  $b_1 = -81$ The integral  $\int e^x \cdot x^x (2 + \log_e x) dx$  equal : Q.5 (3) 4e<sup>2</sup>-1 (1) e(4e-1)(2) e(4e+1)(4) e(2e-1)

Sol. (1)  $\int_{1}^{2} e^{x} \cdot x^{x} \quad (2+\ln x) \, dx$   $e^{x} \cdot x^{x} = t$   $(e^{x} \cdot x^{x} + e^{x} \cdot x^{x}(1+\ln x)) \, dx = dt$   $e^{x} \cdot x^{x}(2 + \ln x) \, dx = dt$   $\int_{e}^{4e^{2}} dt = [t]_{e}^{4e^{2}} = 4 \cdot e^{2} - e = e(4e-1)$ 

**Q.6** If the tangent to the curve,  $y=f(x)=x\log_e x$ , (x>0) at a point (c,f(c)) is parallel to the line-segment joining the points (1,0) and (e,e), then c is equal to:

(1) 
$$e^{\left(\frac{1}{1-e}\right)}$$
 (2)  $\frac{e-1}{e}$  (3)  $\frac{1}{e-1}$  (4)  $e^{\left(\frac{1}{e-1}\right)}$   
Sol. (4)  
 $y = f(x) = x \ln x$   
 $m_1 = \frac{dy}{dx} |_{(c_1,f(e))} = (\ln x + 1) |_{c_1,f(e)}$  = lnc + 1  
 $m_1 = \frac{e}{e-1}$   
 $m_2 = m_1 \Rightarrow \ln c + 1 = \frac{e}{e-1}$   
 $\ln c = \frac{e}{e-1} - 1 = \frac{1}{e-1}$   
 $c = e^{(1/e-1)}$   
Q.7 If  $y = \left(\frac{2}{\pi}x - 1\right)$  cosecx is the solution of the differential equation,  $\frac{dy}{dx} + p(x)y = \frac{2}{\pi} \operatorname{cosecx}, 0 < x < \frac{\pi}{2}$ ,  
then the function  $p(x)$  is equal to:  
(1) cosec x (2) cot x (3) tan x (4) sec x  
 $y = \left(\frac{2}{\pi}x - 1\right)$  cosecx

Differentiate w.r.t x

$$\frac{dy}{dx} = \frac{2}{\pi} \operatorname{cosecx} - \left(\frac{2x}{\pi} - 1\right) \operatorname{cosecx. \ cotx}$$
$$\frac{dy}{dx} + \left(\frac{2x}{\pi} - 1\right) \operatorname{cosecx \ cotx} = \frac{2}{\pi} \operatorname{cosecx}$$

 $\frac{dy}{dx} + y \text{ cotx} = \frac{2}{\pi} \text{ cosecx}$ Compare this differential equation with given differential equation P(x) = cotx

**Q.8** If  $\alpha$  and  $\beta$  are the roots of the equation 2x(2x+1)=1, then  $\beta$  is equal to:

(1) 
$$2\alpha(\alpha - 1)$$
 (2)  $-2\alpha(\alpha + 1)$  (3)  $2\alpha^2$  (4)  $2\alpha(\alpha + 1)$   
Sol. (2)

2x(2x+1) = 1

If  $\alpha$  &  $\beta$  are the roots i.e  $\alpha$  &  $\beta$  satisy this equation

$$2\alpha (2\alpha + 1) = 1 \implies \alpha (2\alpha + 1) = \frac{1}{2}$$

$$4x^{2} + 2x - 1 = 0$$

$$\alpha + \beta = \frac{-1}{2} = -\alpha (2\alpha + 1)$$

$$\beta = -\alpha (2\alpha + 1) - \alpha = -\alpha (2\alpha + 2) = -2\alpha (\alpha + 1)$$

- **Q.9** For all twice differentiable functions f:  $R \rightarrow R$ , with f(0)=f(1)=f'(0)=0, (1) f''(x)=0, at every point  $x \in (0,1)$  (2)  $f''(x) \neq 0$ , at every point  $x \in (0,1)$ (3) f''(x)=0, for some  $x \in (0,1)$  (4) f''(0)=0 **Sol.** (3) Applying rolle's theorem in [0,1] for function f(x)  $f'(c) = 0, c \in (0,1)$ again applying rolles theorem in [0,c] for function f'(x) s  $f''(c_1) = 0, c_1 \in (0,c)$
- **Q.10** The area (in sq.units) of the region enclosed by the curves  $y=x^2-1$  and  $y=1-x^2$  is equal to :

(1) 
$$\frac{4}{3}$$
 (2)  $\frac{7}{2}$  (3)  $\frac{16}{3}$  (4)  $\frac{8}{3}$   
Sol. (4)  
(4)  
(0,1)  
(-1,0)  
(0,-1)  
(1,0)  
Total area = 4  $\int_{0}^{1} (1-x^{2}) dx = 4 \left[ x - \frac{x^{3}}{3} \right]_{0}^{1}$ 

$$= 4 \left[ 1 - \frac{1}{3} \right] = \frac{8}{3} sq.unit$$

**Q.11** For a suitably chosen real constant a, let a function,  $f:R-\{-a\} \rightarrow R$  be defined by  $f(x) = \frac{a-x}{a+x}$ . Further suppose that for any real number  $x \neq -a$  and  $f(x) \neq -a$ , (fof)(x)=x. Then  $f\left(-\frac{1}{2}\right)$  is equal to:



$$= \begin{bmatrix} \cos^{2} \theta - \sin^{2} \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & -\sin^{2} \theta + \cos^{2} \theta \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$$
Simmilarly
$$A^{4} = \begin{bmatrix} \cos 4\theta & \sin 4\theta \\ -\sin 4\theta & \cos 4\theta \end{bmatrix}$$

$$B = A^{4} + A = \begin{bmatrix} \cos 4\theta & \sin 4\theta \\ -\sin 4\theta & \cos 4\theta \end{bmatrix} + \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$B = A^{4} + A = \begin{bmatrix} \cos 4\theta + \cos \theta & \sin 4\theta + \sin \theta \\ -\sin 4\theta & \cos 4\theta + \cos \theta \end{bmatrix}$$

$$B = (\cos 4\theta + \cos \theta)^{2} + (\sin 4\theta + \sin \theta)^{2}$$

$$= (\cos 24\theta + \cos \theta)^{2} + (\sin 4\theta + \sin \theta)^{2}$$

$$= \cos^{2} 4\theta + \cos^{2} \theta + 2 \sin 4\theta - \sin \theta$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$$

$$|B = 2\left(\frac{1-\sqrt{5}-1}{4}\right) = 2\left(\frac{5-\sqrt{5}}{4}\right) = \frac{5-\sqrt{5}}{2}$$

**Q.13** The centre of the circle passing through the point (0,1) and touching the parabola  $y=x^2$  at the point (2,4) is :

| (1) $\left(\frac{3}{10}, \frac{16}{5}\right)$ | $(2)\left(\frac{6}{5},\frac{53}{10}\right)$ | (3) $\left(\frac{-16}{5}, \frac{53}{10}\right)$ | $(4)\left(\frac{-53}{10},\frac{16}{5}\right)$ |
|-----------------------------------------------|---------------------------------------------|-------------------------------------------------|-----------------------------------------------|
|                                               | ()                                          |                                                 |                                               |

Sol. (3)

Circle passing through point (0,1) and touching curve  $y = x^2$  at (2,4) tangent at (2,4) is

 $\frac{(y+4)}{2} = x(2)$   $\Rightarrow y + 4 = 4x \Rightarrow y - 4x - 4 = 0$ Equation of circle  $(x-2)^{2} + (y-4)^{2} + \lambda(4x-y-4) = 0$ Passing through (0,1)  $4 + 9 + \lambda(-5) = 0$ 

$$\lambda = \frac{13}{5}$$
  
Circle is  
$$x^{2}-4x + 4 + y^{2} - 8y + 16 + \frac{13}{5} [4x - y - 4] = 0$$
  
$$x^{2} + y^{2} + \left(\frac{52}{5} - 4\right) x - \left(8 + \frac{13}{5}\right) y + 20 - \frac{52}{5} = 0$$
  
$$x^{2} + y^{2} + \frac{32}{5} x - \frac{53}{5} y + \frac{48}{5} = 0$$
  
Centre is  $\left(-\frac{16}{5}, \frac{53}{10}\right)$ 

**Q.14** A plane P meets the coordinate axes at A, B and C respectively. The centroid of  $\Delta ABC$  is given to be (1,1,2). Then the equation of the line through this centroid and perpendicular to the plane P is:

(1) 
$$\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-2}{1}$$
  
(2)  $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$   
(3)  $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$   
(4)  $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{2}$   
(5)  
(2)  
(3)  $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{2}$   
(4)  $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{2}$   
(5)  
(6)  $\frac{G(0, 0)}{G(0, 0)}$   
(7)  
(8)  $\frac{G(0, 0)}{G(0, 0)}$   
(9)  $\frac{G(0, 0)}{G(0, 0)}$   
(9)  $\frac{G(0, 0)}{G(0, 0)}$   
(9)  $\frac{G(0, 0)}{G(0, 0)}$   
(1, 1, 2)  
 $\alpha = 3, \beta = 3, \gamma = 6$   
Equation of plane is  
 $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1$   
 $\frac{x}{3} + \frac{y}{3} + \frac{z}{6} = 1$   
 $2x + 2y + z = 6$ 

Require line is 
$$\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$$

- **Q.15** Let  $f: R \to R$  be a function defined by  $f(x)=max \{x,x^2\}$ . Let S denote the set of all points in R, where f is not differentiable. Then
  - $(1) \{0,1\}$

(1)

(3) {1}

(2) ◊ (an empty set)(4) {0}

Sol.



Function is not differentiable at two point  $\{0,1\}$ 

**Q.16** The angle of elevation of the summit of a mountain from a point on the ground is 45°. After climbing up one km towards the summit at an inclination of 30° from the ground, the angle of elevation of the summit is found to be 60°. Then the height (in km) of the summit from the ground is:

(1) 
$$\frac{1}{\sqrt{3}+1}$$
 (2)  $\frac{\sqrt{3}+1}{\sqrt{3}-1}$  (3)  $\frac{\sqrt{3}-1}{\sqrt{3}+1}$  (4)  $\frac{1}{\sqrt{3}-1}$   
Sol. (4)  

$$\int_{C} \frac{1}{\sqrt{3}+1} \int_{C} \frac{1}{\sqrt{3}-1} \int_{E} \frac{1}{\sqrt{3}} \int_{C} \frac{1}{\sqrt{3}} \int_{C}$$

$$\cos 30^{\circ} = \frac{y}{1} \Rightarrow y = \frac{\sqrt{3}}{2} \text{ km}$$
Now in ABC  

$$\tan 45 = \frac{h}{x + y} \Rightarrow h = x + y$$

$$X = h - \frac{\sqrt{3}}{2}$$
Now in ABDE  

$$\tan 60^{\circ} = \frac{h - x}{x}$$

$$\sqrt{3}x = h - \frac{1}{2}$$

$$\sqrt{3} \left(h - \frac{\sqrt{3}}{2}\right) = h - \frac{1}{2} \Rightarrow h = \frac{1}{\sqrt{3} - 1} \text{ km}$$
Q.17 If the constant term in the binomial expansion of  $\left(\sqrt{x} - \frac{k}{x^2}\right)^{\circ}$  is 405, then |k| equals:  
Sol. (1) 1  
10 Cr  $\left(-\frac{k}{x^2}\right)^r \left(\sqrt{x}\right)^{10 - r}$ 
10 Cr  $\left($ 

 $x^2 - y^2 + 2i x y = i(x^2 + y^2)$ 

 $\begin{aligned} x^2 - y^2 &= 0 \Rightarrow x^2 = y^2 \\ 2xy &= x^2 + y^2 \\ (x - y)^2 &= 0 \Rightarrow x = y \end{aligned}$ 

**Q.19** Let L denote the line in the xy-plane with x and y intercepts as 3 and 1 respectively. Then the image of the point (-1, -4) in this line is:

| $(1)\left(\frac{11}{5},\frac{28}{5}\right)$ | $(2)\left(\frac{8}{5},\frac{29}{5}\right)$ | $(3)\left(\frac{29}{5},\frac{11}{5}\right)$ | $(4)\left(\frac{29}{5},\frac{8}{5}\right)$ |
|---------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|
| (4)                                         |                                            |                                             |                                            |

Sol. (1)



- **Q.20** Consider the statement : "For an integer n, if n<sup>3</sup>-1 is even, then n is odd." The contrapositive statement of this statement is:
  - (1) For an integer n, if n is even, then  $n^3-1$  is even
  - (2) For an integer n, if n is odd, then  $n^3-1$  is even
  - (3) For an integer n, if  $n^3-1$  is not even, then n is not odd.
  - (4) For an integer n, if n is even, then n<sup>3</sup>-1 is odd

#### Sol. (4)

P:n<sup>3</sup>−1 is even, q : n is odd Contrapositive of  $p \rightarrow q = ~q \rightarrow ~p$  $\Rightarrow$  If n is not odd then n<sup>3</sup> −1 is not even  $\Rightarrow$  For an integer n, if n is even, then n<sup>3</sup>−1 is odd

**Q.21** The number of words (with or without meaning) that can be formed from all the letters of the word "LETTER" in which vowels never come together is\_\_\_\_\_

### Sol. 120

Consonants  $\rightarrow$  LTTR Vowels  $\rightarrow$  EE Total No of words =  $\frac{6!}{2!2!} = 180$ 

Total no of words if vowels are together

$$=\frac{5!}{2!}=60$$
  
Required = 180 - 60 = 120

**Q.22** If  $\vec{x}$  and  $\vec{y}$  be two non-zero vectors such that  $|\vec{x} + \vec{y}| = |\vec{x}|$  and  $2\vec{x} + \lambda \vec{y}$  is perpendicular to  $\vec{y}$ , then the value of  $\lambda$  is \_\_\_\_\_\_

nkers

## Sol. 1

.

$$\begin{aligned} |\overline{x} + \overline{y}|^2 &= |\overline{x}|^2 \\ \Rightarrow |\overline{y}|^2 + 2\overline{x}.\overline{y} = \mathbf{0} \tag{1} \\ \text{and } (2\overline{x} + \lambda\overline{y})\overline{y} = \mathbf{0} \\ \Rightarrow \lambda \left( |\overline{y}|^2 \right) + 2\overline{x}.\overline{y} = \mathbf{0} \end{aligned}$$
by comparing (1) & (2) we get  $\lambda = 1$ 

12 1 12

**Q.23** Consider the data on x taking the values 0, 2, 4, 8, ....,  $2^n$  with frequencies  ${}^nC_0, {}^nC_1, {}^nC_2, ..., {}^nC_n, {}^{728}$ 

| respectively. If the mean of this data is | $\frac{720}{2^n}$ , then n is equal to |
|-------------------------------------------|----------------------------------------|
| 6                                         | 2                                      |

\_\_\_(2)

Sol.

| X <sub>i</sub> (observation) | 0       | 2                    | <b>2</b> <sup>2</sup> | <br><b>2</b> <sup>n</sup> |
|------------------------------|---------|----------------------|-----------------------|---------------------------|
| f <sub>i</sub> (frequency)   | $^{n}C$ | $\int_{0}^{n} C_{1}$ | $^{n}C_{2}$           | <br>${}^{n}C_{n}$         |

$$\overline{x} = \frac{\sum f_i X_i}{\sum f_i}$$

$$= \frac{0 \times {}^{n}C_{0} + 2 {}^{n}c_{1} + 2^{2} {}^{n}c_{2} + \dots + 2^{n} {}^{n}c_{n}}{{}^{n}c_{0} + {}^{n}c_{1} + \dots + {}^{n}c_{n}}$$
$$= \frac{3^{n} - 1}{2^{n}} = \frac{728}{2^{n}}$$
$$3^{n} = 729 = 3^{6}$$
$$n = 6$$

**Q.24** Suppose that function  $f: R \to R$  satisfies f(x+y)=f(x)f(y) for all  $x, y \in R$  and f(1)=3.

**(ers** 

If 
$$\sum_{i=1}^{n} f(i) = 363$$
, then n is equal to .....  
Sol. 5  
 $f(x+y) = f(x) f(y)$   
 $f(x)=a^{x}$   
 $\Rightarrow f(1) = a = 3$   
So  $f(x) = 3^{x}$   
 $\sum_{i=1}^{n} f(i) = 363$   
 $\Rightarrow 3 + 3^{2} + 3^{3} + \dots + 3^{n} = 363$   
 $\Rightarrow \frac{3(3^{n} - 1)}{2} = 363$   
 $n = 5$ 

**Q.25** The sum of distinct values of  $\lambda$  for which the system of equations

$$\begin{split} &(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0 \\ &(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0 \\ &2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0 \ , \\ &\text{has non-zero solutions, is } \_\_\_\_ \\ &\textbf{3} \end{split}$$

Sol.

$$\begin{vmatrix} \lambda - 1 & 3\lambda + 1 & 2\lambda \\ \lambda - 1 & 4\lambda - 2 & \lambda + 3 \\ 2 & 3\lambda + 1 & 3(\lambda - 1) \end{vmatrix} = 0$$
$$R_2 \rightarrow R_2 - R_1$$
$$R_3 \rightarrow R_3 - R_1$$

$$\begin{vmatrix} \lambda - 1 & 3\lambda + 1 & 2\lambda \\ 0 & \lambda - 3 & -\lambda + 3 \\ 3 - \lambda & 0 & \lambda - 3 \end{vmatrix}$$

$$C_1 \rightarrow C_1 + C_3$$

$$\begin{vmatrix} 3\lambda - 1 & 3\lambda + 1 & 2\lambda \\ -\lambda + 3 & \lambda - 3 & -\lambda + 3 \\ 0 & 0 & \lambda - 3 \end{vmatrix}$$

$$(\lambda - 3) [(3\lambda - 1) (\lambda - 3) - (3 - \lambda) (3\lambda + 1)] = 0$$

$$(\lambda - 3) [3\lambda^2 - 10\lambda + 3 - (8\lambda - 3\lambda^2 + 3)]$$

$$(\lambda - 3) (6\lambda^2 - 18\lambda) = 0$$

$$(6\lambda) (\lambda - 3)^2 = 0$$

$$\lambda = 0, 3$$
sum of values of  $\lambda = 0 + 3 = 3$ 

