
CHEMISTRY JEE-MAIN (July-Attempt) 5 SEPTEMBER (Shift-1) Paper

SECTION - A

1. The potential energy curve for the H₂ molecule as a function of internuclear distance is:

Sol. 2

In solid state PCl_5 exist in Ionpair i.e. (PCl_4^+) and (PCl_6^-) $PCl_{4^{+}} (sp_{3_{-}} tetrahedral)$ $PCl_{6^{-}} (sp_{3}d_{2}) - octahedral)$

6. A diatomic molecule X_2 has a body-centred cubic (bcc) structure with a cell edge of 300 pm. The density of the molecule is 6.17 g cm⁻³. The number of molecules present in 200 g of X_2 is:(Avogadro constant (N_A) = 6×10^{23} mol⁻¹) (2) 2 N_A (3) 40 N_A (4) 4 N_A

ers

 $(1) 8 N_{A}$ Sol. 4

 $X_2 \rightarrow BCC$ a = 300pm $d = 6.17g/cm^{3} = \frac{2 \times GMM}{6 \times 10^{23} \times (300 \times 10^{-10})^{3}}$ $GMM = \frac{6.17 \times 6 \times 9 \times 3 \times 10^{-1}}{2}$ GMM = $81 \times 6.17 \times 10^{-1}$ = 49.97 g/mol No. of molecules = $\frac{200g}{49.97g/mol} = 4 mol$

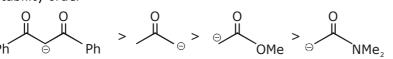
$$=4N_{A}$$

7. The equation that represents the water-gas shift reaction is:

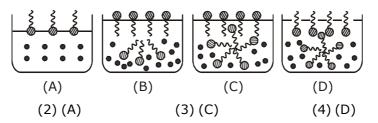
(1)
$$CO(g) + H_2O(g) \xrightarrow{673 \text{ K}} CO_2(g) + H_2(g)$$

(2) $2C(s) + O_2(g) + 4N_2(g) \xrightarrow{1273 \text{ K}} 2CO(g) + 4N_2(g)$
(3) $C(s) + H_2O(g) \xrightarrow{1270 \text{ K}} CO(g) + H_2(g)$
(4) $CH_4(g) + H_2O(g) \xrightarrow{1270 \text{ K}}_{\text{Ni}} CO(g) + 3H_2(g)$
1

Sol.


Fact

8. The increasing order of the acidity of the α -hydrogen of the following compounds is:


$$\begin{array}{c} O \\ (A) \\ (A) \\ (B) \\ (C) \\ (C) \\ (D) \\ (C) \\ (C) \\ (C) \\ (C) \\ (D) \\$$

Sol. 1

Stability order

9. Identify the correct molecular picture showing what happens at the critical micellar concentration (CMC) of an aqueous solution of a surfactant (@ polar head; \dots non-polar tail; \bullet water).

Sol.

(1)(B)

4

2

4

If a person is suffering from the deficiency of nor-adrenaline, what kind of drug can be suggested?
 (1) Antihistamine
 (2) Antidepressant
 (3) Anti-inflammatory
 (4) Analgesic

Sol.

If nor-adrenaline is low, person may suffer from depression. Hence, anti depressant drug is suggested.

11. The values of the crystal field stabilization energies for a high spin d⁶ metal ion in octahedral and tetrahedral fields, respectively, are:

(1) $-2.4 \Delta_{o}$ and $-0.6 \Delta_{t}$ (3) $-0.4 \Delta_{o}$ and $-0.27 \Delta_{t}$ (2) $-1.6 \Delta_{o}$ and $-0.4 \Delta_{t}$ (4) $-0.4 \Delta_{o}$ and $-0.6 \Delta_{t}$

Sol.

 $d^{6}(octahedral) \rightarrow high spin complex$

$$= t_{2g^4} eg^2$$

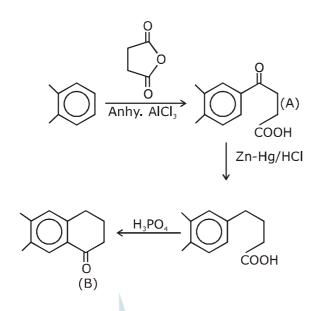
$$\begin{array}{ll} \mathsf{CFSE} &= \left(-\frac{2}{5} \times 4 + \frac{3}{5} \times 2\right) \Delta_0 \\ &= \left(\frac{-8+6}{5}\right) \Delta_0 \\ &= -0.4 \Delta_0 \\ \mathsf{d}^6 \text{ (tetrahedral)} \rightarrow \text{high spin complex} \\ &= \mathsf{eg}^3 \, \mathsf{t}_{2\mathsf{g}^3} \\ &\\ \mathsf{CFSE} &= \left(-\frac{3}{5} \times 3 + \frac{2}{5} \times 3\right) \Delta_t \\ &= -0.6 \Delta_t \end{array}$$

12. A flask contains a mixture of compounds A and B. Both compounds decompose by first-order kinetics. The half-lives for A and B are 300 s and 180 s, respectively. If the concentrations of A and B are equal initially, the time required for the concentration of A to be four times that of B (in s) is: (Use In 2 = 0.693) (1) 180 (2) 300 (3) 120 (4) 900

Sol. 4

$$A_t = A_0 \cdot e^{-k_1 t}$$

 $B_t = B_0 \cdot e^{-k_2 t}$
 $k_1 = \frac{\ln 2}{300}$
 $k_2 = \frac{\ln 2}{180}$
 A_t and B_t are related as $[A] = 4[B]$
 $A_0 \cdot e^{-k_1 t} = 4 \times B_0 \cdot e^{-k_2 t}$
 $\frac{t}{180} - \frac{t}{300} = 2$
 $\frac{t}{3} - \frac{t}{5} = 120$
 $\frac{2t}{15} = 120$
 $t = 900$ sec


13. The increasing order of basicity of the following compounds is:

Sol.

14. The condition that indicates a polluted environment is: (1) pH of rain water to be 5.6 (2) BOD value of 5 ppm (3) 0.03% of CO₂ in the atmosphere (4) eutrophication Sol 4 Eutrophication is the condition in which excessive richness of nutrients in a lake or water body, which causes dense growth of plant life and BOD increases. 15. In the sixth period, the orbitals that are filled are: (2) 6s, 4f, 5d, 6p (4) 6s, 5f, 6d, 6p (1) 6s, 5d, 5f, 6p (3) 6s, 6p, 6d, 6f Sol. 2 (Fact) \rightarrow energy order of orbital's according to Aufbau principle 6s < 4f < 5d < 6p 16. The difference between the radii of 3^{rd} and 4^{th} orbits of Li^{2+} is ΔR_1 . The difference between the radii of 3^{rd} and 4^{th} orbits of He⁺ is ΔR_2 . Ratio $\Delta R_1 : \Delta R_2$ is: (1) 8 : 3 (2) 3 : 8 (3) 3 : 2 $(3)\bar{3}:2$ (4) 2 : 3Sol. 4 $(R_4 - R_3)_{Li^{+2}} = \frac{0.529}{3} \{4^2 - 3^2\} = \Delta R_1$ $(R_4 - R_3)_{He^{+2}} = \frac{0.529}{2} \{4^2 - 3^2\} = \Delta R_2$ $\frac{\Delta R_1}{\Delta R_2} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$ 17. In the following reaction sequence the major products A and B are: $\xrightarrow[AlCl_3]{anhydrous} A$ 1. Zn-Hg/HCl 2. H₃PO₄ (2) A = B = B = (4) A = B =

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

Sol. 4

18. The correct electronic configuration and spin-only magnetic moment (BM) of Gd³⁺ (Z = 64), respectively, are:

Sol. (1) [Xe] 5f⁷ and 7.9 (2) [Xe] 4f⁷ and 7.9 (3) [Xe] 5f⁷ and 8.9 (4) [Xe] 4f⁷ and 8.9 Gd \rightarrow [Xe]⁵⁴ 4f⁷ 5d¹ 6s² Z=64

 $-3e^{\Theta}$ Gd⁺³ = [Xe]⁵⁴ 4f⁷

$$\mu = \sqrt{7(7+2)} = \sqrt{63} = 7.9 \text{ BM}$$

19. An Ellingham diagram provides information about:

(1) The pressure dependence of the standard electrode potentials of reduction reactions involved in the extraction of metals.

- (2) The conditions of pH and potential under which a species is thermodynamically stable.
- (3) The kinetics of the reduction process.
- (4) The temperature dependence of the standard Gibbs energies of formation of some metal oxides.
- Sol.
- **4** Fact

- **20.** Consider the following reaction:
 - $N_2O_4(g) \rightleftharpoons 2NO_2(g); \Delta H^0 = +58 \text{ kJ}$
 - For each of the following cases (a, b), the direction in which the equilibrium shifts is:
 - (a) Temperature is decreased.
 - (b) Pressure is increased by adding N_2 at constant T.
 - (1) (a) towards reactant, (b) towards product
 - (2) (a) towards reactant, (b) no change
 - (3) (a) towards product, (b) towards reactant
 - (4) (a) towards product, (b) no change
- Sol.

2

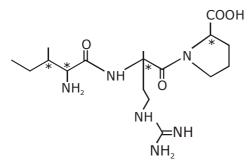
 $N_2O_4(g) \longrightarrow 2NO_2(g)$ $\Delta H^\circ = + 58 \text{ kJ}$

(towards reactant)

(a) temp $\downarrow \Rightarrow$ Backward shift as it is endothermic reaction (b) As 'N₂' will not react with both N₂O₄ & NO₂, as moles increases in reactants, as much as in products, a = hence there is no change in equilibria. \therefore no change

21. The minimum number of moles of O₂ required for complete combustion of 1 mole of propane and 2 moles of butane is _____.

Sol. 18


 $\begin{array}{c} C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O \\ 1 \text{ mol} \quad 5 \text{ mol} \end{array}$

$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O_2$$

2 mol 13 mol

Total required mol of $O_2 = 5 + 13 = 18$

- 22. The number of chiral carbon(s) present in piptide, Iie-Arg-Pro, is _____
- Sol.

4

23. A soft drink was bottled with a partial pressure of CO_2 of 3 bar over the liquid at room temperature. The partial pressure of CO_2 over the solution approaches a value of 30 bar when 44 g of CO_2 is dissolved in 1 kg of water at room temperature. The approximate pH of the soft drink is _____ × 10^{-1} .

(First dissociation constant of $H_2CO_3 = 4.0 \times 10^{-7}$; log 2 = 0.3; density of the soft drink = 1 g mL⁻¹)

Sol. 37 $CO_2 + H_2O \rightarrow H_2CO_3$ $30 \text{ bar } \dots \rightarrow 1 \text{ m/lit.}$ $3 \text{ bar } \dots \rightarrow 0.1 \text{ m/lit}$ $H_2CO_3 \longrightarrow H^{\oplus} + HCO_3^{-1}$ $t = 0 \quad 0.1 \qquad 0 \quad 0$ Eq. $0.1(1 - \alpha) \quad 0.1\alpha \quad 0.1\alpha$ $4 \times 10^{-7} = \frac{0.1\alpha^2}{1 - \alpha}$ $(1 - \alpha) \approx 1$ $\alpha^2 = 4 \times 10^{-6}$ $\alpha = 2 \times 10^{-3}$ $[H^+] = 2 \times 10^{-4}M$ $pH = -[-4 \times \log(2)] = 3.7 = 37 \times 10^{-1}$

24. An oxidation-reduction reaction in which 3 electrons are transferred has a ΔG^{0} of 17.37 kJ mol⁻¹ at 25°C. The value of E°_{cell} (in V) is _____ × 10⁻². (1 F = 96,500 C mol⁻¹)

kers

Sol. 6

 $\Delta G^{\circ} = -nFE^{\circ}$

 $17.37 \times 1000 = -3 \times 96500 \times E^{\circ}$

 $E^{\circ} = \frac{17370}{3 \times 96500}$

 $E^{\circ} = \frac{579}{9650} \text{ volt}$ = 0.06 = 6 × 10⁻² volt Ans. 6

25. The total number of coordination sites in ethylenediaminetetraacetate (EDTA⁴⁻) is _____.

Sol. 6

EDTA⁴⁻ is hexadentate ligand