MATHEMATICS
 JEE-MAIN (September-Attempt)
 4 September (Shift-2) Paper

SECTION - A

Q. 1 Suppose the vectors x_{1}, x_{2} and x_{3} are the solutions of the system of linear equations, $A x=b$ when the vector b on the right side is equal to b_{1}, b_{2} and b_{3} respectively. if $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right], x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], b_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{b}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$ and $b_{3}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$, then the determinant of A is equal to
(1) 2
(2) $\frac{1}{2}$
(3) $\frac{3}{2}$
(4) 4

Sol. (1)
$A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right]_{3 \times 3}$
$a_{1}+a_{2}+a_{3}=1 \quad 2 a_{2}+a_{3}=0$
$a_{4}+a_{5}+a_{6}=0 \quad 2 a_{5}+a_{6}=2$
$a_{7}+a_{8}+a_{9}=0 \quad 2 a_{8}+a_{9}=0$
$a_{3}=0, a_{6}=0, a_{9}=2$
$\therefore a_{8}=-1, a_{5}=1, \quad a_{2}=0 \Rightarrow a_{1}=\phi, a_{4}=-1, \quad a_{7}=-1$
$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 2\end{array}\right]$
$|A|=2(1)=2$
Q. 2 If a and b are real numbers such that $(2+\alpha)^{4}=a+b \alpha$, where $\alpha=\frac{-1+i \sqrt{3}}{2}$ then $a+b$ is equal to:
(1) 33
(2) 57
(3) 9
(4) 24

Sol. (3)
$(2+\alpha)^{4}=a+b \alpha$
$\left(2+\frac{\sqrt{3} i-1}{2}\right)^{4}=a+b \alpha$
$\left(\frac{3+\sqrt{3} i}{2}\right)^{4}=9\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{4}$
$9\left\{e^{i \pi / 6}\right\}^{4}=9 e^{i 2 \pi / 3}=9\left(\frac{-1}{2}+\frac{\sqrt{3} i}{2}\right)=\frac{-9}{2}+\frac{9 \sqrt{3}}{2} i$
$-\frac{9}{2}+\frac{9 \sqrt{3}}{2} i=a+b\left(\frac{-1}{2}+\frac{i \sqrt{3}}{2}\right)$
$=a-\frac{b}{2}+\frac{b i \sqrt{3}}{2}$
$\therefore \frac{b \sqrt{3}}{2}=\frac{9 \sqrt{3}}{2} \Rightarrow b=9$
$\mathrm{a}=0 \therefore \mathrm{a}+\mathrm{b}=9$
Q. 3 The distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$ is:
(1) $\frac{1}{7}$
(2) 7
(3) $\frac{7}{5}$
(4) 1

Sol. (4)
Equation of line through ($1,-2,3$) whose dr's are $(2,3,-6)$
$\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{-6}=\lambda$
any point on line $(2 \lambda+1,3 \lambda-2,-6 \lambda+3)$
put in $(x-y+z=5)$
$2 \lambda+1-3 \lambda+2-6 \lambda+3=5$

$$
-7 \lambda=-1
$$

$$
\lambda=\frac{1}{7}
$$

distance $=\sqrt{(2 \lambda)^{2}+(3 \lambda)^{2}+(6 \lambda)^{2}}$
$\sqrt{4 \lambda^{2}+9 \lambda^{2}+36 \lambda^{2}}=7 \lambda=1$
Q. 4 Let $\mathrm{f}:(0, \infty) \rightarrow(0, \infty)$ be a differentiable function such that $f(1)=e$ and $\lim _{t \rightarrow x} \frac{t^{2} f^{2}(x)-x^{2} f^{2}(t)}{t-x}=0$. If $f(x)=1$, then x is equal to :
(1) e
(2) $2 e$
(3) $\frac{1}{e}$
(4) $\frac{1}{2 \mathrm{e}}$

Sol. (3)
$f(1)=e$
$\lim _{t \rightarrow x} \frac{t^{2} f^{2}(x)-x^{2} f^{2}(t)}{t-x}$
L' Hospital $^{\prime}$
$\lim _{t \rightarrow x}\left(2 t f^{2}(x)-2 x^{2} f(t) \cdot f^{\prime}(t)\right)$
$\Rightarrow 2 x f^{2}(x)-2 x^{2} f(x) \cdot f^{\prime}(x)=0$
$2 x f(x)\left\{f(x)-x f^{\prime}(x)\right\}=0$
$=\frac{f^{\prime}(x)}{f(x)}=\frac{1}{x}$
$\ln f(x)=\ln x+\ln c$
$f(x)=c x$
if $\mathrm{x}=1, \mathrm{e}=\mathrm{c}$
$y=e x$
\therefore if $\mathrm{f}(\mathrm{x})=1 \Rightarrow \mathrm{x}=\frac{1}{\mathrm{e}}$
Q. 5 Contrapositive of the statement :
'If a function f is differentiable at a, then it is also continuous at a ', is:
(1) If a function f is not continuous at a, then it is not differentiable at a.
(2) If a function f is continuous at a, then it is differentiable at a.
(3) If a function f is continuous at a, then it is not differentiable at a.
(4) If a function f is not continuous at a, then it is differentiable at a.

Sol. (1)
Contrapositive of $P \rightarrow q=\sim q \rightarrow \sim p$
Q. 6 The minimum value of $2^{\sin x}+2^{\cos x}$ is:
(1) $2^{1-\sqrt{2}}$
(2) $2^{1-\frac{1}{\sqrt{2}}}$
(3) $2^{-1+\sqrt{2}}$
(4) $2^{-1+\frac{1}{\sqrt{2}}}$

Sol. (2)
$y=2^{\sin x}+2^{\cos x}$
by $\mathrm{Am} \geq \mathrm{GM}$
$\frac{2^{\sin x}+2^{\cos x}}{2} \geq \sqrt{2^{\sin x+\cos x}}$
$2^{\sin x}+2^{\cos x} \geq 2^{1} .2^{\frac{\sin x+\cos x}{2}}$
$2^{\sin x}+2^{\cos x} \geq 2^{\frac{2+\sin x+\cos x}{2}} \therefore\left(2^{\sin x}+2^{\cos x}\right)_{\min }=2^{\frac{2-\sqrt{2}}{2}}=2^{\frac{-1}{\sqrt{2}}+1}$
Q. 7 If the perpendicular bisector of the line segment joining the points $P(1,4)$ and $Q(k, 3)$ has y intercept equal to -4 , then a value of k is:
(1) -2
(2) $\sqrt{15}$
(3) $\sqrt{14}$
(4) -4

Sol. (4)
$m_{P Q}=\frac{4-3}{1-k} \Rightarrow m_{\perp}=k-1$
mid point of $P Q=\left(\frac{k+1}{2}, \frac{7}{2}\right)$
equation of perpendicular bisector
$y-\frac{7}{2}=(k-1)\left(x-\frac{k+1}{2}\right)$
for y intercept put $\mathrm{x}=0$
$y=\frac{7}{2}-\left(\frac{k^{2}-1}{2}\right)=-4$
$\frac{k^{2}-1}{2}=\frac{15}{2} \Rightarrow k= \pm 4$
Q. 8 The area (in sq. units) of the largest rectangle $A B C D$ whose vertices A and B lie on the x-axis and vertices C and D lie on the parabola, $y=x^{2}-1$ below the x-axis, is:
(1) $\frac{2}{3 \sqrt{3}}$
(2) $\frac{4}{3}$
(3) $\frac{1}{3 \sqrt{3}}$
(4) $\frac{4}{3 \sqrt{3}}$

Sol. (4)

Area $=2 a\left(a^{2}-1\right)$
$A=2 a^{3}-2 a$
$\frac{d A}{d a}=6 a^{2}-2=0$
$a= \pm 1 \sqrt{3}$
$A_{\max }=\frac{-2}{3 \sqrt{3}}+\frac{2}{\sqrt{3}}=\frac{-2+6}{3 \sqrt{3}}=\frac{4}{3 \sqrt{3}}$
Q. 9 The integral $\int_{\pi / 6}^{\pi / 3} \tan ^{3} x \cdot \sin ^{2} 3 x\left(2 \sec ^{2} x \cdot \sin ^{2} 3 x+3 \tan x \cdot \sin 6 x\right) d x$ is equal to:
(1) $\frac{9}{2}$
(2) $-\frac{1}{18}$
(3) $-\frac{1}{9}$
(4) $\frac{7}{18}$

Sol. (2)
$\mathrm{I}=\int_{\pi / 6}^{\pi / 3} 2 \cdot \tan ^{3} x \sec ^{2} x \sin ^{4} 3 x+3 \tan ^{4} x \sin ^{2} 3 x .2 \sin 3 x \cos 3 x \mathrm{dx}$
$=\frac{1}{2} \int_{\pi / 6}^{\pi / 3} 4 \tan ^{3} x \sec ^{2} x \sin ^{4} 3 x+3.4 \tan ^{4} x \sin ^{3} 3 x \cos 3 x d x$
$=\frac{1}{2} \int_{\pi / 6}^{\pi / 3} \frac{d}{d x}\left(\tan ^{4} x \sin ^{4} 3 x\right) d x$
$=\frac{1}{2}\left[\tan ^{4} x \sin ^{4} 3 x\right]_{\pi / 6}^{\pi / 3}$
$=\frac{1}{2}\left[9 .(0)-\frac{1}{3} \cdot \frac{1}{3}(1)\right]=-\frac{1}{18}$
Q. 10 If the system of equations
$x+y+z=2$
$2 x+4 y-z=6$
$3 x+2 y+\lambda z=\mu$
has infinitely many solutions, then
(1) $\lambda-2 \mu=-5$
(2) $2 \lambda+\mu=14$
(3) $\lambda+2 \mu=14$
(4) $2 \lambda-\mu=5$

Sol. (2)
$D=0\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & -1 \\ 3 & 2 & \lambda\end{array}\right|=0$
$(4 \lambda+2)-1(2 \lambda+3)+1(4-12)=0$
$4 \lambda+2-2 \lambda-3-8=0$
$2 \lambda=9 \Rightarrow \lambda=\frac{9}{2}$
$D_{x}=\left|\begin{array}{ccc}2 & 1 & 1 \\ 6 & 4 & -1 \\ \mu & 2 & -9 / 2\end{array}\right|=0$
$\Rightarrow \mu=5$
Now check option
$2 \lambda+\mu=14$
Q. 11 In a game two players A and B take turns in throwing a pair of fair dice starting with player A and total of scores on the two dice, in each throw is noted. A wins the game if he throws total a of 6 before B throws a total of 7 and B wins the game if he throws a total of 7 before A throws a total of six. The game stops as soon as either of the players wins. The probability of A winning the game is:
(1) $\frac{5}{31}$
(2) $\frac{31}{61}$
(3) $\frac{30}{61}$
(4) $\frac{5}{6}$

Sol. 2
sum total $7=(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)$
$P($ sum $)=\frac{6}{36}$
sum total $6 \Rightarrow(1,5)(2,4)(3,3)(4,2)(5,1)$
$P($ sum 6$)=\frac{5}{36}$
$\mathrm{P}\left(\mathrm{A}_{\text {win }}\right)=\mathrm{P}(6)+P(\overline{6}) \cdot P(\overline{7}) \cdot P(6)+\ldots$. $=\frac{5}{36}+\frac{31}{36} \times \frac{30}{36} \times \frac{5}{36}+\ldots$.
$=\frac{\frac{5}{36}}{1-\frac{31 \times 30}{36 \times 36}} \Rightarrow \frac{5 \times 36}{36 \times 36-31 \times 30} \Rightarrow \frac{5 \times 36}{1296-930}=\frac{5 \times 36}{366} \Rightarrow \frac{30}{61}$
Q. 12 If for some positive integer n, the coefficients of three consecutive terms in the binomial expansion of $(1+\mathrm{x})^{n+5}$ are in the ratio $5: 10: 14$, then the largest coefficient in this expansion is :
(1) 792
(2) 252
(3) 462
(4) 330

Sol. 3

$$
\begin{aligned}
& T_{r}: T_{r+1}: T_{r+2} \\
& { }^{n+5} C_{r-1}:{ }^{n+5} C_{r}::^{n+5} C_{r+1}=5: 10: 14 \\
& \frac{(n+5)!}{(r-1)!-(n+6-r)!}: \frac{(n+5)!}{r!(\mathrm{n}+5-r)!}=\frac{5}{10}
\end{aligned}
$$

$$
\frac{r}{n+6-r}=\frac{1}{2} \quad \frac{(r+1)!(n+4-r)!}{r!(n+5-r)!}=\frac{5}{7}
$$

$2 r=n+6-r$
$3 r=n+6$
(1)

$$
\begin{aligned}
& \frac{r+1}{n+5-r}=\frac{5}{7} \\
& 7 r+7=5 n+25-5 r \\
& 12 r=5 n+18
\end{aligned}
$$

$$
\therefore 4(n+6)=5 n+18
$$

$$
n=6
$$

$$
\therefore(1+\mathrm{x}) \quad \text { largest coeff }={ }^{11} \mathrm{C}_{5}=462
$$

Q. 13 The function $f(x)=\left\{\begin{array}{ll}\frac{\pi}{4}+\tan ^{-1} x, & |x| \leq 1 \\ \frac{1}{2}(|x|-1), & |x|>1\end{array}\right.$ is:
(1) both continuous and differentiable on $\mathrm{R}-\{-1\}$
(2) continuous on $\mathrm{R}-\{-1\}$ and differentiable on $\mathrm{R}-\{-1,1\}$
(3) continuous on $\mathrm{R}-\{1\}$ and differentiable on $\mathrm{R}-\{-1,1\}$
(4) both continuous and differentiable on $\mathrm{R}-\{1\}$

Sol. (3)
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\frac{\pi}{4}+\tan ^{-1} x & x \in[-1,1] \\ \frac{1}{2}(x-1) & x>1 \\ \frac{1}{2}(-x-1) & x<-1\end{array}\right.$
at $x=1$
$f(1)=\frac{\pi}{2} \quad f\left(1^{+}\right)=0$
\therefore discontinuous \Rightarrow non diff.
at $x=-1$
$f(-1)=0 \quad f\left(-1^{-}\right)=\frac{1}{2}\{+1-1\}=0$
cont. at $\mathrm{x}=-1$

Q. 14 The solution of the differential equation $\frac{d y}{d x}-\frac{y+3 x}{\log _{e}(y+3 x)}+3=0$ is: (where c is a constant of integration)
(1) $x-\log _{e}(y+3 x)=C$
(2) $x-\frac{1}{2}\left(\log _{e}(y+3 x)\right)^{2}=C$
(3) $x-2 \log _{e}(y+3 x)=C$
(4) $y+3 x-\frac{1}{2}\left(\log _{e} x\right)^{2}=C$

Sol. (2)
$\frac{d y}{d x}-\frac{y+3 x}{\ln (y+3 x)}+3=0$
Let $\ln (\mathrm{y}+3 \mathrm{x})=\mathrm{t}$
$\frac{1}{y+3 x} \cdot\left(\frac{d y}{d x}+3\right)=\frac{d t}{d x}$
$\Rightarrow\left(\frac{d y}{d x}+3\right)=\frac{y+3 x}{\ln (y+3 x)}$
$\therefore(y+3 x) \frac{d t}{d x}=\frac{y+3 x}{t}$
$\Rightarrow t d t=d x$
$\frac{t^{2}}{2}=x+c$
$\frac{1}{2}(\ln (y+3 x))^{2}=x+c$
Q. 15 Let $\lambda \neq 0$ be in R. If α and β are the roots of the equation, $x^{2}+x+2 \lambda=0$ and α and γ are the roots of the equation, $3 x^{2}-10 x+27 \lambda=0$, then $\frac{\beta \gamma}{\lambda}$ is equal to:
(1) 27
(2) 9
(3) 18
(4) 36

Sol. (3)
$x^{2}-x+2 \lambda=0(\alpha, \beta)$
$3 x^{2}-10 x+27 \lambda=0(\alpha, \gamma)$
$3 x^{2}-3 x+6 \lambda=0$
$\frac{-\quad-}{7 x+21 \lambda}$
$\therefore \alpha=3 \lambda \quad$ Put in equation
$9 \lambda^{2}-3 \lambda+2 \lambda=0$
$9 \lambda^{2}-\lambda=0 \Rightarrow \lambda=\frac{1}{9} \Rightarrow \alpha=\frac{1}{3}$
$\alpha . \beta=\frac{2}{9} \Rightarrow \beta=\frac{2}{3}$
a. $\gamma=1 \Rightarrow \gamma=3$
$\therefore \frac{\beta \cdot r}{\lambda} \Rightarrow \frac{\frac{2}{3} \cdot 3}{\frac{1}{9}}=18$
Q. 16 The angle of elevation of a cloud C from a point $P, 200 \mathrm{~m}$ above a still lake is 30°. If the angle of depression of the image of C in the lake from the point P is 60°, then $P C$ (in m) is equal to :
(1) $200 \sqrt{3}$
(2) $400 \sqrt{3}$
(3) 400
(4) 100

Sol. (3)

$\frac{h-200}{x}=\tan 30^{\circ} \quad \frac{h+200}{x}=\tan 60^{\circ}$
$\frac{h+200}{h-200}=3$
$h+200=3 h-600$
$2 h=800$
$h=400$
$\therefore \frac{h-200}{P C}=\sin 30^{\circ}$
$P C=400 \mathrm{~m}$
Q. 17 Let $\bigcup_{i=1}^{50} X_{i}=\bigcup_{i=1}^{n} Y_{i}=T$, where each X_{i} contains 10 elements and each Y_{i} contains 5 elements. If each element of the set T is an element of exactly 20 of sets X_{i} 's and exactly 6 of sets Y_{i}^{\prime} s, then n is equal to :
(1) 15
(2) 30
(3) 50
(4) 45

Sol. (2)
$\frac{50 \times 10}{20}=\frac{n \times 5}{6}$
$\frac{50}{2} \times \frac{6}{5}=n \Rightarrow \mathrm{n}=30$
Q. 18 Let $x=4$ be a directrix to an ellipse whose centre is at the origin and its eccentricity is $\frac{1}{2}$. If $P(1, \beta), \beta>0$ is a point on this ellipse, then the equation of the normal to it at P is :
(1) $8 x-2 y=5$
(2) $4 x-2 y=1$
(3) $7 x-4 y=1$
(4) $4 x-3 y=2$

Sol. (2)
$\mathrm{e}=\frac{1}{2} \quad \mathrm{x}=\frac{a}{e}=4$
$\Rightarrow \mathrm{a}=2$
$\mathrm{e}^{2}=1-\frac{b^{2}}{a^{2}} \Rightarrow \frac{1}{4}=1-\frac{b^{2}}{4}$
$\frac{b^{2}}{4}=\frac{3}{4} \Rightarrow b^{2}=3$
\therefore Ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
$P(1, \beta)$
$\mathrm{x}=1 ; \frac{1}{4}+\frac{\beta^{2}}{3}=1$
$\frac{\beta^{2}}{3}=\frac{3}{4} \Rightarrow \beta=\frac{3}{2}$
$\Rightarrow P\left(1, \frac{3}{2}\right)$
Equation of normal $\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}$
$\frac{4 x}{1}-\frac{3 y}{\frac{3}{2}}=4-3$
$4 x-2 y=1$
Q. 19 Let $a_{1}, a_{2}, \ldots, a_{n}$ be a given A.P. whose common difference is an integer and $S_{n}=a_{1}+a_{2}+\ldots+a_{n}$. If $a_{1}=1, a_{n}=300$ and $15 \leq n \leq 50$, then the ordered pair $\left(S_{n-4}, a_{n-4}\right)$ is equal to:
(1) $(2480,248)$
(2) $(2480,249)$
(3) $(2490,249)$
(4) $(2490,248)$

Sol. 4
$a_{1}=1, a_{n}=300,15 \leq n \leq 50$
$300=1+(n-1) d$
$(n-1)=\frac{299}{d}$
d can 23 or 13
if $n-1=13$
$\mathrm{n}=14$
reject
or d = 13
$\mathrm{n}-1=23$
$\mathrm{n}=24$
$\mathrm{S}_{20}=\frac{20}{2}\{2+19.13\}$

$$
\begin{aligned}
& a_{20}=1+19.13 \\
& a_{20}=248
\end{aligned}
$$

$=10\{249\}=2490$
$\left(S_{20}, a_{20}\right)=(2490,248)$
Q. 20 The circle passing through the intersection of the circles, $x^{2}+y^{2}-6 x=0$ and $x^{2}+y^{2}-4 y=0$, having its centre on the line, $2 x-3 y+12=0$, also passes through the point:
(1) $(-1,3)$
(2) $(1,-3)$
(3) $(-3,6)$
(4) $(-3,1)$

Sol. (3)

$\mathrm{S}_{1}+\lambda\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right)=0$
$x^{2}+y^{2}-6 x+\lambda(4 y-6 x)=0$
$x^{2}+y^{2}-6 x(1+\lambda)+4 \lambda y=0$
Centre $(3(1+\lambda),-2 \lambda)$ put in $2 x-3 y+12=0$
$6+6 \lambda+6 \lambda+12=0$
$12 \lambda=-18$
$\lambda=-3 / 2$
\therefore Circle is $x^{2}+y^{2}+3 x-6 y=0$
Check options
Q. 21 Let $\{x\}$ and $[x]$ denote the fractional part of x and the greatest integer $\leq x$ respectively of a real number x. If $\int_{0}^{n}\{x\} d x, \int_{0}^{n}[x] d x$ and $10\left(n^{2}-n\right),(n \in N, n>1)$ are three consecutive terms of a G.P., then n is equal to \qquad
Sol.
21

$$
\begin{aligned}
& \int_{0}^{n}\{x\} d x=n \int_{0}^{1} x d x=n\left(\frac{x^{2}}{2}\right)=\frac{n}{2} \\
& \int_{0}^{n}[x] d x=\int_{0}^{1} 0+\int_{1}^{2} 1 d x+\int_{2}^{3} 2 d x \ldots+\int_{n-1}^{n}(n-1) d x \\
& =1+2+\ldots \ldots \ldots+\mathrm{n}-1 \Rightarrow \frac{n(n-1)}{2}
\end{aligned}
$$

$=\frac{n}{2}, \frac{n(n-1)}{2}, 10\left(n^{2}-n\right) \rightarrow G \cdot P$
$=\frac{n^{2}(n-1)^{2}}{4}=\frac{n}{2} \cdot 10 \cdot n(n-1)$
$\mathrm{n}-1=20 ; \mathrm{n}=21$
Q. 22 A test consists of 6 multiple choice questions, each having 4 alternative answers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is \qquad
Sol. 135
${ }^{6} \mathrm{C}_{4} \times 1 \times 3^{2}=15 \times 9=135$
Q. 23 If $\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}$, then the value of $|\hat{i} \times(\vec{a} \times \hat{i})|^{2}+|\hat{j} \times(\vec{a} \times \hat{j})|^{2}+|\hat{k} \times(\vec{a} \times \hat{k})|^{2}$ is equal to \qquad
Sol. 18
$|\hat{i} \times(\vec{a} \times \hat{i})|^{2}=|\vec{a}-(a . \hat{i}) \hat{i}|^{2}$
$=|\hat{j}+2 \hat{k}|^{2}=1+4=5$
Similarly
$|\hat{j} \times(\vec{a} \times \hat{j})|^{2}=|2 \hat{i}+2 \hat{k}|^{2}=4+4=8$
$|\hat{k} \times(\vec{a} \times \hat{k})|^{2}=|2 \hat{i}+\hat{j}|^{2}=4+1=5$
$\Rightarrow 5+8+5=18$
Q. 24 Let PQ be a diameter of the circle $x^{2}+y^{2}=9$. If α and β are the lengths of the perpendiculars from P and Q on the straight line, $x+y=2$ respectively, then the maximum value of $\alpha \beta$ is \qquad
Sol. 7

$\alpha=\left|\frac{3 \cos \theta+3 \sin \theta-2}{\sqrt{2}}\right|$
$\beta=\left|\frac{+3 \cos \theta+3 \sin \theta+2}{\sqrt{2}}\right|$
$\alpha \beta=\left|\frac{(3 \cos \theta+3 \sin \theta)^{2}-4}{2}\right| \Rightarrow \alpha \beta=\left|\frac{9+9 \sin 2 \theta-4}{2}\right| \Rightarrow \alpha \beta=\left|\frac{5+9 \sin 2 \theta}{2}\right|$
$\alpha \beta_{\max }=\frac{9+5}{2}=7$
Q. 25 If the variance of the following frequency distribution :
Class : $10-20 \quad 20-30 \quad 30-40$
Frequency : 2 x 2
is 50 , then x is equal to \qquad

Sol. 4

$$
\begin{aligned}
& \sigma^{2}=\frac{\sum f_{i} x_{i}^{2}}{\sum f_{i}}-\left(\frac{\sum f_{i} x_{i}}{\sum f_{i}}\right)^{2} \\
& x_{i} \quad f_{i} \quad x-\bar{x} \quad(x-\bar{x})^{2} \quad f_{i}(x-\bar{x})^{2} \\
& \begin{array}{lllll}
15 & 2 & -10 & 100 & 200
\end{array} \\
& \begin{array}{lllll}
25 & x & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllll}
35 & 2 & 10 & 100 & 200
\end{array} \\
& \overline{4+x} \quad \overline{400}
\end{aligned}
$$

$\bar{x}=\frac{100+25 x}{4+x}$
$\bar{x}=25$
$\therefore \frac{400}{4+x}=50$
$\mathrm{x}=4$

