CHEMISTRY
 JEE-MAIN (September-Attempt) 3 September (Shift-1) Paper

 SECTION - A

 SECTION - A}

1. It is true that:
(1) A second order reaction is always a multistep reaction
(2) A first order reaction is always a single step reaction
(3) A zero order reaction is a multistep reaction
(4) A zero order reaction is a single step reaction

Sol. 3

Factual

2. An acidic buffer is obtained on mixing :
(1) 100 mL of 0.1 M HCl and 200 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}^{2}$
(2) 100 mL of 0.1 M HCl and 200 mL of 0.1 M NaCl
(3) 100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 100 mL of 0.1 M NaOH
(4) 100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 200 mL of 0.1 M NaOH

Sol. 1
$2 \mathrm{HCl}+\mathrm{CH}_{3} \mathrm{COO}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
1020
X $10 \quad 10$

3. The Kjeldahl method of Nitrogen estimation fails for which of the following reaction products?
(a)

(b)

(c)

(d)

(1) (a), (c) and (d)
(2) (b) and (c)
(3) (c) and (d)
(4) (a) and (d)

Sol. 3
(A)

(B)

(C)

(D)

Diazo compound and inorganic nitrogen can't be estimeted by kjeldal method.
4. If the boiling point of $\mathrm{H}_{2} \mathrm{O}$ is 373 K , the boiling point of $\mathrm{H}_{2} \mathrm{~S}$ will be :
(1) greater than 300 K but less than 373 K
(2) equal to 373 K
(3) more than 373 K
(4) less than 300 K

Sol. 4

Less than 300 K (factual)
5. The complex that can show optical activity is :
(1) cis $-\left[\mathrm{CrCl}_{2}(\mathrm{ox})_{2}\right]^{3-}$ (ox = oxalate)
(2) trans - $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]$
(3) trans $-\left[\mathrm{Cr}\left(\mathrm{Cl}_{2}\right)(\mathrm{ox})_{2}\right]^{3-}$
(4) cis - $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]$

Sol. 1

cis $-\left[\mathrm{CrCl}_{2}(\mathrm{ox})_{2}\right]^{3-}(\mathrm{ox}=\mathrm{oxalate})$

trans $-\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{-}$

trans $-\left[\mathrm{Cr}\left(\mathrm{Cl}_{2}\right)(\mathrm{ox})_{2}\right]^{3-}$

cis - $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{-}$
6. Which one of the following compounds possesses the most acidic hydrogen?
(1) $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
(2)

(3)

(4)

Sol. 3

has most acidic hydrogen among given compound, this is due to strong -M effect of -CN group which stabilize -ve charge significantly.
7. Aqua regia is used for dissolving noble metals (Au, Pt, etc.). The gas evolved in this process is :
(1) $\mathrm{N}_{2} \mathrm{O}_{3}$
(2) N_{2}
(3) $\mathrm{N}_{2} \mathrm{O}_{5}$
(4) NO

Sol. 4
$\mathrm{Au}+\mathrm{HNO}_{3}+\mathrm{HCl} \rightarrow \mathrm{HAuCl}_{4}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Pt}+\underbrace{\mathrm{HNO}_{3}+\mathrm{HCl}}_{\text {aquar regia }} \rightarrow \mathrm{H}_{2} \mathrm{PtCl}_{6}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
8. The antifertilituy drug "Novestrol" can react with :
(1) $\mathrm{Br}_{2} /$ water; $\mathrm{ZnCl}_{2} / \mathrm{HCl} ; \mathrm{FeCl}_{3}$
(2) $\mathrm{Br}_{2} /$ water; $\mathrm{ZnCl}_{2} / \mathrm{HCl} ; \mathrm{NaOCl}$
(3) Alcoholic $\mathrm{HCN} ; \mathrm{NaOCl} ; \mathrm{ZnCl}_{2} / \mathrm{HCl}$
(4) $\mathrm{ZnCl}_{2} / \mathrm{HCl} ; \mathrm{FeCl}_{3}$; Alcoholic HCN

Sol. 1
Novestrol

It can reacts with $\mathrm{Br}_{2} /$ water due to presence of unsaturation, with $\mathrm{ZnCl}_{2} / \mathrm{HCl}$ due to -OH group and with FeCl_{3} due to phenol.
9. Which of the following compounds produces an optically inactive compound on hydrogenation?
(1)

(2)

(3)

(4)

Sol. 3

10. Of the species, $\mathrm{NO}, \mathrm{NO}^{+}, \mathrm{NO}^{2+}$ and NO^{-}, the one with minimum bond strength is :
(1) NO^{-}
(2) NO^{+}
(3) NO^{2+}
(4) NO

Sol. 1
B.O. $\mathrm{NO}^{-}=2$
$\mathrm{BO} \mathrm{NO}^{+}=3$
$\mathrm{BO} \mathrm{NO}{ }^{2+}=2.5$
$\mathrm{BO} \mathrm{NO}=2.5$
B. $O \propto \frac{1}{\text { B.L }}$
11. Glycerol is separated in soap industries by :
(1) Fractional distillation
(2) Distillation under reduced pressure
(3) Differential extraction
(4) Steam distillation

Sol. 2
conceptual
Glycerol is separated in soap industries by distillation under reduced pressure
12. Thermal power plants can lead to :
(1) Ozone layer depletion
(2) Blue baby syndrome
(3) Eutrophication
(4) Acid rain

Sol. 4
Refer enviornmental chemistry
It emits CO_{2} that combine with mositure of atmosphere and forms $\mathrm{H}_{2} \mathrm{CO}_{3}$ (carbonic acid)
13. Henry's constant (in kbar) for four gases α, β, γ and δ in water at 298 K is given below :

	α	β	γ	δ
K_{H}	50	2	2×10^{-5}	0.5

(density of water $=10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ at 298 K)
This table implies that:
(1) solubility of γ at 308 K is lower than at 298 K
(2) The pressure of a 55.5 molal solution of δ is 250 bar
(3) α has the highest solubility in water at a given pressure
(4) The pressure of a 55.5 molal solutio of γ is 1 bar

Sol. 1
$\mathrm{p}=\mathrm{K}_{\mathrm{H}} \mathrm{X}$ mol fraction of gas in liquid.
On increasing tamp, ' K_{H} increases
Hence solubility \downarrow
therefore, option 1
 The crystal field stabillization energy (CFSE) of the complex ion, in $\mathrm{kJ} \mathrm{mol}^{-1}$, is :
($1 \mathrm{~kJ} \mathrm{~mol}-1=83.7 \mathrm{~cm}^{-1}$)
(1) 83.7
(2) 242.5
(3) 145.5
(4) 97

Sol. 4
$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \mathrm{Ti}^{3+} 3 \mathrm{~d}^{1}$ in octahedral field of ligend

> CFSE $=-0.4 \Delta_{0}$
> CFSE $=\frac{-0.4 \times 20300}{83.7}$
$=97 \mathrm{~kJ} \mathrm{~mol}$
15. The atomic number of the element unnilennium is :
(1) 109
(2) 102
(3) 119
(4) 108

Sol. 1
Unnilennium 109
16. An organic compound [A], molecular formula $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$ was hydrolyzed with dilute sulphuric acid to give a carboxylic acid [B] and an alcohol [C]. Oxidation of [C] with $\mathrm{CrO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ produced [B]. Which of the following strucutres are not possible for $[A]$?
(1) $\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}-\mathrm{COOCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
(2)

(3)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(4)

Sol. 2

17. The mechanism of $S_{N} 1$ reaction is given as :

Solvent Separated ion
pair
A student writes general characteristics based on the given mechanism as :
(a) The reaction is favoured by weak nucleophiles.
(b) R^{\oplus} would be easily formed if the substituents are bulky.
(c) The reaction is accompanied by racemization.
(d) The reaction is favoured by non-polar solvents.

Which observations are correct?
(1) (a) and (b)
(2) (a), (b) and (c)
(3) (a) and (c)
(4) (b) and (d)

Sol. 2
Statement (a), (b) \& (c) are correct for $\mathrm{S}_{\mathrm{N}}{ }^{1}$ reaction mechanism.
18. Tyndall effect is observed when:
(1) The diameter of dispersed particles is much smaller than the wavelength of light used.
(2) The diameter of dispersed particles is much larger than the wavelength of light used.
(3) The refractive index of dispersed phase is greater than that of the dispersion medium.
(4) The diameter of dispersed particles is similar to the wavelenght of light used.

Sol. 4
Diameter of dispersed particles should not be much smaller than wavelength of light used. Refer topic surface chemistry
19. Let $\mathrm{C}_{\mathrm{NaCl}}$ and $\mathrm{C}_{\mathrm{BaSO}_{4}}$ be the conductances (in S) measured for saturated aqueous solutions of NaCl and BaSO4, respectively, at a temperature T .
Which of the following is false?
(1) $\mathrm{C}_{\mathrm{NaCl}}\left(\mathrm{T}_{2}\right)>\mathrm{C}_{\mathrm{NaCl}}\left(\mathrm{T}_{1}\right)$ for $\mathrm{T}_{2}>\mathrm{T}_{1}$
(2) $\mathrm{C}_{\mathrm{BaSO}_{4}}\left(\mathrm{~T}_{2}\right)>\mathrm{C}_{\mathrm{BaSO}_{4}}\left(T_{1}\right)$ for $T_{2}>T_{1}$
(3) Ionic mobilities of ions from both salts increase with T.
(4) $\mathrm{C}_{\mathrm{NaCl}} \gg \mathrm{C}_{\mathrm{BaSO}_{4}}$ at a given T

Sol. 4
Ionic
$\mathrm{C}_{\mathrm{NaCl}} \gg \mathrm{C}_{\mathrm{BaSO}_{4}}$ at temp ' T^{\prime}
20. In a molecule of pyrophosphoric acid, the number of $\mathrm{P}-\mathrm{OH}, \mathrm{P}=\mathrm{O}$ and $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bonds/moiety(ies) respectively are :
(1) 3, 3 and 3
(2) 4, 2 and 1
(3) 2, 4 and 1
(4) 4, 2 and 0

Sol. 2

$\mathrm{P}-\mathrm{OH}$ bonds $=4$
$\mathrm{P}=\mathrm{O}$ bonds $=2$
$P-O-P$ linkage $=1$
Ans. 4, 2, 1
21. The mole fraction of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in an aqueous binary solution is 0.1 . The mass percentage of water in it, to the nearest integer, is \qquad —.
Sol. 47%
$\mathrm{X}_{\text {Glucose }}=0.1$
mass $\%$ of glucose $=\frac{0.1 \times 180}{0.1 \times 180+0.9 \times 18} \times 100$

$$
\begin{aligned}
& =\frac{1800}{18+16.2} \\
& =\frac{1800}{34.2} \% \\
& =52.63 \% \\
& =53 \%
\end{aligned}
$$

\therefore mass $\%$ of $\mathrm{H}_{2} \mathrm{O}=47 \%$
22. The volume strength of $8.9 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ solution calculated at 273 K and 1 atm is \qquad . $(R=0.0821 L$ atm $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$) (rounded off ot the nearest integer)
Sol.
100
Vol. strength $=\frac{8.9}{2} \times \frac{0.821 \times 273}{1}$

$$
\begin{aligned}
& =99.73 \\
& =100
\end{aligned}
$$

23. An element with molar mass $2.7 \times 10^{-2} \mathrm{~kg} \mathrm{~mol}^{-1}$ forms a cubic unit cell with edge length 405 pm . If its density is $2.7 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$, the radius of the element is approximately \qquad $\times 10^{-12} \mathrm{~m}$ (to the nearest integer).
Sol. 143
Density $=\frac{\mathrm{Z} \times \mathrm{GMM}}{\mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}}$
$2.7 \times 10^{3}=\frac{\mathrm{Z} \times 2.7 \times 10^{-2}}{6.023 \times 10^{23} \times\left(405 \times 10^{-12}\right)^{3}}$
$Z=6.023 \times 405 \times 405 \times 405 \times 10^{23-36+3+2}$
$Z=6.023 \times 405 \times 405 \times 405 \times 10^{-8}$
$Z=4$
FCC
$4 R=\sqrt{2} \times a$
$R=\frac{405}{2 \sqrt{2}} \times 10^{-12}=143.21 \times 10^{-12} \mathrm{~m}$
$=143$ ans
24. The total number of monohalogenated organic products in the following (including stereoisomers) reaction is \qquad -

A

$$
\xrightarrow[\text { (ii) } \mathrm{X}_{2} / \Delta]{\text { (i) } \mathrm{H}_{2} / \mathrm{Ni} / \Delta}
$$

(Simplest
optically
active
alkene)

Sol. 8

25. The photoelectric current from Na (Work function, $\mathrm{w}_{0}=2.3 \mathrm{eV}$) is stopped by the output voltage of the cell $\mathrm{Pt}(\mathrm{s}) \mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{Bar}) \mathrm{HCl}$ (aq. $\left.\mathrm{pH}=1\right)|\mathrm{AgCl}(\mathrm{s})| \mathrm{Ag}(\mathrm{s})$.
The pH of aq. HCl required to stop the photoelectric current form $\mathrm{K}\left(\mathrm{w}_{0}=2.25 \mathrm{eV}\right)$, all other conditions remaining the same, is \qquad $\times 10^{-2}$ (to the nearest integer).
Given,
$2.303 \frac{R T}{\mathrm{~F}}=0.06 \mathrm{~V} ; \mathrm{E}_{\mathrm{AgCl\mid Ag} \mid \mathrm{C}^{-}}^{0}=0.22 \mathrm{~V}$
Sol. 58
Energy of photon $=2.3-\mathrm{E}_{\text {cell }}\{$ for Na$\}$
Energy of photon $=2.25-E_{\text {cell }}\{$ for K $\}$
$\mathrm{E}_{\text {cell }}\left\{\right.$ for $\left.^{`} \mathrm{Na}^{\prime}\right\}+0.05=\mathrm{E}_{\text {cell }}\left\{\right.$ for $\left.{ }^{\text {cell }} \mathrm{K}^{\prime}\right\}$
$0.22+0.06 \log \left[\mathrm{H}^{+}\right]\left[\mathrm{Cl}^{-}\right]+0.05=0.22+0.06 \log \left[\mathrm{H}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
$6 \log \left(10^{-2}\right)+5=6 \log \left[\mathrm{H}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
$\log \left(10^{-12}\right)+\log \left(10^{5}\right)=\log \left\{\left[\mathrm{H}^{+}\right]\left[\mathrm{Cl}^{-}\right]\right\}^{6}$
$\left\{\left[\mathrm{H}^{+}\right]\left[\mathrm{Cl}^{-}\right]\right\}^{6}=10^{-7}$
$\left[\mathrm{H}^{+}\right]^{12}=10^{-7}$
$\mathrm{pH}=\frac{7}{12}=0.58$
$=58 \times 10^{-2}=58$ Ans

