MATHEMATICS
 JEE-MAIN (September-Attempt)
 3 September (Shift-2) Paper

SECTION - A

Q. 1 If $x^{3} d y+x y d x=x^{2} d y+2 y d x ; y(2)=e$ and $x>1$, then $y(4)$ is equal to:
(1) $\frac{\sqrt{e}}{2}$
(2) $\frac{3}{2} \sqrt{\mathrm{e}}$
(3) $\frac{1}{2}+\sqrt{\mathrm{e}}$
(4) $\frac{3}{2}+\sqrt{\mathrm{e}}$

Sol. 2
$\left(x^{3}-x^{2}\right) d y=(2-x) y d x$
$\int \frac{d y}{y}=\int \frac{2-x}{x^{2}(x-1)} d x$
$\int \frac{d y}{y}=-\int \frac{x-1-1}{x^{2}(x-1)} d x$
$\int \frac{d y}{y}=-\int \frac{d x}{x^{2}}=\int \frac{x^{2}-1-x^{2}}{x^{2}(x-1)}$
$=\frac{1}{x}-\int \frac{x+1}{x^{2}} d x+\int \frac{d x}{x-1}$
$\ln |y|=\frac{2}{x}-\ln |x|+\ln |x-1|+C$
$x=2, y=e$
$1=1-\ln 2+c \Rightarrow c=\ln 2$
$\ln |y|=\frac{2}{x}-\ln |x|+\ln |x-1|+\ln 2$
put $x=4$
$\ln |y|=\frac{1}{2}-2 \ln 2+\ln 3+\ln 2$
$\ln y=\ln \left(\frac{3}{2}\right)+\frac{1}{2}$
$y=\frac{3}{2} \cdot e^{\frac{1}{2}}=\frac{3}{2} \sqrt{e}$
Q. 2 Let A be a 3×3 matrix such that $\operatorname{adj} A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1\end{array}\right]$ and $B=\operatorname{adj}(\operatorname{adj} A)$.

If $|\mathrm{A}|=\lambda$ and $\left|\left(\mathrm{B}^{-1}\right)^{\mathrm{T}}\right|=\mu$, then the ordered pair, $(|\lambda|, \mu)$ is equal to:
(1) $\left(9, \frac{1}{81}\right)$
(2) $\left(9, \frac{1}{9}\right)$
(3) $\left(3, \frac{1}{81}\right)$
(4) $(3,81)$

Sol. 3
$\operatorname{adj} A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1\end{array}\right] \Rightarrow|\operatorname{adj} A|=9$
$\Rightarrow|A|^{2}=9 \Rightarrow|A|=3=|\lambda|$
$B=\operatorname{adj}(\operatorname{adj} A)=|A| . A=3 A$
$\left|\left(B^{\top}\right)^{-1}\right|=\frac{1}{\left|B^{\top}\right|}=\frac{1}{|B|}=\frac{1}{|3 A|}=\frac{1}{27 \times 3}=\frac{1}{81}=\mu$
$|\lambda|, \mu=\left(3, \frac{1}{81}\right)$
Q. 3 Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ be such that $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=1$, If $\mathrm{a} \cos \theta=\mathrm{b} \cos \left(\theta+\frac{2 \pi}{3}\right)=\mathrm{c} \cos \left(\theta+\frac{4 \pi}{3}\right)$, where $\theta=\frac{\pi}{9}$, then the angle between the vectors $a \hat{i}+b \hat{j}+c \hat{k}$ and $b \hat{i}+c \hat{j}+a \hat{k}$ is
(1) $\frac{\pi}{2}$
(2) $\frac{2 \pi}{3}$
(3) $\frac{\pi}{9}$
(4) 0

Sol. 1
$\cos \alpha=\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}$
$a \cos \theta=b \cos \left(\theta+\frac{2 \pi}{3}\right)=\cos \left(\theta+\frac{4 \pi}{3}\right)=\lambda$
$\frac{1}{\mathrm{a}}=\frac{\cos \theta}{\lambda}, \frac{1}{\mathrm{~b}}=\frac{\cos \left(\theta+2 \frac{\pi}{3}\right)}{\lambda}, \frac{1}{\mathrm{c}}=\frac{\cos \left(\theta+\frac{4 \pi}{3}\right)}{\lambda}$
$\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=\frac{1}{\lambda}\left[\cos \theta+\cos \left(\theta+\frac{2 \pi}{3}\right)+\cos \left(\theta+\frac{4 \pi}{3}\right)\right]$
$=\frac{1}{\lambda} \frac{\sin \left[(3)\left(\frac{\pi}{3}\right)\right]}{\sin \left(\frac{\pi}{3}\right)} \cdot \cos \left[\frac{\theta+\theta+\frac{4 \pi}{3}}{2}\right]$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
$\Sigma a b=0$
$\cos \alpha=0$
$\alpha=\frac{\pi}{2}$
Q. 4 Suppose $f(x)$ is a polynomial of degree four, having critical points at $-1,0,1$. If $T=\{x \in R \mid f(x)=f(0)\}$, then the sum of squares of all the elements of T is:
(1) 6
(2) 2
(3) 8
(4) 4

Sol. 4
$f^{\prime}(x)=k(x+1) x(x-1)$
$f^{\prime}(x)=k\left[x^{3}-x\right]$
Integrating both sides

$$
f(x)=k\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]+c
$$

$f(0)=c$
$f(x)=f(0) \Rightarrow k\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)+c=c$
$\Rightarrow k \frac{x^{2}}{4}\left(x^{2}-2\right)=0$
$\Rightarrow x=0, \pm \sqrt{2}$
sum of all of squares of elements $=0^{2}+(\sqrt{2})^{2}+(-\sqrt{2})^{2}$
$=4$
Q. 5 If the value of the integral $\int_{0}^{1 / 2} \frac{\mathrm{x}^{2}}{\left(1-\mathrm{x}^{2}\right)^{3 / 2}} \mathrm{dx}$ is $\frac{\mathrm{k}}{6}$, then k is equal to:
(1) $2 \sqrt{3}+\pi$
(2) $3 \sqrt{2}+\pi$
(3) $3 \sqrt{2}-\pi$
(4) $2 \sqrt{3}-\pi$

Sol. 4

$\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x$
$x=\sin \theta$
$\int_{0}^{\frac{\pi}{6}} \frac{\sin ^{2} \theta}{\cos ^{3} \theta} \cdot \cos \theta d \theta$
$\int_{0}^{\frac{\pi}{6}} \tan ^{2} \theta \mathrm{~d} \theta=[\tan \theta-\theta]_{0}^{\frac{\pi}{6}}$
$\Rightarrow\left(\frac{1}{\sqrt{3}}-\frac{\pi}{6}\right)=\frac{k}{6}$
$\frac{2 \sqrt{3}-\pi}{6}=\frac{k}{6}$
$k=2 \sqrt{3}-\pi$
Q. 6 If the term independent of x in the expansion of $\left(\frac{3}{2} \mathrm{x}^{2}-\frac{1}{3 \mathrm{x}}\right)^{9}$ is k , then 18 k is equal to:

Sol. 3
(1) 5
(2) 9
(3) 7
(4) 11

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}}\left(\frac{3}{2} \mathrm{x}^{2}\right)^{9-r}\left(\frac{-1}{3 \mathrm{x}}\right)^{r} \\
& ={ }^{9} \mathrm{C}_{\mathrm{r}} \frac{3^{9-2 r}}{2^{9-r}}(-1)^{r} \cdot x^{18-3 r} \\
& 18-3 \mathrm{r}=0 \\
& \Rightarrow \mathrm{r}=6 \\
& ={ }^{9} \mathrm{C}_{\mathrm{r}}\left(\frac{3^{-3}}{2^{3}}\right)=\mathrm{k} \\
& =\frac{7}{18}=\mathrm{k} \Rightarrow 18 \mathrm{k}=7
\end{aligned}
$$

7. If a $\triangle \mathrm{ABC}$ has vertices $\mathrm{A}(-1,7), \mathrm{B}(-7,1)$ and $\mathrm{C}(5,-5)$, then its orthocentre has coordinates:
(1) $(-3,3)$
(2) $\left(-\frac{3}{5}, \frac{3}{5}\right)$
(3) $\left(\frac{3}{5},-\frac{3}{5}\right)$
(4) $(3,-3)$

Sol. 1

equation of $C D$
$y+5=-1(x-5)$
$x+y=0$
equation of $A E$
$y-7=2(x+1)$
$2 x-y=-9$
from (1) \& (2)
$x=-3, y=3$
Othocentre $=(-3,3)$
Q.8. Let e_{1} and e_{2} be the eccentricities of the ellipse, $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ and the hyperbola, $\frac{x^{2}}{16}-\frac{y^{2}}{b^{2}}=1$ respectively satisfying $\mathrm{e}_{1} \mathrm{e}_{2}=1$. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to:
(1) $(8,12)$
(2) $\left(\frac{24}{5}, 10\right)$
(3) $\left(\frac{20}{3}, 12\right)$
(4) $(8,10)$

Sol. 4
$\left.\begin{array}{l}\alpha=10 \mathrm{e}_{1} \\ \beta=8 \mathrm{e}_{2}\end{array}\right]$
$\left.\begin{array}{l}b^{2}=25\left(1-e_{1}^{2}\right) \\ b^{2}=16\left(e_{2}^{2}-1\right)\end{array}\right]$
$\left(e_{1} e_{2}\right)^{2}=1$
$\left(1-\frac{b^{2}}{25}\right)\left(1+\frac{b^{2}}{16}\right)=1$
$\Rightarrow 1+\frac{\mathrm{b}^{2}}{25}-\frac{\mathrm{b}^{2}}{25}-\frac{\mathrm{b}^{4}}{400}=1$
$\Rightarrow \frac{9}{16.25} \mathrm{~b}^{2}=\frac{\mathrm{b}^{4}}{400} \Rightarrow \mathrm{~b}^{2}=9$
$\left.\mathrm{e}_{1}=\frac{4}{5} \quad \alpha=2 \mathrm{ae}_{1}=10 \times \frac{4}{5}=8\right]$
$\left.\left.\mathrm{e}_{2}=\frac{5}{4}\right]=\quad \beta=2 \mathrm{ae}_{2}=8 \times \frac{5}{4}=10\right]=(\alpha, \beta)=(8,10)$
Q.9 If z_{1}, z_{2} are complex numbers such that $\operatorname{Re}\left(z_{1}\right)=\left|z_{1}-1\right|, \operatorname{Re}\left(z_{2}\right)=\left|z_{2}-1\right|$ and $\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{6}$, then $\operatorname{Im}\left(z_{1}+z_{2}\right)$ is equal to:
(1) $2 \sqrt{3}$
(2) $\frac{2}{\sqrt{3}}$
(3) $\frac{1}{\sqrt{3}}$
(4) $\frac{\sqrt{3}}{2}$

Sol. 1

$$
z_{1}=x_{1}+i y_{1}, z_{2}=z_{2}+i y_{2}
$$

$$
\begin{aligned}
& x_{1}{ }^{2}=\left(x_{1}-1\right)^{2}+y_{1}{ }^{2} \\
& \Rightarrow v_{1}{ }^{2}-2 x_{1}+1=0
\end{aligned}
$$

$$
\Rightarrow y_{1}^{2}-2 x_{1}+1=0
$$

$$
x_{2}^{2}=\left(x_{2}-1\right)^{2}+y_{2}^{2}
$$

$$
y_{2}-2 x_{2}-1=0
$$

from equation (1) - (2)

$$
\left(y_{1}{ }^{2}-y_{2}^{2}\right)+2\left(x_{2}-x_{1}\right)=0
$$

$$
\left(y_{1}+y_{2}\right)\left(y_{1}-y_{2}\right)=2\left(x_{1}-x_{2}\right)
$$

$$
y_{1}+y_{2}=2\left(\frac{x_{1}-x_{2}}{y_{1}-y_{2}}\right)
$$

$$
\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{6}
$$

$$
\tan ^{-1}\left(\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\right)=\frac{\pi}{6}
$$

$$
\Rightarrow \frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{1}{\sqrt{3}}
$$

$\therefore y_{1}+y_{2}=2 \sqrt{3}$
Q. 10 The set of all real values of λ for which the quadratic equations, $\left(\lambda^{2}+1\right) x^{2}-4 \lambda x+2=0$ always have exactly one root in the interval $(0,1)$ is:
(1) $(-3,-1)$
(2) $(2,4]$
(3) $(1,3]$
(4) $(0,2)$

Sol. 3
$\mathrm{f}(0) \mathrm{f}(1) \leq 0$
$\Rightarrow(2)\left[\lambda^{2}-4 \lambda+3\right] \leq 0$
$(\lambda-1)(\lambda-3) \leq 0$
$\Rightarrow \lambda \in[1,3]$
at $\lambda=1$
$2 x^{2}-4 x+2=0$
$\Rightarrow(x-1)^{2}=0$
$x=1,1$
$\therefore \lambda \in(1,3]$
Q. 11 Let the latus ractum of the parabola $y^{2}=4 x$ be the common chord to the circles C_{1} and C_{2} each of them having radius $2 \sqrt{5}$. Then, the distance between the centres of the circles C_{1} and C_{2} is:
(1) 8
(2) $8 \sqrt{5}$
(3) $4 \sqrt{5}$
(4) 12

Sol. 1

$\mathrm{C}_{1} \mathrm{C}_{2}=2 \mathrm{C}_{1} \mathrm{~A}$
$\left(C_{1} A\right)^{2}+4=(2 \sqrt{5})^{2}$
$\mathrm{C}_{1} \mathrm{~A}=4$
$\mathrm{C}_{1} \mathrm{C}_{2}=8$
Q. 12 The plane which bisects the line joining the points $(4,-2,3)$ and $(2,4,-1)$ at right angles also passes through the point:
(1) $(0,-1,1)$
(2) $(4,0,1)$
(3) $(4,0,-1)$
(4) $(0,1,-1)$

Sol. 3

$a=2, b=-6$
$\mathrm{c}=4$
equation of plane
$2(x-3)+(-6)(y-1)+4(z-1)=0$

$$
\Rightarrow 2 x-6 y+4 z=4
$$

passes through (4, 0, -1)
Q. $13 \lim _{x \rightarrow a} \frac{(a+2 x)^{\frac{1}{3}}-(3 x)^{\frac{1}{3}}}{(3 a+x)^{\frac{1}{3}}-(4 x)^{\frac{1}{3}}}(a \neq 0)$ is equal to :
(1) $\left(\frac{2}{9}\right)^{\frac{4}{3}}$
(2) $\left(\frac{2}{3}\right)^{\frac{4}{3}}$
(3) $\left(\frac{2}{3}\right)\left(\frac{2}{9}\right)^{\frac{1}{3}}$
(4) $\left(\frac{2}{9}\right)\left(\frac{2}{3}\right)^{\frac{1}{3}}$

Sol. 3
Apply L-H Rule

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\frac{2}{3}(a+2 x)^{\frac{-2}{3}}-3^{\frac{1}{3}} \cdot \frac{1}{3} x^{-\frac{2}{3}}}{\frac{1}{3}(3 a+x)^{\frac{-2}{3}}-4^{\frac{1}{3}} \cdot \frac{1}{3} x^{-\frac{2}{3}}} \\
& \Rightarrow \frac{\frac{2}{3}(3 a)^{\frac{-2}{3}}-\frac{1}{3^{\frac{2}{3}}} \cdot\left(a^{-\frac{2}{3}}\right)}{\frac{1}{3}(4 a)^{\frac{-2}{3}}-\frac{1}{3} \cdot 4^{\frac{1}{3}}\left(a^{-\frac{2}{3}}\right)}
\end{aligned}
$$

$$
=\frac{2}{3} \cdot\left(\frac{2}{9}\right)^{\frac{1}{3}}
$$

Q. 14 Let $x_{i}(1 \leq i \leq 10)$ be ten observations of a random variable X. If $\sum_{i=1}^{10}\left(x_{i}-p\right)=3$ and $\sum_{i=1}^{10}\left(x_{i}-p\right)^{2}=9$ where $0 \neq \mathrm{p} \in \mathrm{R}$, then the standard deviation of these observations is :
(1) $\frac{7}{10}$
(2) $\frac{9}{10}$
(3) $\sqrt{\frac{3}{5}}$
(4) $\frac{4}{5}$

Sol. 2
Standard deviation is free from shifting of origin
S.D $=\sqrt{\text { variance }}$
$=\sqrt{\frac{9}{10}-\left(\frac{3}{10}\right)^{2}}$
$=\sqrt{\frac{9}{10}-\frac{9}{100}}$
$=\sqrt{\frac{81}{100}}=\frac{9}{10}$
Q. 15 The probability that a randomly chosen 5-digit number is made from exactly two digits is :
(1) $\frac{134}{10^{4}}$
(2) $\frac{121}{10^{4}}$
(3) $\frac{135}{10^{4}}$
(4) $\frac{150}{10^{4}}$

Sol. 3
Total case $=9\left(10^{4}\right)$
fav. case $={ }^{9} \mathrm{C}_{2}\left(2^{5}-2\right)+{ }^{9} \mathrm{C}_{1}\left(2^{4}-1\right)$
$=1080+135=1215$
Prob $=\frac{1215}{9 \times 10^{4}}=\frac{135}{10^{4}}$
Q. 16 If $\int \sin ^{-1}\left(\sqrt{\frac{x}{1+x}}\right) d x=A(x) \tan ^{-1}(\sqrt{x})+B(x)+C$, where C is a constant of integration, then the ordered pair $(A(x), B(x))$ can be:
(1) $(x+1,-\sqrt{x})$
(2) $(x-1,-\sqrt{x})$
(3) $(x+1, \sqrt{x})$
(4) $(x-1, \sqrt{x})$

Sol. 1

$$
\int \sin ^{-1} \sqrt{\frac{x}{1+x}} d x
$$

$\int \tan _{\text {I }}^{-1} \sqrt{x} \cdot{\underset{\text { II }}{ }}_{1} d x$
$\left(\tan ^{-1} \sqrt{x}\right) \cdot x-\int \frac{x}{1+x} \cdot \frac{1}{2 \sqrt{x}} d x$
put $\mathrm{x}=\mathrm{t}^{2} \Rightarrow \mathrm{dx}=2 \mathrm{tdt}$
$=x \tan ^{-1} \sqrt{x}-\int \frac{\left(t^{2}\right)(2 t d t)}{\left(1+t^{2}\right)(2 t)}$
$=x \tan ^{-1} \sqrt{\mathrm{x}}-\mathrm{t}+\tan ^{-1} \mathrm{t}+\mathrm{c}$
$=x \tan ^{-1} \sqrt{x}-\sqrt{x}+\tan ^{-1} \sqrt{x}+c$
$A(x)=x+1, B(x)=-\sqrt{x}$
Q. 17 If the sum of the series $20+19 \frac{3}{5}+19 \frac{1}{5}+18 \frac{4}{5}+\ldots$ upto $n^{\text {th }}$ term is 488 and the $\mathrm{n}^{\text {th }}$ term is negative, then:
(1) $n=60$
(2) $n=41$
(3) $n^{\text {th }}$ term is -4
(4) $\mathrm{n}^{\text {th }}$ term is $-4 \frac{2}{5}$

Sol. 3
$20+\frac{98}{5}+\frac{96}{5}+\ldots \ldots$
$S_{n}=488$
$\Rightarrow \frac{\mathrm{n}}{2}\left[2 \times 20+(\mathrm{n}-1)\left(\frac{-2}{5}\right)\right]=488$
$\Rightarrow 20 \mathrm{n}-\frac{\mathrm{n}^{2}}{5}+\frac{\mathrm{n}}{5}=488$
$\Rightarrow 100 \mathrm{n}-\mathrm{n}^{2}+\mathrm{n}=2440$
$=n^{2}-101 n+2440=0$
$\Rightarrow \mathrm{n}=61$ or 40
for $n=40, T_{n}=20+39\left(\frac{-2}{5}\right)=+v e$
$n=61, T_{n}=20+60\left(\frac{-2}{5}\right)=20-24=-4$
Q. 18 Let p, q, r be three statements such that the truth value of $(p \wedge q) \rightarrow(\sim p \vee r)$ is F. Then the truth values of p, q, r are respectively :
(1) F, T, F
(2) T, F, T
(3) T, T, F
(4) T, T, T

Sol. 3
$(p \wedge q) \rightarrow(\sim q \vee r)$
Possible when
$p^{\wedge} q \rightarrow T$
$\sim q \vee r \rightarrow F$
$p \rightarrow T$
$p^{\wedge} q \Rightarrow T$
$\mathrm{q} \rightarrow \mathrm{T}$
$\sim q \vee r \rightarrow F \vee F \Rightarrow F$
$r \rightarrow F$
$\mathrm{T} \rightarrow \mathrm{F} \Rightarrow \mathrm{F}$
Q. 19 If the surface area of a cube is increasing at a rate of $3.6 \mathrm{~cm}^{2} / \mathrm{sec}$, retaining its shape; then the rate of change of its volume (in $\mathrm{cm}^{3} / \mathrm{sec}$), when the lenght of a side of the cube is 10 cm , is :
(1) 9
(2) 10
(3) 18
(4) 20

Sol. 1
$A=6 a^{2}$
a \rightarrow side of cube
$\frac{d A}{d t}=6\left(2 \mathrm{a} \frac{\mathrm{da}}{\mathrm{dt}}\right) \Rightarrow 3.6=12 \times 10 \frac{\mathrm{da}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{da}}{\mathrm{dt}}=\frac{3}{100}$
$v=a^{3}$
$\frac{d V}{d t}=3 a^{2} \frac{d a}{d t}$
$=3 \times 100 \times \frac{3}{100}$
$=9 \mathrm{~cm}^{3} / \mathrm{sec}$
Q. 20 Let R_{1} and R_{2} be two relations defined as follows:
$R_{1}=\left\{(a, b) \in R^{2}: a^{2}+b^{2} \in Q\right\}$ and
$\mathrm{R}_{2}=\left\{(\mathrm{a}, \mathrm{b}) \in \mathrm{R}^{2}: \mathrm{a}^{2}+\mathrm{b}^{2} \notin \mathrm{Q}\right\}$, where Q is the set of all rational numbers. Then :
(1) R_{1} is transitive but R_{2} is not transitive
(2) R_{1} and R_{2} are both transitive
(3) R_{2} is transitive but R_{1} is not transitive
(4) Neither R_{1} nor R_{2} is transitive

Sol. 4
for R_{1}
Let $a=1+\sqrt{2}, b=1-\sqrt{2}, c=8^{\frac{1}{4}}$
$a R_{1} b a^{2}+b^{2}=(1+\sqrt{2})^{2}+(1-\sqrt{2})^{2}=6 \in Q$
$b R_{1} c \quad b^{2}+c^{2}=(1-\sqrt{2})^{2}+\left(8^{\frac{1}{4}}\right)^{2}=3 \in Q$
$a R_{1} c \Rightarrow a^{2}+c^{2}=(1+\sqrt{2})+\left(8^{1 / 4}\right)^{2}=3+4 \sqrt{2} \notin Q$
R_{1} is not transitive
R_{2}
let $a=1+\sqrt{2}, b=\sqrt{2}, c=1-\sqrt{2}$
$a R_{2} b \quad a^{2}+b^{2}=5+2 \sqrt{2} \notin Q$
$b R_{2} c \quad b^{2}+c^{2}=5-2 \sqrt{2} \notin \mathrm{Q}$
$a R_{2} c \quad a^{2}+c^{2}=6 \in Q$
R_{2} is not transitive
Q. 21 If m arithmetic means (A.Ms) and three geometric means (G.Ms) are inserted between 3 and 243 such that $4^{\text {th }} A . M$. is equal to $2^{\text {nd }}$ G.M., then m is equal to \qquad
Sol. 39
$3, \ldots \ldots \ldots . .243$
m A.M.
$d=\frac{b-a}{n+1}=\frac{243-3}{m+1}=\frac{240}{m+1}$
$4^{\text {tn }} A \cdot M=3+4 d=3+4\left(\frac{240}{m+1}\right)$
$3+\frac{960}{m+1}=27$
$=\frac{960}{m+1}=24$
$\Rightarrow \mathrm{m}=39$
Q. 22 Let a plane P contain two lines $\vec{r}=\hat{i}+\lambda(\hat{i}+\hat{j}), \lambda \in R$ and $\vec{r}=-\hat{j}+\mu(\hat{j}-\hat{k}), \mu \in R$. If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from the point $M(1,0,1)$ to P,then $3(\alpha+\beta+\gamma)$ equals \qquad
Sol. 5

$$
\left.\begin{array}{rl}
\vec{r} & =\hat{i}+\lambda(\hat{i}+\hat{j}) \\
\vec{r} & =-\hat{j}+\mu(\hat{j}-\hat{k})
\end{array}\right]
$$

$\overrightarrow{\mathrm{n}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 1 & 0 \\ 0 & 1 & -1\end{array}\right|$
$=(-1,1,1)$
equation of plane
$-1(x-1)+1(y-0)+1(z-0)=0$
$\Rightarrow \mathrm{x}-\mathrm{y}-\mathrm{z}-1=0$
foot of \perp^{r} from $m(1,0,1)$
$\frac{x-1}{1}=\frac{y-0}{-1}=\frac{z-1}{-1}=-\frac{(1-0-1-1)}{3}$
$x-1=\frac{1}{3} \quad\left|\frac{y}{-1}=\frac{1}{3}\right|=\frac{z-1}{-1}=\frac{1}{3}$
$x=\frac{4}{2}, y=\frac{-1}{3}, z=\frac{2}{3}$
$\left.\begin{array}{r}\alpha=\frac{4}{3} \\ \beta=\frac{-1}{3} \\ \gamma=\frac{2}{3}\end{array}\right]$
$\alpha+\beta+\gamma=\frac{4}{3}-\frac{1}{3}+\frac{2}{3}=\frac{5}{3}$
$3(\alpha+\beta+\gamma)=5$
Q. 23 Let S be the set of all integer solutions, (x, y, z), of the system of equations $x-2 y+5 z=0$
$-2 x+4 y+z=0$
$-7 x+14 y+9 z=0$
such that $15 \leq x^{2}+y^{2}+z^{2} \leq 150$. Then, the number of elements in the set S is equal to \qquad
Sol. 8
$x-2 y+5 z=0$
$-2 x+4 y+z=0$
$-7 x+14 y+9 z=0$
2. (1) $+(2)$ we get $z=0, x=2 y$
$15 \leq 4 y^{2}+y^{2} \leq 150$
$\Rightarrow 3 \leq y^{2} \leq 30$
$y \in[-\sqrt{30},-\sqrt{3}] \cup[\sqrt{3}, \sqrt{30}]$
$y= \pm 2, \pm 3, \pm 4, \pm 5$
no. of integer's in S is 8
Q. 24 The total number of 3-digit numbers, whose sum of digits is 10 , is \qquad

Sol. 54

Let $x y z$ be 3 digit number
$x+y+z=0$ where $x \geq 1, y \geq 0, z \geq 0$
$\Rightarrow t+y+z=9$

$$
\left.\begin{array}{c}
x-1 \geq 0 \\
t \geq 0
\end{array}\right] x-1=t
$$

$9+3-{ }^{1} C_{3-1}=11 c_{2}=55$
but for $t=9, x=10$ not possible
total numbers $=55-1=54$
Q. 25 If the tangent to the curve, $y=e^{x}$ at a point $\left(c, e^{C}\right)$ and the normal to the parabola, $y^{2}=4 x$ at the point $(1,2)$ intersect at the same point on the x-axis, then the value of c is \qquad -
Sol. 4

```
Tangent at (c, ec) y - ec}=\mp@subsup{e}{}{c}(x-c
normal to parabola y - 2 =-1 (x-1)
x+y=3
at x-axis y =0
in (1), x=c-1
```

$c-1=3 \Rightarrow c=4$

