CHEMISTRY
 JEE-MAIN (August-Attempt)
 31 August (Shift-2) Paper

SECTION - A

1. For the reaction given below:

The compound which is not formed as a product in the reaction is a:
(1) Compound with both alcohol and acid functional groups
(2) dicarboxylic acid
(3) diol
(4) monocarboxylic acid

Sol. (2)

2. In which one of the following sets all species show disproportionation reaction?
(1) $\mathrm{MnO}_{4}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{Cl}_{2}$ and Mn^{3+}
(2) $\mathrm{ClO}_{4}^{-}, \mathrm{MnO}_{4}^{-}, \mathrm{ClO}_{2}^{-}$and F_{2}
(3) $\mathrm{ClO}_{2}^{-}, \mathrm{F}_{2}, \mathrm{MnO}_{4}^{-}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(4) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{MnO}_{4}^{-}, \mathrm{ClO}_{2}^{-}$and Cl_{2}

Sol. (1)
Motion Bonus
No option contains all species that show disproportionation reaction.
MnO_{4}^{-}
Mn is in +7 oxidation state (highest) hence cannot be simultaneously oxidized or reduced.
3. Identify correct A, B and C in the reaction sequence given below:
conc. HNO_{3}

${ }^{(4)} \mathrm{A}=$

Sol. (1)

4. The deposition of X and Y on ground surfaces is referred as wet and dry depositions, respectively. X and Y are:
(1) $X=$ Ammonium salts, $Y=\mathrm{CO}_{2}$
(2) $\mathrm{X}=\mathrm{SO}_{2}, \mathrm{Y}=$ Ammonium salts
(3) $\mathrm{X}=$ Ammonium salts, $\mathrm{Y}=\mathrm{SO}_{2}$
(4) $\mathrm{X}=\mathrm{CO}_{2}, \mathrm{Y}=\mathrm{SO}_{2}$

Sol. (3)
Oxides of nitrogen and sulphur are acidic and settle down on ground as dry depostion.
Ammonium salts in rain drops result in wet depostion
5. The number of $S=O$ bonds present in sulphurous acid, peroxodisulphuric acid and pyrosulphuric acid, respectively are:
(1) 1, 4 and 3
(2) 2, 4 and 3
(3) 2, 3 and 4
(4) 1, 4 and 4

Sol. (4)

Peroxodisulphuric acid

15 Bond.

Pyrosulphuric acid

6. The major products A and B formed in the following reaction sequence are:

(1)

(2)

(3)

(4)

Sol. (4)

7. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as

Reason (R),

Assertion (A): Lithium salts are hydrated.
Reason (R) : Lithium has higher polarising power than other alkali metal group members.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
(2)(A) is correct but (R) is not correct.
(3)(A) is not correct but (R) is correct.
(4) Both (A) and (R) are correct and (R) is the correct explanation of (A).

Sol. (1)

Lithium salts are hydrated due to high hydration energy of Li^{+}
Li^{+}due to smallest size in IA group has highest polarizing power.
8. Which among the following is not a polyester?
(1)Glyptal
(2) PHBV
(3) Dacron
(4)Novolac

Sol. (4)

Novalac is a linear polymer of [$\mathrm{Ph}-\mathrm{OH}+\mathrm{HCHO}$].
So ester linkage not present.
So novalac is not a polyester.
9. Which one of the following statements is incorrect?
(1) Dihydrogen is produced on reacting zinc with HCl as well as NaOH (aq.)
(2) Atomic hydrogen is produced when H_{2} molecules at a high temperature are irradiated with UV radiation.
(3) Bond dissociation enthalpy of H_{2} is highest among diatomic gaseous molecules which contain a single bond.
(4) At around 2000 K , the dissociation of dihydrogen into its atoms is nearly 8.1%

Ans. (4)
Atomic hydrogen is produced at high temperature in an electric are or under ultraviolet radiations. The dissociation of dihydrogen at 2000 K is only 0.081%
$\mathrm{H}-\mathrm{H}$ bond dissociation enthalpy is highest for a single bond for any diatomic molecule.
Dihydrogen can be produced onreacting Zn with dil. HCl as well as $\mathrm{NaOH}(\mathrm{aq})$.
10. The incorrect expression among the following is:
(1) For isothermal process $w_{\text {reversible }}=-n R T \ln \frac{V_{f}}{V_{i}}$
(2) $\operatorname{In} K=\frac{\Delta H^{0}-T \Delta S^{0}}{R T}$
(3) $K=e^{-\Delta G^{0} / R T}$
(4) $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {Total }}}=-T$ (at constant P)

Sol. (2)
Option (2)is incorrect
$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ell \mathrm{nK}$
$\Delta H^{\circ}-T \Delta S^{\circ}=-R T \ell n K$
enK $=-\left[\frac{\Delta H^{\circ}-\Delta S^{\circ}}{R T}\right]$
11. For the following sequence of reactions, the correct products are:

1. $\mathrm{Br}_{2} / \mathrm{Fe} / \Delta$
2. $\mathrm{Mg} / \mathrm{dry}$ ether
3. $\mathrm{CH}_{3} \mathrm{OH}$

Products
(1)

(2)

(3)

(4)

Sol. (1)

12. Which one of the following correctly represents the order of stability of oxides, $X_{2} \mathrm{O}$; ($\mathrm{X}=$ Halogen)?
(1) $\mathrm{Br}>\mathrm{Cl}>\mathrm{I}$
(2) $\mathrm{I}>\mathrm{Cl}>\mathrm{Br}$
(3) $\mathrm{Br}>\mathrm{I}>\mathrm{Cl}$
(4) $\mathrm{Cl}>\mathrm{I}>\mathrm{Br}$

Sol. (2)

Stability of oxides of Halogens is
$\mathrm{I}>\mathrm{Cl}>\mathrm{Br}$
13. The structures of A and B formed in the following reaction are: $\left[P h=-C_{6} H_{5}\right]$

(1)

(2)

(3)

(4)

, B =

Sol. (1)

14. Arrange the following conformational isomers of n-butane in order of their increasing potential energy:

I

II

III

IV
(1) II $<$ III $<$ IV $<$ I
(2) I < III < IV < II
(3) I $<$ IV $<$ III $<$ II
(4) II $<$ IV $<$ III $<$ I

Sol. (2)

More stable less potential energy.
Stability order: I > III > IV > II
So
Potential energy : II > IV > III > I
15. Which of the following is NOT an example of fibrous protein?
(1) Myosin
(2) Collagen
(3) Keratin
(4) Albumin

Sol. (4)

Keratin, collagen and myosin are example of fibrous protein.
16. Match List-I with List-II

List-I List-II

(Metal Ion)
(a) Mn^{2+}
(b) As^{3+}
(c) Cu^{2+}
(d) Al^{3+}

Choose the most appropriate answer from the options given below:
(1) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
(2) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
(3) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
(4) (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)

Sol. (1)

$\mathrm{Mn}^{2+} \rightarrow$ III group, $\mathrm{As}^{3+} \rightarrow$ II B group,
$\mathrm{Cu}^{2+} \rightarrow$ II A group, $\mathrm{Al}^{3+} \rightarrow$ IV group
17. The Eu^{2+} ion is a strong reducing agent in spite of its ground state electronic configuration (outermost): [Atomic number of $\mathrm{Eu}=63$]
(1) $4 f^{6}$
(2) $4 f^{6} 6 s^{2}$
(3) $4 f^{7}$
(4) $4 f^{7} 6 s^{2}$

Sol. (3)

$\mathrm{Eu} \rightarrow[\mathrm{Xe}]^{4} \mathrm{f}^{7} 6 s^{2}$
$E u^{2+} \rightarrow[\mathrm{Xe}] 4 \mathrm{f}^{7}$
18. The major product of the following reaction is:

(1)

(2)

(3)

Sol. (3)

Motion Ans. 1

$\mathrm{NaOH}+\mathrm{EtOH}$ is known as alcoholic NaOH , so it give E^{2} reaction with given alkyl halide.

19. Spin only magnetic moment in BM of $\left[\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right]^{+}\right.$is:
(1) 1
(2) 0
(3) 5.92
(4) 1.73

Sol. (4)

$\left[\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]^{+}$

One unpaired electron
Spin only magnetic moment
$=\sqrt{3} \mathrm{~B} . \mathrm{M} .=1.73 \mathrm{BM}$
20. Match List-IwithList-II:

List-I

(Parameter)
(a) Cell constant
(b) Molar conductivity
(c) Conductivity

List-II

(Unit)

(d) Degree of dissociation of electrolyte
(i) $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

Choos the most appropriate answer from $\Omega^{-1} \mathrm{~m}^{-1}$
(1) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
(2) (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
(3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(4) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)

Sol. (3)

Cell constant $=\left(\frac{\ell}{A}\right) \Rightarrow$ Units $=\mathrm{m}^{-1}$
Molar conductivity $\left(\Lambda_{\mathrm{m}}\right) \Rightarrow$ Units $=\mathrm{Sm}^{2}$ mole $^{-1}$
Conductivity $(\mathrm{K}) \Rightarrow$ Units $=\mathrm{S} \mathrm{m}^{-1}$
Degree of dissociation (α) \rightarrow Dimensionless
\therefore (a) - (iii)
(b) - (i)
(c) - (iv)
(d) - (ii)

Section B

1. In the electrolytic refining of blister copper, the total number of main impurities, from the following, removed as anode mud is \qquad _. $\mathrm{Pb}, \mathrm{Sb}, \mathrm{Se}, \mathrm{Te}, \mathrm{Ru}, \mathrm{Ag}, \mathrm{Au}$ and Pt
Ans. 6
Anode mud contains $\mathrm{Sb}, \mathrm{Se}, \mathrm{Te}, \mathrm{Ag}, \mathrm{Au}$ and Pt
2. 1.22 g of an organic acid is separately dissolved in 100 g of benzene ($\mathrm{K}_{\mathrm{b}}=2.6 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$) and 100 g of acetone ($\mathrm{K}_{\mathrm{b}}=1.7 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$). The acid is known to dimerize in benzene but remain as a monomer in acetone. The boiling point of the solution in acetone increases by $0.17^{\circ} \mathrm{C}$. The increase in boiling point of solution in benzene in ${ }^{\circ} \mathrm{C}$ is $\times \times 10^{-2}$. The value of x is \qquad _. (Nearest integer). [Atomic mass : $\mathrm{C}=12.0, \mathrm{H}=1.0, \mathrm{O}=16.0$]
Ans. 13
With benzene as solvent
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}$
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{1}{2} \times 2.6 \times \frac{1.22 / \mathrm{M}_{\mathrm{w}}}{100 / 1000}$
With Acetone as solvent
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}$
$0.17=1 \times 1.17 \times \frac{1.22 / M_{w}}{100 / 1000}$
(1)/(2)
$\frac{\Delta T_{b}}{0.17}=\frac{\frac{1}{2} \times 2.6+\frac{1.22 / M_{w}}{100 / 1000}}{1 \times 1.17 \times \frac{1.22 / M_{w}}{100 / 1000}}$
$\Delta T_{b}=\frac{0.26}{2}$
$\Delta \mathrm{T}_{\mathrm{b}}=13 \times 10^{-2} \quad \Rightarrow \mathrm{x}=13$
3. The empirical formula for a compound with a cubic close packed arrangement of anions and with cations occupying all the octahedral sites in $A_{x} B$. the value of x is \qquad .
Ans. 1
Anions froms CCP or FCC $\left(\mathrm{A}^{-}\right)=4 \mathrm{~A}^{-}$per unit cell
Cations occupy all octahedral voids $\left(\mathrm{B}^{+}\right)=4 \mathrm{~B}^{+}$per unit cell
cell formula $\rightarrow \mathrm{A}_{4} \mathrm{~B}_{4}$
Empirical formula $\rightarrow \mathrm{AB}$
$\rightarrow(x=1)$
4. Sodium oxide reacts with water to produce sodium hydroxide. 20.0 g of sodium oxide is dissolved in 500 mL of water. Neglecting the change in volume, the concentration of the resulting NaOH solution is \qquad $\times 10^{-1} \mathrm{M}$. (Nearest integer).
[Atomic mass : $\mathrm{Na}=23.0, \mathrm{O}=16.0, \mathrm{H}=1.0$]

Ans. 13
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
$\frac{20}{62}$ moles
Moles of NaOH formed $=\frac{20}{62} \times 2$
$[\mathrm{NaOH}]=\frac{\frac{40}{62}}{\frac{500}{1000}}=1.29 \mathrm{M}=13 \times 10^{-1} \mathrm{M} \quad$ (Nearest integer)
5. The transformation occurring in Duma's method is given below:
$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}+\left(2 \mathrm{x}+\frac{\mathrm{y}}{2}\right) \mathrm{CuO} \rightarrow \mathrm{XCO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}+\frac{\mathrm{z}}{2} \mathrm{~N}_{2}+\left(2 \mathrm{x}+\frac{\mathrm{y}}{2}\right) \mathrm{Cu}$
The value of y is \qquad . (Integer answer).
Ans. 7
$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}+\left(2 \mathrm{x}+\frac{\mathrm{y}}{2}\right) \mathrm{CuO} \rightarrow \mathrm{xCO}_{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O}+\frac{\mathrm{z}}{2} \mathrm{~N}_{2}+\left(2 \mathrm{x}+\frac{\mathrm{y}}{2}\right) \mathrm{Cu}$
On balancing
$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}+\frac{15}{2} \mathrm{CuO} \rightarrow 2 \mathrm{CO}_{2}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{~N}_{2}+\frac{15}{2} \mathrm{Cu}$
On Comparing
$y=7$
6. The pH of a solution obtained by mixing 50 mL of 1 M HCl and 30 mL of 1 M NaOH is $\times 10^{-4}$. The value of x is \qquad . (Nearest integer).
$[\log 2.5=0.3979]$
Ans. 6021
6021

$$
\mathrm{HCl}(\mathrm{aq} .)+\mathrm{NaOH}(\mathrm{aq} .) \rightarrow \mathrm{NaCl}(\mathrm{aq} .)+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

$$
50 \mathrm{ml}, 1 \mathrm{M} \quad 30 \mathrm{ml}, 1 \mathrm{M}
$$

$\mathrm{t}=0 \quad 50 \mathrm{~mm} \quad 30 \mathrm{~mm}$
$\mathrm{t}=\infty \quad 20 \mathrm{~mm} \quad-$
$[\mathrm{HCl}]=\frac{20}{80}=\frac{1}{4} \mathrm{M}=2.5 \times 10^{-1} \mathrm{M}$
$\mathrm{pH}=-\log 2.15 \times 10^{-1}=1-0.3979=0.6021$
$\mathrm{pH}=6021 \times 10^{-4}$
7. According to molecular orbital theory, the number of unpaired electron(s) in O_{2}^{2-} is:

Ans. 0
Molecular orbital configuration of O_{2}^{2-} is
$\sigma_{1 s}^{2} \sigma_{1 \mathrm{~s}}^{* 2} \sigma_{2 \mathrm{~s}}^{2} \sigma_{2 \mathrm{~s}}^{* 2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi_{2 \mathrm{px}}^{* 2}=\pi_{2 \mathrm{py}}^{* 2}\right)$
Zero unpaired electron
8. $\quad \mathrm{CH}_{4}$ is adsorbed on 1 g charcoal at $0^{\circ} \mathrm{C}$ following the Freundlich adsorption isotherm. 10.0 mL of CH_{4} is adsorbed at 100 mm of Hg , whereas 15.0 mL is adsorbed at 200 mm of Hg . The volume of CH_{4} adsorbed at 300 mm of Hg is $10{ }^{\times} \mathrm{mL}$. the value of x is \qquad $\times 10^{-2}$. (Nearest integer).
[Use $\log _{10} 2=0.3010, \log _{10} 3=0.4771$]
Ans. 128
We know
$\frac{\mathrm{X}}{\mathrm{m}}=K \mathrm{P}^{1 / n}$; using $(\mathrm{X} \propto \mathrm{V})$
$\Rightarrow \quad \frac{10}{1}=\mathrm{K} \times(100)^{1 / \mathrm{n}}$
$\frac{15}{1}=\mathrm{K} \times(200)^{1 / n}$
$\frac{\mathrm{V}}{1}=\mathrm{K} \times(300)^{1 / n}$
Divide
(2)/ (1)
$\frac{15}{10}=2^{1 / n}$
$\log \left(\frac{3}{2}\right)=\frac{1}{n} \log 2$
$\frac{1}{n}=\frac{\log 3-\log 2}{\log 2}=\frac{0.4771-0.3010}{0.3010}$
$\frac{1}{n}=0.585$
Divide
(3)/(1)
$\frac{\mathrm{V}}{10}=3^{1 / n}$
$\log \left(\frac{\mathrm{V}}{10}\right)=\frac{1}{\mathrm{n}} \log 3, \quad \log \left(\frac{\mathrm{~V}}{10}\right)=0.585 \times 0.4771=0.2791$

$$
\begin{aligned}
\frac{V}{10}=10^{0.279} & \Rightarrow V=10 \times 10^{0.279} \\
& \Rightarrow V=10^{1.279}=10^{x} \\
& \Rightarrow x=1.279 \\
& \Rightarrow x=128 \times 10^{-2} \text { (Nearest integer) }
\end{aligned}
$$

9. For the reaction $A \rightarrow B$, the rate constant $k\left(i n s^{-1}\right.$) is given by $\log _{10} k=20.35-\frac{\left(2.47 \times 10^{3}\right)}{T}$

The energy of activation in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad . (Nearest integer)
[Given : $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
Ans.
47
Given

$$
\log K=20.35-\frac{2.47 \times 10^{3}}{T}
$$

We know

$$
\log K=\log A-\frac{E_{a}}{2.303 R T}
$$

$\Rightarrow \quad \frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}=2.47 \times 10^{3}$
$E_{a}=2.47 \times 10^{3} \times 2.303 \times \frac{8.314}{1000} \mathrm{KJ} / \mathrm{mole}$
$=47.29=47$ (Nearest integer)
10. The value of magnetic quantum number of the outermost electron of Zn^{+}ion is \qquad . (Integer answer)
Ans. 0
$Z n^{+} \rightarrow 1 s^{2} 2 s^{2} 2 p^{6} 3 p^{6} 3 d^{10} 4 s^{1}$
Outermost electron is in $4 s$ subshell $\mathrm{m}=0$

